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Abstract

Goldbach strong conjecture states that all even integers
n>2 can be expressed as the sum of two prime numbers
(Goldbach partitions of n). Hypothesis still remains open
and is confirmed experimentally for bigger and bigger n.
This work studies different approaches to finding the first
confirmation of this conjecture in order to select the most
effective confirmation method.

1 Introduction

Goldbach strong (also called binary) conjecture asserts
that all positive even integer n ≥ 4 can be expressed as
the sum of two prime numbers. This hypothesis, formu-
lated by Goldbach in 1742 in letter to Euler [1] and then
updated by Euler to the form above is one of the oldest
and still unsolved problems in number theory. Empirical
verification showed that it is true for all n ≤ 4 x 1018 [2].

The expression of a given number n as a sum of two
primes p1 and p2 is called a Goldbach Partition (GP) of n.
Let’s denote this relation as GSC(n, p1, p2). Then Gold-
bach strong conjecture can be written as (1):

∀
x>1,x∈N

∃
p1,p2∈P

GSC(2x, p1, p2) (1)

Figure 1: r(n) (2 <n <106, n = 2k, k ∈ N)

Let r(n) be the number of GPs of n and let R(n) be a
set of distincs GPs of n (uniqueness guaranteed through p1
≤ p2). Goldbach strong conjecture may be rewritten that
r(n) > 0 for all positive even integers n ≥ 4. Computa-
tional experiments show (for n <106) that the hyphothesis
may be reinforced: bottom estimation for min(r(n)) is in-
creasing with n (Figure 1). [3] formulates conjecture that

lower and upper bounds can be expressed as simple expo-
nentials.

Empirical verification of Goldbach strong conjecture
and search for GP requires fast and reliable primality test,
repeated even twice for both components of a candidate
for GP. The following paper is devoted to designing of the
fastest algorithm for searching the first confirmation: a pair
of primes: p1 and p2 for n, where GSC(n, p1, p2). Design
of algorithm is based on detailed observations for all GPs
found for all even n (4 ≤ n <106), and then confirmed for
bigger numbers. All listings are written in Python pro-
gramming language and published at [4].

2 Fast primality test

For the sake of this work, to check if a given number
is prime or not, algorithm skewed in Listing 1 was used.
Presented approach is taking advantage of preloaded prime
and composite sets (containing prime and composite num-
bers found earlier) which gives instant result. Then, algo-
rithm is testing if a candidate for prime is even (divides it
by 2) or is a multiple of 3 - in case of success the candi-
date is confirmed as a composite number. Eventually, it is
taking advantage of Lemma 1.

Listing 1: Primality test

# input : i n t e g e r n
# e x t e r n a l dependencies :
# p r i m e s e t − a s e t o f primes
# c o m p o s i t e s e t − a s e t o f non−primes
# output : True i f n i s prime ; Fa lse

o t h e r w i s e
def i s p r i m e (n) :

i f n<=1:
return False

e l s i f n<=3:
return True

e l s i f n in pr ime se t :
return True

e l s i f n in compos i t e s e t :
return False

e l s i f n%2 == 0 or n%3 == 0 :
return False

i=5
while i ∗ i<=n :

i f n%i == 0 or n%( i +2) == 0 :
return False

i+=6
return True

Lemma 1. Every prime p>3 can be written as p = 6k± 1
(where k is a positive integer).
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Proof. Every positive integer n ≥ 6 can be expressed as
6k + m, where m=0, 1, . . . , 5, k ≥1. Numbers 6k,
6k + 2, 6k + 3 and 6k + 4 are always composite because
they are divisible by either 2 or 3 or both (6k=2 × 3k,
6k+2=2×(3k+1), 6k+3=3×(2k+1), 6k+4=2×(3k+2)).
6k + 1 and 6k + 5 are either prime (ie. 6 × 1 + 1 = 7,
6 × 2 − 1 = 11) or composite (ie. 6k + 5 is divisible by
5 if k is multiple of 5, 6k + 1 is divisible by 3 if sum of
decimal digits is divisible by 3). 6k+ 5 can be rewritten as
6×(k+1)−1. All primes <5 (2 and 3) cannot be expressed
as p = 6k ± 1 where k is a positive integer. This means
that every prime p ≥ 5 can be expressed as 6k ± 1 (where
k ≥ 1).

3 Characteristics of GPs

The first part of work is devoted to detailed examination
of different characteristics of R(n) (n <106) in order to
find useful observations which are the foundation of further
versions of GP fast confirmation algorithms.

3.1 Difference between primes in GP

First analysis concentrates on possible differences be-
tween primes in R(n) (for n <106), including the smallest,
average and the biggest difference.

Tests show that minimal difference may be low (com-
paring to n). In majority of examined cases it is below
1000, with just six recorded examples above 2000 (Figure
2). The bold observation may lead to a hypothesis that
primes in at least one GP in R(n) are not so far from each
other (2):

∀
k>1,k∈N

∃
GSC(2k,p1,p2)

∃
C∈N

C =| p1 − p2 |� 2k (2)

Figure 2: Minimal difference in R(n) (2 <n <106)

Maximum difference in GP is close to n, indicating that
p2 in such extreme case (p1 ≤ p2) is close to n (Figure 3).
Average difference in GP is fluctuating slightly above n

2
(Figure 4). The bigger n, the more visible fluctuations.

Further observation of trends in change of minimum
/ maximum / average difference in GPs of n (+1 if dif-
ference between previous and current value is positive, -1
if negative, +0 if no change) shows that all those three

Figure 3: Maximum difference in R(n) (2 <n <106)

Figure 4: Average difference in R(n) (2 <n <106)

trends are generally descending, with just few ascending
episodes (Figure 5). Big picture (Figure 6) presents that
both trends for minimum and average difference have very
similar characteristics.

3.2 Minimal prime in GP

Detailed examination of R(n) (n <106) shows that the
minimal prime in at least one of GPs is usually low (Fig-
ure 7). For all n <106 it has been computionally verified
that 523 is the biggest minimal prime (for n=503222) in
all possible GPs. [2] verified that 3325581707333960528 is
the smallest number that has no GP with a prime below
9781. Among the smallest primes in GBs (n <106) the
most popular is 3 (Table 1).

3.3 Twin primes in GP

[5] shows that original Goldbach conjecture could be
extended to a form that every even n>4 (this is (1) without
case n = 4 = 2+2) can be expressed as a sum of twin prime
and another prime (3):

∀
x>2,x∈N
∃

p1∈PT
∃
p2∈P

GSC(2x, p1, p2) (3)
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Figure 5: Trends in R(n) for the smallest n (2 <n <2000)

Figure 6: Trends in R(n) (2 <n <106)

Figure 7: Minimal prime in R(n) (2 <n <106)

Figure 8 depicts that number of distint twin primes in
R(n) is increasing with n.

3.4 GP and symmetrical primes

We can rewrite Goldbach hypothesis to the following
form: all positive integers >1 can be expressed as a half of
sum of two primes. This means that given integer n >1 is

Table 1: Smallest primes in R(n) (2 <n <106)

Prime Appearances Prime Appearances
2 1 79 101
3 78497 181 219
5 70328 191 76
7 62185 193 109
11 48582 197 49
13 40916 199 112
17 31091 211 97
19 29791 223 40
23 21422 227 37
29 16776 229 42
31 18119 233 32
37 13165 239 25
41 10001 241 41
43 9100 251 19
47 6625 257 12
53 5076 263 9
59 4012 269 3
61 6417 271 22
67 4839 277 15
71 2597 281 4
73 2801 283 17
79 3030 293 8
83 1753 307 14
89 1442 311 3
97 1763 313 7
101 988 317 2
103 1266 331 12
107 889 337 4
109 1245 349 3
113 507 353 2
127 730 359 1
131 356 367 2
137 358 373 1
139 602 383 1
149 279 389 3
151 522 397 2
157 253 409 2
163 258 439 1
167 168 523 1

in fact a symmetry point for two primes p1 and p2. Let us
call such p1 and p2 as symmetrical primes to n, denoting
this symmetry as psym(n, i) = (p1, p2), if there exists yet
another integer i (0 ≤ i ≤ n - 2) that p1 = n - i and
p2 = n + i. For example, 2 = (2 + 2)/2 (psym(2, 0) =
(2, 2)), 3 = (3 + 3)/2 (psym(3, 0) = (3, 3)), 4 = (3 + 5)/2
(psym(4, 1) = (3, 5)). If n is prime, then we always have
psym(n, 0) = (n, n).

Let s(n) be a number of available symmetrical primes
to n, and S(n) a set of all symmetrical primes to n. Figure
9 which is depicting s(n) has very similar shape to Figure
1 which is depicting r(n). Further empirical examination
suggests that s(n) and r(n) are correlated what is depicted
by Figure 12. Each GP is built from two primes p1 and p2
which are symmetrical primes to n = p1+p2

2 . n is always
a positive integer because every GP is built from either
both odd primes or both even primes, thus sum of such
two primes is always even. Each GP is constructed from
two primes which are fulfilling psym(p1+p2

2 , p2−p1

2 ).
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Figure 8: Number of distinct twin primes in R(n)
(2 <n <106)

Figure 9: s(n) (2 <n <105)

Lemma 2. Every prime p >3 can be written as p = 3x±1
(where x is a positive integer).

Proof. All integers n>3 can be written as 3x + i, where
i = 0, 1, 2 and x ≥ 1. If n1 = 3x>3, then n1 is always
composite number, because x>1 and both 3 and x divides
n1. On the other hand, numbers of form 3x−1 can be either
prime (ie. 5 = 3× 2− 1) or composite (ie. 8 = 3× 3− 1 =
2×2×2) and numbers of form 3x+1 can be either prime (ie.
7 = 3×2+1) or composite (ie. 10 = 3×3+1 = 2×5).

Figure 10 shows that minimal i in psym(n, i) is rela-
tively low (in comparison to n), similarly to smallest primes
in R(n), depicted by Figure 7. Maximum i is close to n
(Figure 11).

Lemma 3. If integer n is a half of the sum of two primes
then n can be expressed as either 3x − 1 or 3x or 3x + 1,
where x is integer ≥ 1.

Proof. Based on Lemma 1, every prime p >3 is a form of
6k ± 1 (where k ≥ 1). Sum of two primes si is then in
3 variants (ki is integer ≥ 1, k3 = k1 + k2): s1 = 6k1 −
1 + 6k2 − 1 = 6k3 − 2; s2 = 6k1 − 1 + 6k2 + 1 = 6k3; s3 =
6k1+1+6k2+1 = 6k3+2. We will have then: s1

2 = 3k3−1;
s2
2 = 3k3; s3

2 = 3k3 + 1. Lemma is then true if both primes

Table 2: Symmetrical primes to n>1 (a, x, k1, k2>0)

n p1+p2

2 (p1, p2)
2 3× 1− 1 (2, 2)
3 3× 1 (3, 3)
4 3× 1 + 1 (3, 5)
5 3× 2− 1 (5, 5), (3, 7)
6a 3x (3k1 − 1, 3k2 + 1), (3k1 + 1, 3k2 − 1)

3x is not prime, 2 | k1 + k2
6a + 1 3x + 1 (3k1 + 1, 3k2 + 1), (3, 2n− 3)

2 | k1 + k2
6a + 2 3x - 1 (3k1 − 1, 3k2 − 1), (3, 2n− 3)

2 | k1 + k2
6a + 3 3x (3k1 − 1, 3k2 + 1), (3k1 + 1, 3k2 − 1)

3x is not prime, 2 | k1 + k2
6a + 4 3x + 1 (3k1 + 1, 3k2 + 1), (3, 2n− 3)

2 | k1 + k2
6a + 5 3x - 1 (3k1 − 1, 3k2 − 1), (3, 2n− 3)

2 | k1 + k2

Figure 10: Minimal i in psym(n, i) (n <105)

Figure 11: Maximum i in psym(n, i) (n <105)

are >3. Let us then analyze all missing cases with primes
≤ 3: 2 and 3. If one of the primes is 2, then sum of the
primes can only be even (so that divided by 2 gives integer)
if second prime is also 2. This gives us: 2+2

2 = 2 = 3×1−1,
which fulfills the lemma. If one of the primes is 3, then the
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Figure 12: r(n) / s(n) (n <105)

second prime cannot be 2 and can be either 3 or prime
>3. If second prime is 3, then we have 3+3

2 = 3 = 3 × 1,
which fullfills the lemma. If second prime is >3, then we
have the following variants: s4 = 3 + 6k2 − 1 = 6k2 + 2;
s5 = 3 + 6k2 + 1 = 6k2 + 4 = 6(k2 + 1)− 2. We have then:
s4
2 = 3k2 + 1; s5

2 = 3(k2 + 1) − 1, which also fullfills the
lemma.

Every positive integer n>1 can be expressed as 6a +
m, where m = 0, 1, . . . , 5 and a ≥ 0. Let us analyze all
possible solutions in integer numbers if we confront this
with Lemma 3 - we will have six (from a) to f)) cases then:

a)

6a =

 3x− 1 if x = 2a + 1
3

3x if x = 2a
3x + 1 if x = 2a− 1

3

b)

6a + 1 =

 3x− 1 if x = 2a + 2
3

3x if x = 2a + 1
3

3x + 1 if x = 2a

c)

6a + 2 =

 3x− 1 if x = 2a + 1
3x if x = 2a + 2

3
3x + 1 if x = 2a + 1

3

d)

6a + 3 =

 3x− 1 if x = 2a + 4
3

3x if x = 2a + 1
3x + 1 if x = 2a + 2

3

e)

6a + 4 =

 3x− 1 if x = 2a + 5
3

3x if x = 2a + 4
3

3x + 1 if x = 2a + 1

f)

6a + 5 =

 3x− 1 if x = 2a + 2
3x if x = 2a + 5

3
3x + 1 if x = 2a + 4

3

In each case just one subcase has solution where both x
and a are integers. Table 2 presents these solutions, suple-
mented by candidates for prime pairs which can produce a
given integer symmetry point. Table 2 is taking advantage
of Lemma 2 for numbers ≥ 6 and contains manual calcu-
lations for exact symmetrical primes if 2 ≤ n ≤ 5. Lemma

2 is also useful when symmetry point n is of form 3x and
n>3 - in such case psym(n, 0) does not exist because n
cannot be prime. Additionaly, 2 | k1 + k2 in each row of
Table 2, otherwise p1+p2

2 would not be integer. If n = 6a
or n = 6a+ 3 (a ≥ 1) (both numbers are of form 3x), then
psym(n, n− 3) does not exist because of Lemma 4.

Lemma 4. If n = 3a (a is integer >1), then 3 cannot be
a symmetric prime to n.

Proof. If p1 = 3 is going to be symmetric prime to n, then
the second prime in symmetry pair is p2 = 2n − 3. If
n = 3a, then p2 = 2× 3a− 3 = 3× (2a− 1). If 2a− 1>1,
then p2 is a composite number (divisors: 3 and 2a − 1).
2a− 1 is always >1 if a is integer >1.

4 GP confirmation algorithm

The gist of this work studies various approaches to GP
confirmation for consecutive even numbers. First class
of methods (Class A) is representing top-down approach
which is expressing a given even number n >2 as a possi-
ble sum of two components p1 and p2 first, and then checks
their primality. Second method class (Class B), a member
of bottom-up solutions, is iterating over possible sums built
from two numbers p1 and p2, both confirmed as primes in
advance. Third method (Class C) is looking for the sym-
metrical primes p1 and p2 around n >1.

4.1 Class A: primality test of possible components

Listing 4 depicts algorithm base A used to find the first
GP confirmation using primality test of one or two com-
ponents, p1 and p2, which sum is producing odd number n
subjected to GP check.

There are two input parameters in the presented ap-
proach: starting point for the first round of GP check (ini-
tial values of p1 and p2) and next step details to calculate
new values of p1 and p2 if the previous interation failed.
Starting point could be also expressed as p1/p2 ratio. Next
step value could be either constant or variable. As a result
algorithm returns GP details (values of p1 and p2, both
primes). In addition, in order to compare different ver-
sions of algorithms, it returns both number of iterations
(denoted as I(A)) and total duration of internal calcula-
tions. Algorithm throws exception if no GP is found and
there is no further iteration possible (next candidate for
either p1 or p2 is smaller than the smallest prime 2).

It is reasonable to set initial p1 and p2 values as odd
numbers (there is just one GP where any of GP factors
could be even: 4 = 2 + 2), otherwise first iteration (ex-
cluding GP for 4) would always fail.

If p1 and p2 are odd, then the next step value (calculated
in case of fail) should be a number that will not produce
even number as the next candidate for neither p1 nor p2 -
it should be a mutliple of 2. There is also a risk that in
case of too big next step value algorithm loop would go to
the end without finding a candidate in between. Although
we are still empirically confirming GP correctness (in other
words: there might be even n for which GP is not possible)
but if we miss any possible candidate in between going back
could be a troublesome. Having that in mind, next step
value = 2 looks reasonable - we are moving slowly, one by
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Table 3: Summary of algorithm A variants

Variant Initial p1 and p2 Delta
A1 p1 = n/2 -2

p2 = n - p1
if p1 % 2 == 0:
p1 -= 1
p2 += 1

A2 p1 = 3 +2
p2 = n - p1

A3 p1 = int(n/3) -2
p2 = n - p1
if p1 % 2 == 0:
p1 -= 1
p2 += 1

A4 p1 = 5 +2
p2 = n - p1

A5 p1 = 5 variable
p2 = n - p1 = 0 for iter 0

= -2 for iter 1
= +4 for iter 2

= +2 for iter >2
A6 p1 = 3 variable

p2 = n - p1 p1 = next prime
A7 p1 = 3 variable

p2 = n - p1 p1 = next twin prime

one through odd numbers - we will not miss any possible
prime number.

It is also important to mention that all parallel runs take
advantage of the same prime and composite number sets. If
a given number p exists in either prime set or composite set,
primality test gives instant result. This means that only
the first run for number p which does not exist in neither
prime set nor composite set pays price for full primality
test, influencing significantly on time of the processing.

Seven variants of algorithm A are being considered, all
based on sieve which is testing primality of each element of
a candidate for GP (Table 4). Variants differ with initial
values of p1 + p2 and delta used to calculate next candi-
dates. All variants assume that p1 ≤ p2 and both numbers
are always odd (n >4 to exclude 4 = 2+2 case). In case of
primality test failure for a given pair p1 and p2, the next
pair of candidates is changed in regular (A1, A2, A3, A4

- p1 is increased by delta and p2 is decreased by delta) or
variable (A5, A6, A7 - delta is a function of iteration) way
(Listing 2, Listing 3). Programatically it was possible to
keep the same source code for all variants, including delta()
(which is a function of iteration) passed to the function as
a lambda expression.

Listing 2: Constant delta

def d e l t a c o n s t a n t p l u s ( i ) :
return 2

def de l ta cons tant minus ( i ) :
return −2

The first variant, A1, based on observation depicted in
Figure 2, is assuming that difference between primes in GP
is small (in comparison to n). Initial values of p1 and p2
will be the first matching odd numbers around n

2 .
The second variant, A2, based on observation depicted

in Figure 7, is assuming that one of the primes in GP is
small (in comparison to n). p1 starts from 3 but not 2
because n - 2 would never be prime for n >4.

The third variant, A3, is a proposal in between A1 and
A2, with starting point about one third of n.

The fourth variant, A4, is identical to A2 except starting
point: p1 = 5, p2 = n - 5.

The fifth variant, A5, is more flexible than A4. p1 also
starts from 5 but it checks p1 = 3, and then p1 = 7 and
next odd numbers.

The sixth variant, A6, is identical to A2 except that
next step lenght is variable. p1 is always prime (for ith

iteration it is ith prime number). [2] calculated that 9781
(1206th prime) is the biggest known prime (so far) required
in such approach. delta prime() starts from 3 because all
numbers n subjected to Goldbach partitioning are greater
than 4, so they will not have 2 in their R(n).

The seventh variant, A7, is a mutation of A6 - p1 is
always a twin prime. delta twinprime() starts from 3 be-
cause this is the first twin prime.

Listing 3: Variable delta

# input : i t e r a t i o n
# output : d e l t a f o r next i t e r a t i o n
def d e l t a v a r i a b l e ( i ) :

i f i == 0 :
d e l t a=0

e l i f i == 1 :
d e l t a=2

e l i f i == 2 :
d e l t a=−4

e l i f i > 2 :
d e l t a=2

return d e l t a

# input : i t e r a t i o n
# output : d e l t a f o r next i t e r a t i o n
def de l ta pr ime ( i ) :

i f i == 0 :
d e l t a=0

else :
d e l t a=g e t i t h p r i m e ( i +1)−

g e t i t h p r i m e ( i )
return d e l t a

# input : i t e r a t i o n
# output : d e l t a f o r next i t e r a t i o n
def de l ta twinpr ime ( i ) :

i f i == 0 :
d e l t a=0

else :
d e l t a=ge t i th tw inp r ime ( i )−

ge t i th tw inp r ime ( i −1)
return d e l t a

# primes [ ] = [ 2 , 3 , 5 , 7 . . . ]
# twin pr imes [ ] = [ 3 , 5 , 7 , 11 . . . ]

# input : index o f prime
# output : prime
f unc t i on g e t i t h p r i m e ( i ) :

return primes [ i ]

# input : index o f twin prime
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# output : twin prime
f unc t i on ge t i th tw inp r ime ( i ) :

return twin pr imes [ i ]

Listing 4: Fast search algorithm scheme A

# input : i n i t i a l p1 and p2 c a n d i d a t e s
# ( p1+p2=n)
# d e l t a − f u n c t i o n to c a l c u l a t e
# next p1 and p2 c a n d i d a t e s
# output : f i n a l p1 and p2 p a i r
# ( both primes , p1+p2=n) ,
# time e l a p s e d to f i n d t h i s p a i r
# number o f i t e r a t i o n s r e q u i r e d
# e x c e p t i o n :
# when no p a r t i t i o n i s found
def s e a r c h f o r p a r t i t i o n ( p1 , p2 , d e l t a ) :

found=False
i t e r a t i o n =0

startTime=time . time ( )
while not found :

i t e r a t i o n+=1
i f i s p r i m e ( p1 ) and i s p r i m e ( p2 ) :

found=True
i f not found :

p1−=d e l t a ( i t e r a t i o n )
p2+=de l t a ( i t e r a t i o n )

i f p1 < 2 or p2 < 2 :
raise ( ”GPnotFound” )

durat ion=time . time ( )−startTime

return p1 , p2 , durat ion , i t e r a t i o n

4.2 Class B: sum built from primes

Listing 5 depicts algorithm base B used to find GP
confirmation using two primes sum building approach.

Listing 5: Fast search algorithm scheme B

# input : min and max i n d i c e s o f f i r s t
prime

# e x t e r n a l dependencies :
# S1 − a s e t o f numbers to be v e r i f i e d
# S2 − a s e t o f numbers a l r e a d y

v e r i f i e d
# N − number be low which a l l even

numbers were a l r e a d y v e r i f i e d
# add nums ( ) − updates S1
# remove nums () − updates S1 , S2 , N
# output : S1 , S2 , N
f unc t i on check pos s ib l e sums ( min ip1 ,

max ip1 ) :
for ip1 in range ( min ip1 , max ip1 ) :

p1 = g e t i t h p r i m e ( ip1 )
add nums (2∗p1 )

for ip2 in range (1 , ip1 +1) :
p2 = g e t i t h p r i m e ( ip2 )
num = p1 + p2
remove nums (num, 2∗p1 )

In contradiction to A in approach B primality test in di-
rect loop is not required because both components, p1 and
p2, are already prime numbers. B is iterating over possible
pairs (starting from prime 3, prime number 2 is excluded
from calculations because there is only one even number 4
with 2 in its GP) and collects information about possible
sums (which are always even because both primes are odd).
Let us define an even number Nconf below which all even
numbers were already confirmed from GP standpoint. It
is highly probable that Nconf would grow up along with
progress of the algorithm because r(n) grows with bigger
n (Figure 1). There is no point in doing any calculations
for any p1 + p2 ≤ Nconf because this part was already
confirmed. Assuming that for a given p1 we iterate down
over p2 from p1 to pm (where p1 + pm >Nconf ) the most
favourable situation would be if after completing all checks
for p1 and p2 we have N = 2 × p1 - next iteration would
not inherit any backlog.

4.3 Class C: looking for symmetric primes

Listing 6 presents algorithm base C used to find GP
confirmation for even n by finding symmetrical primes to
n
2 . Like in approach A, C requires primality test inside the
algorithm loop. C has two input parameters: symmetry
point and function delta() used to calculate next pair of
prime candidates (p1, p2) if both current values are not
primes yet.

Table 4: Summary of algorithm C variants

Variant Initial value of i Delta i
C1 0 1
C2 0 1 if n is even

2 if n is odd

Listing 6: Fast search algorithm scheme C

# input : n
# n = ( p1 + p2 ) / 2
# d e l t a − f u n c t i o n to c a l c u l a t e
# next p1 and p2 c a n d i d a t e s
# output : f i n a l p1 and p2 p a i r
# ( both primes , p1+p2=n) ,
# time e l a p s e d to f i n d t h i s p a i r
# number o f i t e r a t i o n s r e q u i r e d
# e x c e p t i o n :
# when no symmetrica l primes were found
def s ea r ch fo r sym pr imes (n , d e l t a ) :

found=False
i t e r a t i o n =0

startTime=time . time ( )
p1=n
p2=n
while not found :

i t e r a t i o n+=1
i f i s p r i m e ( p1 ) and i s p r i m e ( p2 ) :

found=True
i f not found :

p1−=d e l t a ( i t e r a t i o n )
p2+=de l t a ( i t e r a t i o n )

i f p2 < 2 or p1 < 2 :
raise Exception ( ”SymPrNotFound” )
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durat ion=time . time ( )−startTime

return p1 , p2 , durat ion , i t e r a t i o n

5 Results of experiments

5.1 Experiments against class A

All seven variants of class A of GP search algorithm
were subjected to programmatic verification against all
even numbers 14 <n <4 × 108. Calculations show that
A2 required 5 times less iterations than both A1 and A3

(Figure 13). Results for A2 and A5 are comparable - num-
ber of iterations look almost identical (Figure 14 - line for
A2 covers line for A5) while A4 is worse than A2 and A5.
The best results achieved A6. In comparison to A2 (Figure
15) this approach is using preloaded list of first primes and
thanks to that is able to avoid primality checks for p1 (p1 is
always prime), algorithm variant does not have to check a
case when both candidates are not primes - only primality
test of p2 matters. A7 was slightly worse than A6.

Figure 13: Iterations - A1 vs A2 vs A3 (n <4× 108), A2 is
the best one: I(A3) >I(A1) >I(A2)

Figure 14: Iterations - A2 vs A4 vs A5 (n <4× 108), A2 is
the best one: I(A4) >I(A5) ≥ I(A2)

Figure 15: Iterations - A2 vs A6 vs A7 (n <4× 108), A6 is
the best one: I(A2) >I(A7) >I(A6)

Results achieved by A6 suggest that properties depicted
by Figure 3 and Figure 7 are strong and still preserved for
n >106. Assuming that efficiency of primality test can be
improved, A6 looks like the best choice amongst all exam-
ined As. A6 requires prework - a list of first primes for
p1 - but such preloaded set is not a big issue for modern
computers and may be reused in primality test.

5.2 Experiments against class B

Effectiveness of sum building from prime numbers is
very high. Each round of algorithm B has a theoretical
maximum even number Nmax below which all numbers are
already verified: Nmax = max(p1, p2)× 2. Detailed exam-
ination of difference between Nmax and Nconf show that
this difference is low: both lines in Figure 16 almost match
(although Nmax = Nconf for iterations 0, 1, 2, 4, 6 and
27 only, for other cases calculated so far Nmax>Nconf ),
red values in Figure 17 are relatively low. Cardinalities of
two supporting sets, a set of number to be verified >Nconf

and a set of spare verified numbers >Nconf , are also low
(Figure 18).

Figure 16: Effectiveness of sum building in B
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Figure 17: Differences in B: difference between actual
Nconf and theoretical maximum Nmax (in red); absolute
difference of red values between individual iterations (in
green)

Figure 18: Cardinality of two supporting sets in B: num-
bers to be verified >Nconf (in red) and spare numbers al-
ready verified >Nconf (in green)

5.3 Experiments against class C

Executed experiments show that the most effective al-
gorithm in class C is C2.

Figure 19: Iterations - C1 vs C2 (n <4 × 108), C2 is the
best one: I(C1) >I(C2)

6 Summary and future work

From all examined algorithm variants of search for the
first pair of primes (p1, p2) for even n that GSC(n, p1, p2)
the most promissing results were achieved by A6. When
taking into account finding such partition for all consec-
utive even numbers n1, n2, . . . nm A6 allowed to find this
partition with the least number of iterations. Listing 7
presents skew of distributed version of A6-like approach
- initial data range is divided into subintervals and each
subinterval is verified independently on a separate compute
node.

Listing 7: Distributed fast search

def v e r i f y ( chunk ) :
for n in chunk :

p1 = 3
p2 = n − 3
( p1 , p2 , d , i ) =

s e a r c h f o r p a r t i t i o n ( p1 , p2 ,
lambda i : d e l t a pr ime ( i ) )

# main
chunks = d iv id e (max, max chunk size )
for chunk in chunks :

v e r i f y ( chunk )

Furthermore, studies on GP fast confirmation methods
resulted in additional interesting research areas and ques-
tions which could be a foundation of further research work.

First area relates to frequency of primes in GPs. 2 is
the prime number that exists in one GP only (4 = 2 + 2) -
let’s call such prime a selfish prime - and no other prime of
such property exists. But how about other most and least
frequent primes? Is there any pattern?

Second research field may concentrate on finding fur-
ther mathematical patterns of regular properties observed
during above studies. Examples are: bottom and upper
estimations of maximum and average difference between
primes in GP.

9



References

[1] Christian Goldbach, On the margin of a letter to
Leonard Euler, 1742.

[2] Tomás Oliveira e Silva, Goldbach conjecture verifica-
tion. http://sweet.ua.pt/tos/goldbach.html, 2012.

[3] Max S.C. Woon, On Partitions of Goldbach’s Conjec-
ture, arXiv:math/0010027 [math.GM], 2000.

[4] Marcin Barylski, Goldbach conjecture verification
framework. https://github.com/mbarylsk/goldbach-
partition, 2016.

[5] Marcin Barylski, Studies on Twin Primes in Goldbach
Partitions of Even Numbers, 2018.

[6] Marcin Barylski, Goldbach Strong Conjecture Verifica-
tion Using Prime Numbers, 2018.

[7] Tomás Oliveira e Silva, Fast implementa-
tion of the segmented sieve of Eratosthenes.
http://sweet.ua.pt/tos/software/prime sieve.html,
2002.

10


