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Abstract
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1.Introduction
In this paper intuitionistic set theory INC�#

# based on infinitary intuitionistic logic with
restricted modus ponens rule is considered [1]. External induction principle in
nonstandard intuitionistic arithmetic were derived. Non trivial application in number
theory is considered. The Goldbach-Euler theorem is obtained without any references to
Catalan conjecture.

2.Axiom of nonregularity and axiom of hyperinfinity

2.1.Axiom of nonregularity
Remind that a non-empty set u is called regular iff

�x�x � � � ��y � x��x � y � ���. �2.1�

Let’s investigate what it says: suppose there were a non-empty x such that
��y � x��x � y � ��. For any z1 � x we would be able to get z2 � z1 � x. Since z2 � x we
would be able to get z3 � z2 � x. The process continues forever:
. . .� zn�1 � zn. . .� z4 � z3 � z2 � z1 � x.Thus we wish to rule out such an infinite regress.

2.1.Axiom of hyper infinity.
Definition 2.1.(i) A non-empty transitive non regular set u is a well formed non regular
set iff:
(i) there is unique countable sequence �un�n�1

� such that

. . .� un�1 � un. . .� u4 � u3 � u2 � u1 � u, �2.2�

(ii) for any n � � and any un�1 � un :

User
Подсветка

User
Подсветка



un � un�1
� , �2.3�

where a� � a 	 �a�.
(ii) we define a function a��k�inductively by a��k�1� � �a��k���

Definition 2.2. Let u and w are well formed non regular sets. We write w 
 u iff for any
n � �

w � un. �2.4�

Definition 2.3. We say that an well formed non regular set u is infinite (or hyperfinite)
hypernatural nuber iff:
(I) For any member w � u one and only one of the following conditions are
satified:
(i) w � � or
(ii) w � un for some n � � or
(iii) w 
 u.
(II) Let 
u be a set 
u � �z|z 
 u�, then by relation �� 
 �� a set 
u is densely ordered
with no first element.
(III) � � u.
Axiom of hyper infinity
There exists unique set �# such that:
(i) � � �#

(ii) if u is infinite (hypernatural) number then u � �#\�
(iii) if u is infinite (hypernatural) number then there exists infinite (hypernatural) number

v
such that v 
 u

(iv) if u is infinite hypernatural number then there exists infinite (hypernatural) number
w

such that u 
 w
(v) set �#\� is patially ordered by relation �� 
 �� with no first and no last element.
In this paper we introduced a set �#\� of the infinite numbers axiomatically without any

references to non-standard model of arithmetic via canonical ultraproduct approach, see
[2]-[5].

3.Infinitary logic.

3.1.Classical infinitary logic.
By a vocabulary, we mean a set L of constant symbols, and relation and operation

symbols with finitely many argument places. As usual,by an L-structure M , we mean a
universe set M with an interpretation for each symbol of L. In cases where the
vocabulary L is clear, we may just say structure. For a given vocabulary L and infinite
cardinals µ � κ,Lκµ is the infinitary logic with κ variables, conjunctions and disjunctions
over sets of formulas of size less than κ, and existential and universal quantifiers over
sets of variables of size less than µ. All logics that we consider also have equality, and
are closed under negation. The equality symbol is always available, but is not counted
as an element of the vocabulary L.

During last sentury canonical infinitary logic many developed, see for example [6]-[10].



3.2.Why we need infinitary logic.
It well known that some classes of mathematical structures, such as algebraically

closed fields of a given characteristic, are characterized by a set of axioms in Lωω. Other
classes cannot be characterized in this way, but can be axiomatized by a single
sentence of Lω1ω.

Remark 3.1.In the practice of the contemporary model theory, and in more general
mathematics as well, it often becomes necessary to consider structures satisfying
certain collections of sentences rather than just single sentences. This consideration
leads to the familiar notion of a theory in a logic. For example, in ordinary finitary logic,
Lωω, if φn is a sentence which expresses that there are at least n elements, then the
theory �φn|n � ω� would express that there are infinitely many elements. Similarly, in the
theory of groups, if φn is the sentence �x�xn � 1�, then �ψn : n � ω� expresses that a
group is torsion free.

Remark 3.2.Suppose we want to express the idea that a set is finite, or that a group is
torsion. A simple compactness argument would immediately reveal that neither of these
notions can be expressed by a theory in Lωω. What we need to express in each case is
that a certain theory is not satisfied, that is, that at least one of the sentences is false.
While theories are able to simulate infinite conjunctions, there is no apparent way to
simulate infinite disjunctions–which is just what is needed in this case.

Example 3.1. The Abelian torsion groups are the models of a sentence obtained
by taking the conjunction of the usual axioms for Abelian groups (a finite set)
and the following infinite disjunction:

�x �
n�� n

x � x �. . .�x� 0 . �3.1�

Example 3.2. The Archimedean ordered fields are the models of a sentence obtained
by taking the conjunction of the usual axioms for ordered fields and the following
infinite disjunction:

�x �
n�� n

1 � 1 �. . .�1� x . �3.2�

Example 4.3. Let L be a countable vocabulary. Let T be an elementary first order
theory, and let Γ�x� be a set of finitary formulas in a fixed tuple of variables x. The

models
of T that omit Γ are the models of the single Lω1ω sentence obtained by taking the
conjunction of the sentences of T and the following infinite disjunction:

�x �
���

���x� . �3.3�

Example 4.4. The non Archimedean ordered fields are the models of a sentence
obtained by taking the conjunction of the usual axioms for non Archimedean ordered
fields i.e., the following infinite conjunction:

�x 	
n��

n

1 � 1 �. . .�1� x . �3.4�



.

4.Hyper Infinitary logics.

4.1. Bivalent Hyper Infinitary first-order logic 2L�#
# with

restricted rules of conclusion.
Hyper infinitary language L�#

# are defined according to the length of hyper infinitary
conjunctions/disjunctions as well as quantification it allows. In that way, assuming a
supply of � � �0

# � card��#� variables to be interpreted as ranging over a nonempty
domain, one includes in the inductive definition of formulas an infinitary clause for
conjunctions and disjunctions, namely, whenever the hypernturals indexed
hypersequence �A�����# of formulas has length less than �, one can form the hyperfinite
conjunction/disjunction of them to produce a formula. Analogously, whenever an
hypernaturals indexed sequence of variables has length less than �, one can introduce
one of the quantifiers � or � together with the sequence of variables in front of a formula
to produce a new formula. One also stipulates that the length of any well-formed formula
is less than �0

# itself.
The syntax of bivalent hyperinfinitary first-order logics L�#

# consists of a (ordered) set
of sorts and a set of function and relation symbols, these latter together with the
corresponding type, which is a subset with less than �0

# � card��#� many sorts.
Therefore, we assume that our signature may contain relation and function symbols on
� � �0

# many variables, and we suppose there is a supply of � � �0
# many fresh

variables of each sort. Terms and atomic formulas are defined as usual, and general
formulas are defined inductively according to the following rules:If �,�,��� : � � �� (for
each � � �) are formulas of L�,�, the following are also formulas: 	��� ��, ���� ��,

� � �, ����x�� (also written �x�� if x� � �x� : � � ��), ����x�� (also written �x�� if
x� � �x� : � � ��).

The axioms of hyperinfinitary first-order logic 2L�#
# consist of the following schemata:

I. Logical axiom
1. A � �B � A�
2. �A � �B � C� � ��A � B� � �A � C���
3. ��B � �A� � �A � B�
4. �	 i���A � A i�� � �A � 	 i�� A i�,� � �#

5. �	 i�� A i� � A j,� � �#

6. ��x�A � B� � �A � �xB��
provided no variable in x occurs free in A;

7. �xA � Sf�A�
where Sf�A� is a substitution based on a function f from x to the terms of the language;
II.Restricted rules of conclusion.
R#1.RMP (Restricted Modus Ponens).
From A and A � B, conclude B iff A 
 	1and �A � B� 
 	2,where 	1,	2 � �wff

We abbraviate by A,A � B �RMP B.
R#2.MT (Restricted Modus Tollens)
P � Q,�Q �RMT �P iff P 
 	1


 and �P � Q� 
 	2

 ,where 	1


 ,	2

 � �wff.

III.Equality axioms:



(a) t � t
(b) �	 i�� ti � ti


� � ���t0, . . . ,t	, . . .� � ��t0

 , . . . ,t	
 , . . .��

(c) �	 i�� ti � ti

 � � �P�t0, . . . ,t	, . . .� � P�t0


 , . . . ,t	
 , . . .��
for each � � �#, where t, ti are terms and � is a function symbol of arity � and P a
relation symbol of arity � � �#.
IV.Distributivity axiom:

	 i��� j�� �ij � � f��� 	 i�� �if�i� �4.1�

V.Dependent choice axiom:

	��� �
��x
�x��� � ����x�	��� �� �4.2�

provided the sets x� are pairwise disjoint and no variable in x� is free in �
 for

 � � � �#.

4.2.Why we need hyper infinitary logic.
Definition 4.1.A set S � �# is a hyper inductive if the following statement holds

	
���#

�� � S 
 �� � S�. �4.3�

Obviously a set �# is a hyper inductive. As we see later there is just one hyper
inductive

subset of �#,namely �# itself.
In this paper we apply the following hyper inductive definitions of the sets

� S�
 
 � S � 	
0���


�� � S 
 �� � S� , �4.4�

see cection 7. Note that a statement

	
0���


�� � S 
 �� � S� �4.5�

cannot be expressed in finitary set theoretical language. See also section 11,
subsect 11.1.

5.Intuitionistic hyper infinitary logic IL�#
# with restricted rules

of conclusion.
We will denote the class of hypernaturals by �#, the class of binary sequences of

hypernatural length by 2��#, and the class of sets of hypernatural numbers by ���#�.
We fix a class of variables x i for each i � �#. Given an � � �#, a context of length � is

a sequence x � �x i j |j � �
 of variables. In this paper we will use boldface letters,
x,y,z,�, to denote contexts and light-face letters, x i,y i,zi,�, to denote the i-th variable
symbol of x,y, and z, respectively.

We will denote the length of a context x by l�x�. The formulas of the hyperinfinitary
language ��#

# of set theory INC�#
# are defined to be the smallest class of formulas

closed under the following rules:
1.� is a formula,
2.x i � x j is a formula for any variables x i and x j,
3.x i � x j is a formula for any variables x i and x j,
4. if � and � are formulas, then � � � are formulas,



5. if �� is a formula for every � : � � 
 � �#, then

1. ���
 �� is a gyperfinite formula, �5.1�

6.if �� is a formula for every � : � � 
 � �#, then

	��
 ��is a gyperfinite formula, �5.2�

7. if x is a context of length �, then ��x� is a formula, and,
8. if x is a context of length �, then ��x� is a formula.

By this definition, our language allows set-sized disjunctions and conjunctions as well
as quantification over set-many variables at once. However, note that infinite alternating
sequences of existential and universal quantifiers are excluded by this definition.

Remark 5.1.Whenever it is clear from the context, we will omit the superscripts from
the quantifiers and write � and � instead of �� and ��, respectively. In many situations it
will be useful to identify a variable x with the context x � �x
 whose unique element is x
such that we can write, for example, “�x�” for “�x�” and “�x�” for “�x�”. A variable x i is
called a free variable of a formula � whenever x i appears in � but not in any
quantification of �. As usual, a formula without free variables is called a sentence. We
say that x is a context of the formula � if all free variables of � are among those in x. As
usual, we will write ��x� in case that � is a formula and x is a context of �. Similarly,
given two contexts x and y with x j � y j 
 for all j � 
�x� and j 
 � 
�y�, we will write ��x,y� in
case that the sequence obtained by concatenating x and y is a context for �.

Remark 5.2. We extend the classical abbreviations as follows: Given a formula � and
an hypernatural � � �# we introduce the bounded quantifiers as abbreviations, namely,

��x � y � for ��x�x � y � ��, �5.3�

and

��x � y � for ��x�x � y � ��. �5.4�

Notation 5.1. A sequent � �x,� � is however equivalent to the formula ��x�� � ��.
The system of axioms and rules for hyperinfinitary intuitionistic first-order logic
consists of the following schemata:
I. Logical axiom
1. A � �B � A�
2. �A � �B � C� � ��A � B� � �A � C���
3. �	 i���A � A i�� � �A � 	 i�� A i�,� � �#

4. �	 i�� A i� � A j,� � �#

5. ��x�A � B� � �A � �xB��
provided no variable in x occurs free in A.

7. �xA � Sf�A�
where Sf�A� is a substitution based on a function f from x to the terms of the language;
II.Restricted rules of conclusion.
R#1.RMP (Restricted Modus Ponens).
From A and A � B, conclude B iff A 
 	1and �A � B� 
 	2,where 	1,	2 � �wff

We abbraviate by A,A � B �RMP B.
R#2.MT (Restricted Modus Tollens)
P � Q,�Q �RMT �P iff P 
 	1


 and �P � Q� 
 	2

 ,where 	1


 ,	2

 � �wff.

III.Weak distributivity axiom:



� �� i�� �i �x � i�� � � �i �5.5�

for each � � �#.
IV.Frobenius axiom:

� � �y� �x �y�� � �� �5.6�

where no variable in y is in the context x.
V.Structural rules:

(a) Identity axiom:

φ �x,� φ �5.7�

(b) Substitution rule:

φ �x,� ψ

φ�s/x� �y ψ�s/x�
�5.8�

where y is a string of variables including all variables occurring in the string of terms s.
(c) Restricted cut rule:

φ �x,� ψ,ψ �x,� θ

φ �x,� θ
�5.9�

iff φ 
 	1and �ψ �x,� θ� 
 	2.
IV.Equality axioms:

(a)

� �x x � x �5.10�

(b)

�x � y� � φ�x/w� �z φ�y/w� �5.11�

where x,y are contexts of the same length and type and z is any context containing x,y
and the free variables of φ.
V.Conjunction axioms and rules:
(a)

	
i��
φi �x,� φj �5.12�

for each � � �# and j � �

(b)

�� �x,� �i�i��

� �x,� 	
i��

�i
�5.13�

for each γ � �#.
VI.Disjunction axioms and rules:

(a)

�j �x,� � i�� �i �5.14�



for each � � �#

(b)

��i �x,� ��i��

� i�� �i �x,� �
�5.15�

for each � � �#.
VII. Implication rule:

� � � �x,� �
� �x,� � 
 �

�5.16�

IX.Existential rule:
� �xy �

�y�� �x ��
�5.17�

where no variable in y is free in �.
X.Universal rule:

� �xy �
� �x �y�

�5.18�

where no variable in y is free in φ.

.

6.Set theory in hyper infinitary set theoretical languages.

6.1.Intuitionistic set theory INC�#
# in hyper infinitary set

theoretical language.

Axioms and basic definitions.
Intuitionistic set theory INC�#

# is formulated as a system of axioms in the same first
order language as its classical counterpart, only based on intuitionistic logic IL�#

# with
restricted modus ponens rule [1]. The language of set theory is a first-order language
L�#

# with equality �, which includes a binary symbol �. We write x � y for � �x � y� and
x 
 y for ��x � y�. Individual variables x,y,z, . . .of L�#

# will be understood as ranging over
classical sets. The unique existential quantifier �! is introduced by writing, for any
formula ��x�,�!x��x� as an abbreviation of the formula �x���x� & �y���y� 
 x � y��.L�#

#

will also allow the formation of terms of the form �x|��x��, for any formula � containing
the free variable x. Such terms are called nonclassical sets; we shall use upper case
letters A,B, . . . for such sets. For each nonclassical set A � �x|��x�� and
A � �x|��x,A��the formulas

�x�x � A � ��x�� �6.1�

and more general formulas

�x�x � A � ��x,A�� �6.2�

is called the defining axioms for the nonclassical set A.
Remark 6.1.Remind that in intuitionistic logic IL�#

# with restricted modus ponens rule



the statement � � �� 
 
� does not always guarantee that

�,� 
 
 �RMP 
 �6.3�

since for some � and 
 possible

�,� 
 
 �RMP 
 �6.4�

even if the statement � � �� 
 
� holds [1].
Abbreviation 6.1.We often write for the sake of brevity instead (6.3) by

� 
s 
 �6.5�

and we often write instead (6.4) by

� 
w 
. �6.6�

Remark 6.2.Let A be an nonclassical set.Note that in set theory INC�#
# the following

true formula

�A�x�x � A � ��x,A�� �6.7�

does not always guarantee that

x � A,x � A 
 ��x,A� �RMP ��x,A� �6.8�

even if x � A holds and (or)

��x,A�,��x,A� 
 x � A �RMP x � A; �6.9�

even ��x,A� holds, since for nonclassical set A for some y possible

y � A, y � A 
 ��y,A� �RMP ��y,A� �6.10�

and (or)

��y,A�, ��y,A� 
 y � A �RMP y � A. �6.11�

Remark 6.3.Note that in this paper the formulas

�a�x�x � a � ��x� � x � u� �6.12�

and more general formulas

�a�x�x � a � ��x,a�� �6.13�

is considered as the defining axioms for the classical set a.
Remark 6.4.Let a be an classical set. Note that in INC�#

# : (i) the following true formula

�a�x�x � a � ��x,a� � x � u� �6.14�

always guarantee that

x � a,x � a 
 ��x,a� �RMP ��x� �6.15�

if x � a holds and

��x�,��x� 
 x � a �RMP x � a; �6.16�

if ��x� holds;
Remark 6.4.In order to emphasize this fact mentioned above in Remark 6.1-6.3,
we rewrite the defining axioms in general case for the nonclassical sets in the

following
form

�A�x��x � A �s ��x,A�� � �x � A �w ��x,A��� �6.17�

and similarly we rewrite the defining axioms in general case for the classical sets in



the
following form

�x�x � a �s ��x,a� � �x � u��. �6.18�

Abbreviation 6.2.We write instead (6.17) by

�x��x � A �s,w ��x,A��� �6.19�

Definition 6.1. (1) Let A be a nonclassical set defined by formula (6.1) or by formula
(6.2).Assum that: (i) for some y statement ��y� and statement ��y� 
 y � A holds and
(ii) ��y�,��y� 
 y � A �RMP y � A, y � A,y � A 
 ��y� �RMP ��y�.
Then we say that y is a weak member of non-classical set A and abbreviate y �w A.

Abbreviation 6.3. Let A be a nonclassical set defined by formula (6.1) or by formula
(6.2). We abbreviate x �s,w A if the following statement x �s A � x �w A holds, i.e.

x � A �def �x �s A � x �w A�. �6.20�

Definition 6.2.(1) Two nonclassical sets A,B are defined to be equal and we write
A � B if �x�x �s,w A �s x �s,w B�. (2) A is a subset of B, and we often write A �s,v B, if
�x�x �s,w A 
s x �s,w B�.(3) We also write Cl.Set�A� for the formula
�u�x�x � A � x � u�. (4) We also write NCl.Set�A� for the formulas
�x�x �s,v A �s,v ��x�� and �x�x �s,v A �s,v ��x,A��.
Remark 6.5.Cl.Set�A�) asserts that the set A is a classical set. For any classical set u,
it follows from the defining axiom for the classical set �x|x � u � ��x�� that
Cl.Set��x|x � u � ��x���.
We shall identify �x|x � u� with u, so that sets may be considered as (special sorts of)
nonclassical sets and we may introduce assertions such as u � A,u 	 A,u � A, etc.
Remark 6.6.If A is a nonclassical set, we write �x � A ��x,A� for �x�x � A � ��x,A��
and �x � A��x,A� for �x�x � A 
 ��x,A��.
We define now the following sets:
1.�u1,u2, . . . ,un� � �x|x � u1 � x � u2 �. . .�x � un�.2. �A1,A2, . . . ,An� �
� �x|x � A1 � x � A2 �. . .�x � An�.3.	A � �x|�y�y � A � x � y��.
4.�A � �x|�y�y � A 
 x � y��.5.A 	 B � �x|x � A � x � B�.
5.A � B � �x|x � A � x � B�.6.A � B � �x|x � A � x 
 B�.7.u� � u 	 �u�.
8.P�A� � �x|x � A�.9.�x � A|��x,A�� � �x|x � A � ��x,A��.10.V � �x|: x � x�.
11.� � �x|x � x�.
The system INC�#

# of set theory is based on the following axioms:
Extensionality1: �u�v��x�x � u � x � v� 
 u � v�
Extensionality2: �A�B��x�x � A �s,w x � B� 
 A � B�
Universal Set: NCl.Set�V�
Empty Set: Cl.Set���
Pairing1: �u�v Cl.Set��u,v��
Pairing2: �A�B NCl.Set��A,B��
Union1: �u Cl.Set�	u�
Union2: �A NCl.Set�	A�
Powerset1: �u Cl.Set�P�u��
Powerset2: �A NCl.Set�P�A��
Infinity �a�� � a � �x � a�x� � a��
Separation1�u1�u2, . . .�un�a�Cl.Set��x �s a|��x,u1,u2, . . . ,un���



Separation2�u1�u2, . . .�unNCl.Set��x �s,w A|��x,A;u1,u2, . . . ,un���
Comprehension1�u1�u2, . . .�un�A�x�x � A �s,w ��x;u1,u2, . . . ,un��
Comprehension 2 �u1�u2, . . .�un�A�x�x � A �s,w ��x,A;u1,u2, . . . ,un��
Comprehension 3 �u1�u2, . . .�un�a�x�x � a �s ��x,a;u1,u2, . . . ,un��
Hyperinfinity: see subsection 2.1.
Remark 6.7.Note that the axiom of hyper infinity follows from the schemata
Comprehension 3.
Definition 6.3. The ordered pair of two sets u,v is defined as usual by

�u,v
 � ��u�,�u,v��. �6.21�

Definition 6.4. We define the Cartesian product of two nonclassical sets A and B
as usual by

A 
s,w B � ��x,y
|x �s,w A � y �s,w B� �6.22�

Definition 6.5. A binary relation between two nonclassical sets A,B is a subset
R �s,w A 
s,w B. We also write aRs,wb for � a,b ��s,w R. The doman dom�R� and the
range ran�R� of R are defined by

dom�R� � �x|�y�xRs,wy��,ran�R� � �y : �x�xRs,wy��. �6.23�

Definition 6.6.A relation Fs,w is a function, or map, written Fun�Fs,w�, if for each
a �s,w dom�F� there is a unique b for which aFs,wb. This unique b is written F�a� or Fa.
We write Fs,w : A � B for the assertion that Fs,w s a function with dom�Fs,w� � A and
ran�Fs,w� � B. In this case we write a � Fs,w�a� for Fs,wa.
Definition 6.7.The identity map 1A on A is the map A � A given by a � a. If X �s,w A,

the
map x � x : X � A is called the insertion map of X into A.
Definition 6.8.If Fs,w : A � B and X �s,w A, the restriction Fs,w|X of Fs,w to X is the map
X � A given by x � Fs,w�x�. If Y �s,w B, the inverse image of Y under Fs,w is the set

Fs,w
�1 �Y� � �x �s,w A : Fs,w�x� �s,w Y�. �6.24�

Given two functions Fs,w : A � B,Gs,w : B � C, we define the composite function
Gs,w � Fs,w : A � C to be the function a � Gs,w�Fs,w�a��. If Fs,w : A � A, we write Fs,w

2

for Fs,w � Fs,w,Fs,w
3 for Fs,w � Fs,w � Fs,w etc.

Definition 6.9.A function Fs,w : A � B is said to be monic if for all
x,y �s,w A,Fs,w�x� � Fs,w�y� implies x � y, epi if for any b �s,w B there is a �s,w A for

which b � Fs,w�a�, and bijective, or a bijection, if it is both monic and epi. It is easily
shown that

Fs,w is bijective if and only if Fs,w has an inverse, that is, a map Gs,w : B � A such that
Fs,w � Gs,w � 1B and Gs,w � Fs,w � 1A.
Definition 6.10.Two sets X and Y are said to be equipollent, and we write X �s,w Y, if
there is a bijection between them.
Definition 6.11.Suppose we are given two sets I,A and an epi map Fs,w : I � A. Then
A � �Fs,w�i�|i � I� and so, if, for each i �s,w I, we write ai for Fs,w�i�, then A can be
presented in the form of an indexed set �ai : i �s,w I�. If A is presented as an indexed
set of sets �X i|i �s,w I�, then we write � i�I X i and � i�I X i for 	A and �A, respectively.

Definition 6.12.The projection maps �1 : A 
s,w B � A and �2 : A 
s,w B � B are
defined to be the maps �a, b�� a and �a, b� � b respectively.
Definition 6.13.For sets A,B, the exponential BA is defined to be the set of all



functions
from A to B.

6.2.Set theory NC�#
# in bivalent hyper infinitary set

theoretical language.
Set theory NC�#

# is formulated as a system of axioms in the same first order language
as its classical counterpart, only based on bivalent hyper infinitary logic 2L�#

# with
restricted modus ponens rule [1]. The language of set theory is a first-order hyper
infinitary language L�#

# with equality �, which includes a binary symbol �. We write
x � y for � �x � y� and x 
 y for ��x � y�. Individual variables x,y,z, . . .of L�#

# will be
understood as ranging over classical sets. The unique existential quantifier �! is
introduced by writing, for any formula ��x�,�!x��x� as an abbreviation of the formula
�x���x� & �y���y� 
 x � y��.L�#

# will also allow the formation of terms of the form
�x|��x��, for any formula � containing the free variable x. Such terms are called
non-classical sets; we shall use upper case letters A,B, . . . for such sets. For each
non-classical set A � �x|��x�� the formulas �x�x � A � ��x�� and �x�x � A � ��x,A��
is called the defining axioms for the non-classical set A.

Remark 6.8.Remind that in intuitionistic logic IL�#
# with restricted modus ponens rule

the statement � � �� 
 
� does not always guarantee that

�,� 
 
 �RMP 
 �6.25�

since for some � and 
 possible

�,� 
 
 �RMP 
 �6.26�

even if the statement � � �� 
 
� holds [1].
The system NC�#

# of set theory is based on the following axioms:
Extensionality1: �u�v��x�x � u � x � v� 
 u � v�
Extensionality2: �A�B��x�x � A �s,w x � B� 
 A � B�
Universal Set: NCl.Set�V�
Empty Set: Cl.Set���
Pairing1: �u�v Cl.Set��u,v��
Pairing2: �A�B NCl.Set��A,B��
Union1: �u Cl.Set�	u�
Union2: �A NCl.Set�	A�
Powerset1: �u Cl.Set�P�u��
Powerset2: �A NCl.Set�P�A��
Infinity �a�� � a � �x � a�x� � a��
Separation1�u1�u2, . . .�un�a�Cl.Set��x �s a|��x,u1,u2, . . . ,un���
Separation2�u1�u2, . . .�unNCl.Set��x �s,w A|��x,A;u1,u2, . . . ,un���
Comprehension1�u1�u2, . . .�un�A�x�x � A �s,w ��x;u1,u2, . . . ,un��
Comprehension 2 �u1�u2, . . .�un�A�x�x � A �s,w ��x,A;u1,u2, . . . ,un��
Comprehension 3 �u1�u2, . . .�un�a�x�x � a �s ��x,a;u1,u2, . . . ,un��
Hyperinfinity: see subsection 2.1.
Remark 6.7.Note that the axiom of hyper infinity follows from the schemata
Comprehension 3.



7.External induction principle and hyper inductive
definitions.

7.1.External induction principle in nonstandard intuitionistic
arithmetic.

Axiom of infite �-induction
(i)

�S�S � �� 	
n��

�n � S 
 n� � S� 
 S � � . �7.1�

(ii) Let F�x� be a wff of the set theory INC�#
# , then

	
n��

�F�n� 
 F�n��� 
 �n�n � ��F�n�. �7.2�

Definition 7.1.Let 
 be a hypernatural such that 
 � �#\�. Let �0,
� � �#be a set
such that �x�x � �0,
� � 0 � x � 
� and �0,
� � �0,
�\�
�.
Definition 7.2.(i) Let F�x� be a wff of INC#with unique free variable x.We will say that
a wff F�x� is restricted on a set SF such that SF � �# iff the following conditions are
satisfied

���� � �#��F��� 
 � � SF � �7.3�

and

���� � �#���F��� 
 � � �#\SF �. �7.4�

Definition 7.3. Let F�x� be a wff of INC�#
# with unique free variable x.We will say that a

wff F�x� is unrestricted on variable x if wff F�x� is not restricted on any set S such that
S � �#.This definition meant

	
���#

�F��� � � 
 �#�. �7.5�

Axiom of hyperfinite induction 1

�
�
 � �#\���S�S � �0,
�� �

���� � �0,
�� 	
0���


�� � S 
 �� � S� 
 S � �0,
� .
�7.7�

Axiom of hyper infinite induction 1

�S�S � �#� �
�
 � �#� 	
0���


�� � S 
 �� � S� 
 S � �# . �7.8�

Remark 7.1.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

�
�S�S � �0,
���
� �
� � �0,
�� 
� � S � 	
0���
�

�� � S 
 �� � S� . �7.9�

Therefore for any 
� � �0,
� from (7.9) it follows that

	
0���


�� � S 
 �� � S� � 
 � S. �7.10�



Thus axiom of hyperfinite induction 1,i.e., (7.6) holds, since from (7.10) it follows that
�
�
 � �0,
� 
 
 � S�.
Remark 7.2.Note that from comprechesion shemata 2 (see subsection 6.1) it follows
that

�S�S � �#��
�
 � �#� 
 � S � 	
0���


�� � S 
 �� � S� . �7.11�

Therefore for any 
 � �# from (7.11) it follows that

	
0���


�� � S 
 �� � S� � 
 � S �7.12�

Thus axiom of hyper infinite induction 1, i.e., (7.8) holds, since it follows from (7.12)
that �
�
 � �# 
 
 � S�.
Axiom of hyperfinite induction 2
Let F�x� be a wff of the set theory INC�#

# restricted on a set �0,
� then

�
�
 � �#\�� 	
0���


�F��� 
 F����� 
 ���� � �0,
��F���. �7.11�

Axiom of hyper infinite induction 2
Let F�x� be unrestricted wff of the set theory INC�#

# then

�
�
 � �#� 	
0���


�F��� 
 F����� 
 �
�
 � �#�F�
�. �7.12�

Remark 7.3.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

�
�S�S � �0,
���
�
 � �0,
�� 
 � S � 	
0���


�F��� 
 F����� . �7.13�

Therefore for any 
 � �0,
� from (7.13) it follows that

	
0���


�F��� 
 F����� � 
 � S �7.14�

Thus axiom of hyperfinite induction 2,i.e., (7.13) holds, since it follows from (7.16)
that �
�
 � �0,
� 
 
 � S�.
Remark 7.4.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

�S�S � �#��
�
 � �#� 
 � S � 	
0���


�F��� 
 F����� . �7.15�

Therefore for any 
 � �# from (7.15) it follows that

	
0���


�F��� 
 F����� � 
 � S. �7.16�

Thus axiom of hyper infinite induction 2,i.e., (7.12) holds, since From (7.16) it follows
that �
 
 � �# 
 
 � S .

Axiom of hyperfinite induction 3
Let F�x� be a wff of the set theory INC�#

# restricted on inductive set Wind such that
� � Wind � �# then



�W �� � Wind � �#� � 	
��Wind

�F��� 
 F����� 
 ���� � Wind�F���. �7.17�

Proposition 7.1. (a) For any natural or hypernatural number k � �#,

� �
0�m�k

�x � m� � x � k. �7.18�

(a
) For any hypernatural number к and any wff B

� 	
0�m�k

B�m� � �x�x � k 
 B�x��. �7.19�

(b) For any hypernatural number k � �# such that k � 0,

� �
1�m�k

�x � m � 1� � x � k. �7.20�

(b
) For any hypernatural number k � �# such that k � 0 and any wff B�x�,

� 	
0�m�k�1

B�m� � �x�x � k 
 B�x��. �7.21�

(c) � ��x�x � y 
 B�x��� � ��x�x � y 
 E�x��� 
 �x�B�x� � E�x��.
Proof. (a) We prove �

0�m�k

�x � m� � x � k by hyperfinite induction in the

metalanguage on k. The case for k � 0,� x � 0 � x � 0, is obvious from the
definitions.

Assume as inductive hypothesis that

�
0�m�k

�x � m� � x � k. �7.22�

Now assume that

�
0�m�k

�x � m� � �x � k � 1�. �7.25�

But � x � k � 1 
 x � k � 1 and, by the inductive hypothesis,

�
0�m�k

�x � m�. �7.26�

Also � x � k 
 x � k � 1. Thus, x � k � 1. So,

� �
0�m�k�1

�x � m� 
 x � k � 1. �7.27�

Conversely, assume x � k � 1. Then x � k � 1 � x � k � 1. If x � k � 1, then

�
0�m�k�1

�x � m�. �7.28�

If x � k � 1, then we have x � k. By the inductive hypothesis,

�
0�m�k

�x � m� �7.29�

and,therefore,

�
0�m�k�1

�x � m�. �7.30�

Thus in either case,



�
0�m�k�1

�x � m�. �7.31�

This proves

� x � k � 1 
 �
0�m�k�1

�x � m�. �7.32�

From the inductive hypothesis, we have derived

�
0�m�k�1

�x � m� � x � k � 1 �7.33�

and this completes the proof. Note that this proof has been given in an informal manner
that we shall generally use from now on. In particular, the deduction theorem, the
replacement theorem, and various rules and tautologies will be applied without being
explicitly mentioned.

Parts (a
), (b), and (b
) follow easily from part (a). Part (c) follows almost immediately
from the statement t � r 
 �t � r� � �r � t�, using obvious tautologies.

There are several stronger forms of the hyperinfinite induction principles that we can
prove at this point.

Theorem 7.1.(Complete hyperinfinite induction) Let B�x� be anrestricted wff of the set
theory INC�#

# then

�x�x � �#���z�z � x 
 B�z�� 
 B�x�� 
 �x�x � �#�B�x� �7.34�

In ordinary languageI consider a property B�x� such that, for any x, if B�x� holds for all
hypernatural numbers less than x, then B�x� holds for x also. Then B�x� holds for all
hypernatural numbers x � �#.
Proof.Let E�x� be a wff �z�z � x 
 B�z��.
(i) 1.Assume that �x�x � �#���z�z � x 
 B�z�� 
 B�x��, then
2.��z�z � 0 
 B�z�� 
 B�0�� it follows from 1.
3. z � 0,then
4. �z�z � 0 
 B�z�� it follows from 1,
5. B�0� it follows from 2,4 by MP
6. �z�z � 0 
 B�z�� i.e.,E�0� holds it follows from Proposition7.1(a
)
7.�x�x � �#���z�z � x 
 B�z�� 
 B�x�� � E�0� it follows from 1,6 by MP
(ii) 1.Assume that: �x�x � �#���z�z � x 
 B�z�� 
 B�x��.
2.Assume that: E�x� � �z�z � x 
 B�z��, then
3.�z�z � x� 
 B�z�� it follows from 2 since z � x 
 z � x�.
4.�x�x � �#���z�z � x� 
 B�z�� 
 B�x��� it follows from 1 by

rule A4:if t is free for x in B�x�, then �xB�x� � B�t�.
5. B�x�� it follows from 3,4 by unrestricted MP rule.
6. z � x� 
 z � x� � z � x� it follows from definitions.
7. z � x� 
 B�z� it follows from 3 by rule A4.
8. z � x� 
 B�z� it follows from 5.
9. E�x�� � �z�z � x� 
 B�z�� it follows from 6,7,8,rule Gen.
10.�x�x � �#���z�z � x 
 B�z�� 
 B�x�� � �x�x � �#��E�x� 
 E�x���
it follows from 1,9 by deduction theorem,rule Gen.



Now by (i), (ii) and the induction axiom, we obtain D � �x�x � �#�E�x� that is
D � �x�x � �#���z�z � x 
 B�z���, where D � �x�x � �#���z�z � x 
 B�z�� 
 B�x��.
Hence, by rule A4 twice, D � x � x 
 B�x�. But � x � x. So,D � B�x� , and, by Gen

and
the deduction theorem, D � �x�x � �#�B�x�.
Theorem 7.2.(Complete hyperfinite induction) Let B�x� be wff of the set theory
INC�#

# strongly restricted on inductive set Wind such that � � Wind � �# then

�x�x � Wind���z�z � x 
 B�z�� 
 B�x�� 
 �x�x � Wind�B�x� �7.35�

Proof. Similarly as Theorem 7.1.
Remark 7.5.Remind that the following statement holds in standard bivalent
arithmetic [11]:Least-number principle (LNP)

�xB�x� 
 �y�B�y� � �z�z � y 
 �B�z���. �7.36�

In ordinary language:if a property expressed by wff B�x� holds for some natural
number n,

then there is a least number satisfying B�x�.Obviously LNP (7.23) is not holds in
nonstandard arithmetic, since there is no a least number in a set �#\�.
Theorem 7.3.(Weak least-number principle) Let B�x� be a wff of the set theory
INC�#

# such that a wff �B�x� restricted on inductive set Wind such that � � Wind � �#

and Wind
� � �#\Wind then

�x x � Wind
� B�x� 


��y y � Wind
� �B�y� � �z�z � y 
 �B�z��� 
 �y�y � Wind���B�y��

�7.37�

Proof.We assume now that
1.��y y � Wind

� �B�y� � �z�z � y 
 �B�z���

2.�y y � Wind
� ��B�y� � �z�z � y 
 �B�z��� it follows from 1.

3.�y y � Wind
� ��z�z � y 
 �B�z�� 
 �B�y��it follows from 2 by tautology.

4.�y�y � Wind���B�y�� it follows from 3 by Theorem 7.2 with wff �B�y� instead wff B�y�
5.��y y � Wind

� �B�y� � �z�z � y 
 �B�z��� 
 �y�y � Wind���B�y�� it follows from

1,4.
Remark 7.6.Note that: (i) the statement

�I� : �y�y � Wind����B�y�� 
 ���y y � Wind
� �B�y� � �z�z � y 
 �B�z���

is unprovable in INC�#
# from the statement

�II� : ��y y � Wind
� �B�y� � �z�z � y 
 �B�z��� 
 �y�y � Wind���B�y��

�II� : ��y y � Wind
� �B�y� � �z�z � y 
 �B�z��� 
 ��y�y � Wind����B�y��

since the law of contraposition is not holds in intuitionistic hyperinfinitary logic L�#
# ;

(ii) similarly it unprovable in NC�#
# by the restricted modus ponens rule.

Example 7.1. We set now Wind � � and B�y� � y � ��
# .The statement (I) reads

�I�� : �y�y � ���y 
 ��
# � 
 �y�y � ��

# ��B�y� � �z�z � y 
 z 
 ��
# ��

and the statement (II) reads



�II�� : ��y�y � ��
# ���y � ��

# � � �z�z � y 
 z 
 ��
# �� 
 �y�y � �����y 
 ��

# ��.

Note that the statement I�is unprovable in INC�#
# from the statement II�since the law

of contraposition is not holds in intuitionistic hyperinfinitary logic L�#
# ;

Hyper inductive definitions in general.
A function f : �# � A whose domain is the set �# is colled an hyper infinite sequence

and denoted by �fn�n��# or by �f�n��n��#The set of all hyperinfinite sequences whose
terms belong to A is clearly A�#

; the set of all hyperfinite sequences of n � �#\� terms
in A is An. The set of all hyperfinite sequences with terms in A can be defined as

R � �# 
 A : �R is a function� ��n��#�D1�R� � n� , �7.38�

where D1�R� is domain of R.This definition implies the existence of the set of all
hyperfinite sequences with terms in A.The simplest case is the inductive definition of a
hyperinfinite sequence ���n��n��# (with terms belonging to a certain set Z) satisfying the
following conditions:

(a)

��0� � z,��n�� � e���n�,n�, �7.39�

where z � Z and e is a function mapping Z 
 �# into Z.
More generally, we consider a mapping f of the cartesian product Z 
 �# 
 A into Z and

seek a function � � Z�#
A satisfying the conditions :
(b)

��0,a� � g�a�,��n�,a� � f���n,a�,n,a�, �7.40�

where g � ZA. This is a definition by induction with parameter a ranging over the set A.
Schemes (a) and (b) correspond to induction “from n to n� � n � 1”,i.e. ��n�� or ��n�,a�
depends upon ��n� or ��n,a� respectively. More generally, ��n�� may depend upon all

values ��m� where m � n (i.e. m � n�). In the case of induction with parameter, ��n�,a�
may depend upon all values ��m,a�, where m � n; or even upon all values ��m,a�, where

m � n� and b � A. In this way we obtain the following schemes of definitions by hyper
infinite induction:

(c) ��0� � z,��n�� � h��|n�,n�,
(d) ��0,a� � g�a�, ��n�,a� � H��|�n� 
 A�,n,a�.

In the scheme (c), z � Z and h � ZC
�#
, where C is the set of hyperfinite sequences

whose terms belong to Z; in the scheme (d), g � ZA and H � ZT
�#
A, where T is the set
of functions whose domains are included in �# 
 A and whose values belong to Z.

It is clear that the scheme (d) is the most general of all the schemes considered
above.

By coise of functions one obtains from (d) any of the schemes (a)-(d). For example,
taking the function defined by H�c,n,a� � f�c�n,a�,n,a� for a � A,n � �#,c � Z�#
A as H in

(d), one obtain (b). We shall now show that, conversely, the scheme (d) can be
obtained from (a). Let g and H be functions belonging to ZA and ZT
�#
A respectively, and
let � be a function satisfying (d). We shall show that the sequence � � ��n�n��# with
�n � �|�n�,A� can be defined by (a).Obviously, �n � T for every n � �#. The first term of
the sequence � is equal to �|�0�,A�, i.e. to the set: z� � ���0,a
,g�a�
|a � A�.The relation
between �n, and �n� is given by the formula:�n� � �n 	 �|��n�� 
 A�, where the second
component is



���n�,a
,��n�,a�
|a � A� � ��n�,a
,H��n,n,a�|a � A�. �7.41�

Thus we see that the sequence � can be defined by (a) if we substitute T for Z,z� for z
and let e�c,n� � c 	 ��n�,a
,H�c,n,a�|a � A� for c � T.

Now we shall prove the existence and uniqueness of the function satisfying (a). This
theorem shows that we are entitled to use definitions by induction of the type (a).
According to the remark made above, this will imply the existence of functions satisfying
the formulas (b), (c), and (d). Since the uniqueness of such functions can be proved in
the same manner as for (a), we shall use in the sequel definitions by induction of any of
the types (a)-(d).

Theorem 7.4. If Z is any set z � Z and e � ZZ
�#
, then there exists exactly one

hyper infinite sequence � satisfying formulas (a).
Proof. Uniqueness. Suppose that ��1�n��n��# and ��2�n��n��# satisfy (a) and let

K � �n|n � �# � �1�n� � �2�n�� �7.42�

Then (a) implies that K is hyperinductive. Hence �# 	 K and therefore �1�n� � �2�n�.
Existence. Let 
�z,n, t� be the formula e�z,n� � t and let ��w,z,Fn� be the following

formula:

�Fn is a function� � �D1�F� � n�� � �F�0� � z� �	m�n

�Fn�m�,m,Fn�m���. �7.43�

In other words, F is a function defined on the set of numbers � n � �# such that
F�0� � z and F�m�� � e�F�m�,m� for all m � n � �#.
Remark 7.7.We assume now that predicate ��w,z,Fn� is unrestricted on variable
n � �#,see Definition 7.3.
We prove by induction that there exists exactly one function Fn such that ��n,z,Fn�.
The proof of uniqueness of this function is similar to that given in the first part of
Theorem 7.4. The existence of Fn can be proved as follows: for n � 0 it suffices to
take ��0,z
� as Fn; if n � �# and Fn satisfies ��n,z,Fn�, then Fn��

Fn 	 ��n�,e�Fn�n�,n�
�
satisfies the condition ��n�,z,Fn��.
Now, we take as � the set of pairs �n,s
 such that n � �#,s � Z and

�F���n,z,F� � �s � F�n���. �7.44�

Since F is the unique function satisfying ��n,z,F�, it follows that � is a function. For
n � 0 we have ��0� � F0�0� � z; if n � �#, then ��n�� � Fn��n�� � e�Fn�n�,n� by the
definition of Fn; hence we obtain ��n�� � e���0�,n�. Theorem 7.4 is thus proved.

We frequently define not one but several functions (with the same range Z) by a
simultaneous induction:
��0� � z, ��0� � t,
��n�� � f���n�,��n�,n�, ��n�� � g���n�,��n�,n�
where z, t � Z and f,g � ZZ
Z
�#

.
This kind of definition can be reduced to the previous one. It suffices to notice that the
hypersequence �n � ���n�,��n�
 satisfies the formulas:�0 � �z, t
,�n� � e��n,n�,where
we set

e�u,n� � �f�K�u�,L�u�,n�,g�K�u�,F�w�,n�
, �7.45�

and K,L denote functions such that
K��x,y
� and L��x,y
� � y respectively. Thus the function � is defined by induction by



means of (a). We now define � and � by ��n� � K��n�,��n� � L��n�.
Remark 7.8.We assume now that predicate ��w,z,Fn� is restricted on variable
n � �#,on a set �0,
�,see Definition 7.2, then there exists exactly one hyperfinite
sequence � satisfying formulas (a).
The theorem 7.4 on hyper inductive definitions can be generalized to the case of
operations. We shall discuss only one special case. Let 
�z,n, t� be a formula such
that

�z�n�n � �#��t1�t2�
�z,n, t1� � 
�z,n, t2� 
 t1 � t2�. �7.46�

Theorem 7.5. For any set S there exists exactly one hyperinfinite sequence �n,n � �#

such that �0 � S and

�n�n � �#�
��n,n,�n� �. �7.47�

Proof. Uniqueness can be proved as in Theorem 7.4 above.
To prove the existence of �n, let us consider the following formula ��n,S,F�:

�F is a function��D1�F� � n�� � �F�0� � S� � �m�m � n�
�F�m�,m,F�m
��, �7.48�

where D1�F� is domain of F.
As in the proof of Theorem 7.4, it can be shown that there exists exactly one function
Fn such that ��n,S,Fn�. To proceed further we must make certain that there exists a
set containing all the elements of the form Fn�n� where n � �#. (In the case considered
in Theorem 7.4 this set is Z for the domain of the last variable of the formula Ф which
we used in the proof of Theorem 7.4 was limited to the set Z.) In the case under
consideration, the existence of the required set Z follows from the axiom of

replacement.
In fact, the uniqueness of Fn implies that the formula

�Fn���n,S,Fn� � �y � Fn�n��� �7.49�

satisfies the assumption of axiom of replacement. Hence by means of axiom of
replacement the image of �# obtained by this formula exists. This image is the

required
set Z containing all the elements Fn�n�.
The remainder of the proof is analogous to that of Theorem 7.4.
Example 7.1. Let 
�S,t� be the formula t � P�S�. Thus for any set S there exists
exactly one hyper infinite sequence ��n�n��# such that �0 � S and �n� � P��n� for

every
number n � �#.

8.Useful examples of the hyper inductive definitions.
1.Addition operation of hypernatural numbers
The function ��m,n� � m � n : �# 
 �# � �# is defined by
m � 0 � m,m � n� � �m � n��.
This definition is obtained from (b) by seting Z � A � �#,g�a� � a, f�p,n,a� � p�.
This function satisfies all properties of addition such as: for all m,n,k � �#

(i) m � 0 � m (ii) m � n � n � m (iii) m � �n � k� � �m � n� � k.
2.Multiplicattion operation of gypernatural numbers
The function 
�m,n� � m 
 n : �# 
 �# � �# is defined by
m 
 1 � 1,m 
 n� � m 
 n � m.



(i) m 
 1 � 1 (ii) m 
 n � n 
 m (iii) m 
 �n 
 k� � �m 
 n� 
 k.
4.Distributivity with respect to multiplication over addition.
m 
 �n � k� � m 
 n � m 
 k.
5. Let Z � A � XX,g�a� � IX, f�u,n,a� � u � a in (b). Then (b) takes on the following form

��0,a� � IX,��n�,a� � ��n,a� � a. �8.1�

The function ��n,a� is denoted by an and is colled n-th iteration of the function a :

a0�x� � x,an�
�x� � an�a�x��,x � X,a � XX,n � �#. �8.2�

6.Let A � ��#��
#

,g�a� � a0, f�u,n,a� � u � an� .Then (b) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� � an� �8.3�

The function is defined by the Eqs.(8.3) is denoted by

�
i�0

n

ai �8.4�

7.Let A � ��#��
#

,g�a� � a0, f�u,n,a� � u 
 an� .Then (b) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� 
 an� �8.5�

The function is defined by the Eqs.(8.5) is denoted by

�
i�0

n

ai �8.6�

8. Similarly we define maxi�n�ai�,mini�n�ai�,n � �#.
Theorem 8.1. The following equalities holds for any n,k1, l1 � �# :
(1) using distributivity

b 
�
i�0

n

ai � �
i�0

n

b 
 ai �8.7�

(2) using commutativity and associativity

�
i�0

n

ai ��
i�0

n

bi � �
i�0

n

�ai � bi� �8.8�

(3) splitting a sum, using associativity

�
i�0

n

ai � �
i�0

j

ai � �
i�j�1

n

ai �8.9�

(4) using commutativity and associativity, again

�
i�k0

k1

�
j�l0

l1

aij � �
j�l0

l1

�
i�k0

k1

aij �8.10�

(5) using distributivity

�
i�0

n

ai 
 �
j�0

n

bj � �
i�0

n

�
j�0

n

ai 
 bj �8.11�

(6)

�
i�0

n

ai 
 �
i�0

n

bi � �
i�0

n

ai 
 bi �8.12�

(7)



�
i�0

n

ai

m

� �
i�0

n

ai
m �8.13�

Proof. Imediately from Theorem 7.4 and hyperinfinite induction principle.
Definition 8.1.A non-empty non regular sequence �un�n�� is a blok corresponding to
gyperfinite number u � u0 � �#\� iff there is gyperfinite number u such that
. . .� u��n�1� � u�n. . .� u�4 � u�3 � u�2 � u�1 � u and the following conditions are

satisfied

. . .� u��n�1� � u�n. . .� u�4 � u�3 � u�2 � u�1 � u � u1 � u2 �. . .� un � un�1 �. . . �8.14�

where for any n � � : u��n�1� � u�n, where u�n � u��n�1�
� .

Thus beginning with an infinite integer u � �#\� we obtain a block (8.20) of infinite
integers.However, given a “block,” there is another block consisting of even larger infinite
integers. For example, there is the integer u � u, where u � k � u � u for each k � �. And
v � u � u is itself part of the block:

. . .� v � 3 � v � 2 � v � 1 � v � v � 1 � v � 2 �. . . �8.15�

Of course, v � v � u � v � v, and so forth. There are even infinite integers u 
 u and uu,
and so forth.Proceeding in the opposite direction, if u � �#\�, either u or u � 1 is of the
form v � v. Here v must be infinite. So there is no first block, since v � u. In fact, the
ordering of the blocks is dense. For let the block containing v precede the one containing
u, that is,

v � 2 � v � 1 � v � v � 1 �. . .�. . .� u � 2 � u � 1 � u � u � 1 �. . . �8.16� Either u �

v or u � v � 1 can be written z � z where v � k � z � u � l for all k, l � �.
To conclude our consideration: �# consists of � as an initial segment followed by an

ordered set of blocks. These blocks are densely ordered with no first or last element.
Each block is itself order-isomorphic to the integers

� 3,�2,�1,0,1,2,3, �8.17�

Although �#\� is a nonempty subset of �#, as we have just seen it has no least
element and likewise for any block.

9.Analisys on nonarchimedian field �#.

9.1.Basic properties of the hyperrationals �#.
Now that we have the hypernatural numbers, defining hyperintegers and hyperrational

numbers is well within reach.
Definition 9.1. Let Z
 � �# 
 �#. We can define an equivalence relation � on Z


by �a,b� � �c,d� if and only if a � d � b � c. Then we denote the set of all hyperintegers
by �# � Z
/ � (The set of all equivalence classes of Z
 modulo �).
Definition 9.2. Let Q
 � �# 
 ��# � �0�� � ��a,b� � �# 
 �#|b � 0�. We can define an
equivalence relation � on Q
 by �a,b� � �c,d� if and only if a 
 d � b 
 c.Then we

denote
the set of all hyperrational numbers by �# � Q
/ � (The set of all equivalence classes

of
Q
modulo �).



Definition 9.3. A linearly ordered set �P,�� is called dense if for any a,b � P such that
a � b, there exists z � P such that a � z � b.
Lemma 9.1. ��#,�� is dense.
Proof. Let x � �a,b�,y � �c,d� � �# be such that x � y.Consider z � �ad � bc, 2bd� �

�#.
It is easily shown that x � z � y.
Remark 9.1.Consider the ring B of all limited (i.e. finite) elements in �#. Then B has a
unique maximal ideal I�, the infinitesimal numbers. The quotient ring B/I� gives the

field
� of the classical real numbers.

1.Let A � ��#��
#

,g�a� � a0, f�u,n,a� � u � an� .Then (b) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� � an� �9.1�

The function is defined by the Eqs.(9.1) is denoted by

�
i�0

n

ai. �9.2�

2.Let A � ��#��
#

,g�a� � a0, f�u,n,a� � u 
 an� .Then (b) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� 
 an� �9.3�

The function is defined by the Eqs.(9.3) is denoted by.

�
i�0

n

ai. �9.3�

9.2.Countable summation from hyperfinite sum.
Definition 9.1. Let �an�n�� be �#-valued countable sequence. Let �an�k

m be any
hyperfinite sequence with m � �#\� and such that an � 0 if n � �#\�.Then we define
summation of the countable sequence �an�n�� by the following hyperfinite sum

�
n�k

m

an � �# �9.4�

and denote such sum by the symbol

�
n�k

�

an. �9.5�

Remark 9.2. Let �an�n�� be �-valued countable sequence. Note that: (i) for canonical
summation we always apply standard notation

�
n�k

�
an. �9.6�

(ii) the countable sum (�-sum ) (9.5) in contrast with (9.6) abviously always exists

even if a series (9.6) diverges absolutely i.e., �
n�k

�

|an | � �.

Example 9.1. The �-summ �
n�1

�
1
n � �# exists by Theorem 8.1, however �

n�1

�
1
n � �.

Theorem 9.3. Let �
n�k

�

an � A and �
n�k

�

bn � B,where A,B,C � �#.Then



�
n�k

�

C 
 an � C 
�
n�k

�

an �9.6�

and

�
n�k

�

�an � bn� � A � B. �9.7�

Proof. It follows from Theorem 8.2.
Example 9.2. Consider the countable sum

S��r� � �
n�0

�

rn,�1 � r � 1. �9.5�

It follows from (9.5)

S��r� � 1 ��
n�1

�

rn � 1 � r�
n�0

�

rn � 1 � rS��r� �9.6�

Thus

S��r� � 1
1 � r

. �9.7�

Remark 9.3. Note that

S��r� � �
n�0

�

rn � �
n�0

�
rn �9.8�

since as we know

S��r� � lim n�� �
n�0

n

rn � �
n�0

�
rn � 1

1 � r
. �9.9�

Definition 9.2.An element x � �# is called finite if |x| � r for some r � �,r � 0.
Abbreviation 9.1.For x � �# we abbreviate x � �fin

# if x is finite.

Remark 9.4. Let x � �# be finite. Let D1, be the set of r � � such that r � x and D2

the set of r
 � � such that x � r
. The pair �D1,D2� forms a Dedekind cut in �d, hence
determines a unique r0 � �d. A simple argument shows that |x � r0| is infinitesimal,
i.e., |x � r0| � 0.
Definition 9.3.This unique r0 is called the standard part of x and is denoted by �x.
Theorem 9.4. If x � �d, then �x � x; if x,y � �# are both finite, then

��x � y� � ��x� � ��y�, ��x � y� � ��x� � ��y�. �9.10�

Definition 9.4.Let �ai�i�0
� be countable �fin

# -valued sequence. We say that a sequence

�ai�i�0
� converges to standard limit a � �d and abbreviate a � st-lim i�� ai if for every

� � 0,� �� 0 there is an integer N � � such that |ai � a| � � if i � N.
Theorem 9.5. Let �ai�i�0

n , n � �#\� be a hyperfinite �fin
# -valued sequence such that:

(i) �ai � ai for any i � n and (ii) for any m � n : Ext-�
i�0

m

|ai | � � � �fin
# , then

� Ext-�
i�0

n

ai � Ext-�
i�0

n

ai . �9.11�

Proof. From Eq.(9.10) by the condition (ii) and hyper infinite induction we get

� Ext-�
i�0

n

ai � Ext-�
i�0

n
�ai . �9.12�

From Eq.(9.12) by the condition (i) we obtain Eq.(9.11).



Theorem 9.6. Let �ai�i�� be a countable �-valued sequence, i.e. �ai � ai � � for any

i � n and �
i�0

�

|ai | � �, thus there exists st-lim m�� �
i�0

m

ai, then

� Ext-�
i�0

�

ai � Ext-�
i�0

�

ai � �
i�0

�
ai. �9.13�

Proof. It follows directly from Theorem 9.5 for the case if for any i � �#\� : ai � 0.
Theorem 9.7. Let �bi�i�0

� , be a countable �-valued sequence such that
lim m�� �i�0

m |bi | exists.Then

�
i�0

�
bi � Ext-�

i�0

�

bi. �9.14�

Proof. It follows directly from Theorem 9.6 and Eq.(9.13).

10.Euler’s proof of the Goldbach-Euler theorem revisited.
Theorem 10.1. (Goldbach-Euler theorem 1738)[12]-[13]. This infinite series, continued

to infinity,
1
3

� 1
7

� 1
8

� 1
15

� 1
24

� 1
26

� 1
31

� 1
35

�. . . �10.1�

the denominators of which are all numbers which are one less than powers of degree
two or higher of whole numbers, that is, terms which can be expressed with the formula
�mn � 1��1, where m and n are integers greater than one, then the sum of this series is
� 1.

10.1.How Euler did it.
Euler’s proof begins with an 18th century step that treats any infinite sum as a real
number which may be infinite large. Such steps became unpopular among rigorous

mathematicians about a hundred years later.
Euler takes � to be the sum of the harmonic series

� � �
n�1

�
1
n � 1 � 1

2
� 1

3
� 1

4
� 1

5
� 1

6
� 1

7
� 1

8
� 1

9
�. . . . �10.2�

Next, Euler subtracts from Eq.(10.2) the geometric series

1 � �
n�1

�
1
2n � 1

2
� 1

4
� 1

8
� 1

16
� 1

32
�. . . �10.3�

leaving

� � 1 � 1 � 1
3

� 1
5

� 1
6

� 1
7

� 1
9

� 1
10

�. . . �10.4�

Subtract from Eq.(10.4) geometric series
1
2

� 1
3

� 1
9

� 1
27

� 1
81

� 1
243

�. . . �10.5�

leaving

� � 1 � 1
2

� 1 � 1
5

� 1
6

� 1
7

� 1
10

� 1
11

�. . . �10.6�

Subtract from Eq.(10.6) geometric series
1
4

� 1
5

� 1
25

� 1
125

�. . . �10.7�



leaving

� � 1 � 1
2

� 1
4

� 1 � 1
6

� 1
7

� 1
10

�. . . �10.8�

Remark 10.1.Note that Euler had to skip subtracting the geometric series
1
3

� 1
4

� 1
16

� 1
64

� 1
256

�. . . �10.9�

because the series of powers of 1/4 on the right is already a subseries of the series of
powers of 1/2, so those terms have already been subtracted. This happens because 3 is
one less than a power, 4.It happens again every time we reach a term one less than a
power. He will have to skip 7,because that is one less than the cube 8,and 8 because it
is one less than the square 9,15because it is one less than the square 16, etc.
Continuing formally in this way to infinity, we see that all of the terms on the right

except the term 1 can be eliminated, leaving

� � 1 � 1
2

� 1
4

� 1
5

� 1
6

� 1
9

�. . .� 1. �10.10�

Thus

� � 1 � 1
2

� 1
4

� 1
5

� 1
6

� 1
9

� 1
10

�. . . � 1 �10.11�

so

� � 1 � 1 � 1
2

� 1
4

� 1
5

� 1
6

� 1
9

� 1
10

�. . . �10.12�

Remark 10.2.Note that it gets just a little bit tricky. Since � is sum of the harmonic
series, Euler believes that the 1 on the left must equal the terms of the harmonic series
that are missing on the right. Those missing terms are exactly the ones with
denominators one less than powers, so finally Euler concludes that

1 � 1
3

� 1
7

� 1
8

� 1
15

� 1
24

� 1
26

� 1
31

� 1
35

�. . . �10.13�

where the terms on the right have denominators one less than powers.

10.2. Proof of the Goldbach-Euler theorem using canonical
analysis.

We reproduce the proof here for the sake of completeness.

Lemma 1. For any positive integers n and k with 2 � n � k
1/n � 1 � 1/�n � 1�n � 1/n�n � 1� �···�1/�k � 1�k � 1/k
Lemma 2. For any positive integers n and k with n � 2
1/n � 1 � 1/n � 1/n2 �···�1/nk � 1/nk�n � 1�
We let denote the n-th harmonic number by Hn :

Hn � 1 � 1/2� 1/3�. . .�1/n, �10.14�

but we now think of n as either a finite natural number or an infinite nonstandard
natural number. Let k2 be defined by 2k2 � n � 2k2�1. The existence and uniqueness of k2

is clear either if we think of n as a finite natural number or as a nonstandard natural
number: remember the transfer principle. Using Lemma 2, we can write

1 � 1/2� 1/22 � 123 �···�1/2k2 � 1/2k2·1,
and subtracting this series from (9.14), we obtain



Hn � 1 � 1 � 1/3� 1/5� 1/6� 1/7� 1/9� ···� 1/n � 1/2k2·1. �10.15�

Hence, all powers of two, including two itself, disappear from the denominators, leaving
the rest of integers up to n. If from (10.15) we subtract

1/2 � 1/3� 132 � 1/33 � ···� 1/3k3 � 1/3k3·2, �10.16�

again obtained from Lemma 2 with k3 defined by 3k3 � n � 3k3�1, the result will be

Hn � 1 � 1/2 � 1 � 1/5� 1/6� 1/7� 1/10� ···� 1/n � �1/2k2·1 � 1/3k3·2�. �10.17�

Proceeding similarly we end up by deleting all the terms that remain,arriving finally at

Hn � 1 � 1/2� 1/4� 1/5� 1/6� 1/7� 1/10� ···� 1/n �

� 1 � �1/2k2·1 � 1/3k3·2 � ···� 1/n·�n � 1��.
�10.18�

Notice that k2 � k3 �···.In fact,whenm � n we get km � 1.This last expression has
been obtained assuming that n is a nonpower. If n is a power, then 1/n will have
disappeared at some stage of this process,and the last fraction to beremoved
from(10.17) will be 1/�n � 1�, whose denominator is a nonpower unless n � 9. (This is
Catalan’s conjecture that 8 and 9 are the only consecutive powers that exist. The
conjecture was recently proved by Miha� ilescu [14]. In fact, it does not matter here
whether there are more consecutive powers or not.) The corresponding expression will
thus be

Hn � 1 � 1/2� 1/4� 1/5� 1/6� 1/7� 1/10� ···� 1/n � 1

� 1 � �1/2k2·1 � 1/3k3·2 � ···� 1/�n � 1�·�n � 2��.
�10.19�

Consequently, if we subtract (10.18) from (10.14) we obtain

1 � �1/2k2·1 � 1/3k3·2 � ···� 1/n·�n � 1�� �

1/3� 1/7� 1/8� 1/15� 1/24� 1/26� ···� 1/n � 1
�10.20�

or, correspondingly subtracting (10.19) from (10.14),

1 � �12k2·1 � 13k3·2 � ···� 1/�n � 1��n � 2�� �

1/3� 1/7� 1/8� 1/15� 1/24� 1/26� ···� 1/n,
�10.21�

sums that containin their denominators,increased by one,all the power so fthe integers
up to n. We must now take care of the “remainder,” that is, the expression between
parentheses above or on the right-hand side of (10.17) (respectively, (10.19)).

Since for each m � 2 we know by the definition of km that n � mkm�1 � m2km , it follows
that n � mkm and

1/�mkm·�m � 1�� � 1/ n �m � 1�. �10.22�

This implies that

1/2k2·1 � 1/3k3·2 � ···� 1/n·�n � 1� � Hn�1/ n �10.23�

or, if n is a power,

1/2k2·1 � 1/3k3·2 � ···� 1/�n � 1�·�n � 2� � Hn�2/ n � 1 . �10.24�

If we have chosen to regard n as a finite integer then we can pass to the limit and use
Euler’s asymptotic value for Hn : lim n�� Hn�1/ n � lim n���log�n � 1� � γ�/ n � 0. The



proof is now complete.

10.3.Euler proof revisited using elementary analysis on
nonarchimedian field �#.

We replace Eq.(10.2) by

�� � �
n�1

�
1
n � 1 � 1

2
� 1

3
� 1

4
� 1

5
� 1

6
� 1

7
� 1

8
� 1

9
�. . . .

#
, �10.22�

where we write symbolically for convenience
1 � 1

2 � 1
3 � 1

4 � 1
5 � 1

6 � 1
7 � 1

8 � 1
9 �. . . .

#
instead �-sum �n�1

� 1
n .

Remark 10.3.Remind that �-sum �n�1
� 1

n is defined as hyperfinite sum �n�1
m an,

where an � n�1if n � � and an � 0 if n � �#\�.
Remark 10.4.Note that �� � �#\�.
Subtract from Eq.(10.22) the �-sum

1 � �
n�1

�
1
2n � 1

2
� 1

4
� 1

8
� 1

16
� 1

32
�. . .

#
�10.23�

using Theorem 9.3 we obtain

�� � 1 � 1 � 1
2

� 1
3

� 1
4

� 1
5

� 1
6

� 1
7

� 1
8

� 1
9

�. . . .
#
�

� 1
2

� 1
4

� 1
8

� 1
16

� 1
32

�. . .
#
�

1 � 1
3

� 1
5

� 1
6

� 1
7

� 1
9

� 1
10

�. . .
#
.

�10.24�

Subtract from Eq.(10.24) the �-sum

1
2

� �
n�1

�
1
3n � 1

3
� 1

9
� 1

27
� 1

81
� 1

243
�. . .

#
�10.25�

using Theorem 9.3 we obtain

�� � 1 � 1
2

� 1 � 1
3

� 1
5

� 1
6

� 1
7

� 1
9

� 1
10

�. . .
#
�

� 1
3

� 1
9

� 1
27

� 1
81

� 1
243

�. . .
#
�

� 1 � 1
5

� 1
6

� 1
7

� 1
10

� 1
11

�. . .
#
.

�10.26�

Subtract from Eq.(10.26) the �-sum

1
4

� 1
5

� 1
25

� 1
125

�. . .
#

�10.27�

using Theorem 9.3 we obtain

�� � 1 � 1
2

� 1
4

� 1 � 1
6

� 1
7

� 1
10

�. . .
#

�10.28�

Remark 10.5.Note that in calculation above we had skip subtracting the �-sum
(see Remark 9.1)

1
3

� 1
4

� 1
16

� 1
64

� 1
256

�. . .
#

�10.29�

because the series of powers of 1/4 on the right is already a subseries of the �-sum
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(10.23) of powers of 1/2, so those terms have already been subtracted. This happens
because 3 is one less than a power, 4.It happens again every time we reach a term one
less than a power. He will have to skip 7,because that is one less than the cube 8,and 8
because it is one less than the square 9,15because it is one less than the square 16,
etc. Continuing in this way to gyperfinite number m � �#\� by using gyperfinite induction
principle, we see that all of the terms on the right except the term 1 can be eliminated.
Thus by Theorem 9.3 and Remark 10.5 we obtain

�� � 1 � 1
2

� 1
4

� 1
5

� 1
6

� 1
9

� 1
10

�. . .
#
�

�� � 1
2

� 1
3

� 1
4

� 1
5

� 1
6

� 1
7

� 1
8

� 1
9

�. . . .
#
�

� �� ��
n�2

�
1
n � 1.

�10.30�

From Eq.(10.30) we obtain

�� � 1 � 1
2

� 1
4

� 1
5

� 1
6

� 1
9

� 1
10

�. . .
#
� 1. �10.31�

Finally we get

1 � 1
3

� 1
7

� 1
8

� 1
15

� 1
24

� 1
26

� 1
31

� 1
35

�. . .
#
, �10.32�

where the terms on the right have denominators one less than powers. From Eq.(10.32)
by Theorem 9.7 we obtain

1 � 1
3

� 1
7

� 1
8

� 1
15

� 1
24

� 1
26

� 1
31

� 1
35

�. . . , �10.33�

where the terms on the right have denominators one less than powers.
Note that Eq.(10.33) now is obtained without any references to Catalan conjecture
[13],[14].

11.External induction principle and hyper inductive
definitions in nonstandard analysis.

11.1.Internal induction principle in Robinson nonstandard
analysis.

Remind that in Robinson nonstandard analysis [2]-[5] each member of �P��� is colled
to be an internal subset of ��;any other subset of �� is colled an external subset of ��.

The importance of internal sets versus external sets rests on the theorem which says
that each statement which is true for � is true for ��if and only if its quantifiers are
restricted on internal subset of ��.Thus the induction postulate reads

�S�S � �P��� ��1 � S � �x�x � S 
 x � 1 � S� 
 S � ���. �11.1�

Remind that a set S is inductive if 1 � S � �x�x � S 
 x � 1 � S�. The induction postulate
(11.1) is not holds for inductive set S which is not internal. For example the induction
postulate (11.1) is not holds for inductive set S � � since � � ��.

We emphasize that in contrast with ZFC in set theory INC�#
# notion of internal subset

of ��is not important since the induction postulate (11.1) holds for any hyper inductive
set S which is not initially defined as internal.
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Definition 11.1.A set S � ��is a hyper inductive if the following statement holds

	
����

�� � S 
 �� � S�. �11.2�

Obviously a set �� is a hyper inductive. As we see later there is just one hyper
inductive

subset of ��,namely ��itself.

11.2.External induction principle in nonstandard analysis
based on set theory INC�#

# .
Definition 11.2.Let 
 be a hypernatural such that 
 � ��\�. Let �0,
� � ��be a set
such that �x�x � �0,
� � 0 � x � 
� and �0,
� � �0,
�\�
�.
Definition 11.3.(i) Let F�x� be a wff of INC#with unique free variable x.We will say that
a wff F�x� is restricted on a set SF such that SF � �� iff the following conditions are
satisfied

���� � ����F��� 
 � � SF � �11.3�

and

���� � �����F��� 
 � � ��\SF �. �11.4�

Definition 11.4. Let F�x� be a wff of INC�#
# with unique free variable x.We will say that

a
wff F�x� is unrestricted on variable x if wff F�x� is not restricted on any set S such that
S � ��.This definition meant

	
���#

�F��� � � 
 �#�. �11.5�

Axiom of hyperfinite induction 1

�
�
 � ��\���S�S � �0,
�� �

���� � �0,
�� 	
0���


�� � S 
 �� � S� 
 S � �0,
� .
�11.6�

Axiom of hyper infinite induction 1

�S�S � ��� �
�
 � ��� 	
0���


�� � S 
 �� � S� 
 S � �� . �11.6�

Remark 11.1.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

�
�S�S � �0,
���
� �
� � �0,
�� 
� � S � 	
0���
�

�� � S 
 �� � S� . �11.7�

Therefore for any 
� � �0,
� from (11.7) it follows that

	
0���


�� � S 
 �� � S� � 
 � S. �11.8�

Thus axiom of hyperfinite induction 1,i.e., (11.5) holds, since from (11.8) it follows that
�
�
 � �0,
� 
 
 � S�.
Remark 11.2.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that



�S�S � ����
�
 � ��� 
 � S � 	
0���


�� � S 
 �� � S� . �11.9�

Therefore for any 
 � �� from (11.9) it follows that

	
0���


�� � S 
 �� � S� � 
 � S �11.10�

Thus axiom of hyperinfinite induction 1, i.e., (7.6) holds, since it follows from (7.10)
that �
�
 � �� 
 
 � S�.
Axiom of hyperfinite induction 2
Let F�x� be a wff of the set theory INC�#

# restricted on a set �0,
� then

�
�
 � ��\�� 	
0���


�F��� 
 F����� 
 ���� � �0,
��F���. �11.11�

Axiom of hyper infinite induction 2
Let F�x� be unrestricted wff of the set theory INC�#

# then

�
�
 � ��� 	
0���


�F��� 
 F����� 
 �
�
 � ���F�
�. �11.12�

Remark 11.3.Note that from comprechesion shemata 2 (see subsection 6.1) follows
that

�
�S�S � �0,
���
�
 � �0,
�� 
 � S � 	
0���


�F��� 
 F����� . �11.13�

Therefore for any 
 � �0,
� from (11.13) it follows that

	
0���


�F��� 
 F����� � 
 � S �11.14�

Thus axiom of hyperfinite induction 2,i.e., (11.12) holds, since it follows from (11.14)
that �
�
 � �0,
� 
 
 � S�.

12.Hyper inductive definitions corresponding to Robinson
hyperreals ��.

12.1.Hyper inductive definitions corresponding to
Robinson hyperreals �� in general.

A function f : �� � A whose domain is the set �� is colled an hyper infinite sequence
and denoted by �fn�n��� or by �f�n��n���The set of all hyper infinite sequences whose

terms belong to A is clearly A
�� ; the set of all hyperfinite sequences of n � ��\� terms

in A is An. The set of all hyperfinite sequences with terms in A can be defined as

R � �� 
 A : �R is a function� ��n���
�D1�R� � n� , �12.1�

where D1�R� is domain of R.This definition implies the existence of the set of all
hyperfinite sequences with terms in A.The simplest case is the hyper inductive definition
of a hyperinfinite sequence ���n��n��� (with terms belonging to a certain set Z) satisfying

the following conditions:
(a)



��0� � z,��n�� � e���n�,n�, �12.2�

where z � Z and e is a function mapping Z 
 �� into Z.
More generally, we consider a mapping f of the cartesian product Z 
 �� 
 A into Z and

seek a function � � Z
��
A satisfying the conditions :

(b)

��0,a� � g�a�,��n�,a� � f���n,a�,n,a�, �12.3�

where g � ZA. This is a definition by induction with parameter a ranging over the set A.
Schemes (a) and (b) correspond to induction “from n to n� � n � 1”,i.e. ��n�� or ��n�,a�
depends upon ��n� or ��n,a� respectively. More generally, ��n�� may depend upon all

values ��m� where m � n (i.e. m � n�). In the case of induction with parameter, ��n�,a�
may depend upon all values ��m,a�, where m � n; or even upon all values ��m,a�, where

m � n� and b � A. In this way we obtain the following schemes of definitions by
induction:

(c) ��0� � z,��n�� � h��|n�,n�,
(d) ��0,a� � g�a�, ��n�,a� � H��|�n� 
 A�,n,a�.

In the scheme (c), z � Z and h � ZC
�� , where C is the set of hyperfinite sequences
whose terms belong to Z; in the scheme (d), g � ZA and H � ZT
��
A, where T is the set
of functions whose domains are included in �� 
 A and whose values belong to Z.

It is clear that the scheme (d) is the most general of all the schemes considered
above.

By coise of functions one obtains from (d) any of the schemes (a)-(d). For example,
taking the function defined by H�c,n,a� � f�c�n,a�,n,a� for a � A,n � ��,c � Z

��
A as H in
(d), one obtain (b). We shall now show that, conversely, the scheme (d) can be

obtained from (a). Let g and H be functions belonging to ZA and ZT
��
A respectively, and
let � be a function satisfying (d). We shall show that the sequence � � ��n�n��� with

�n � �|�n�,A� can be defined by (a).Obviously, �n � T for every n � �#. The first term of
the sequence � is equal to �|�0�,A�, i.e. to the set: z� � ���0,a
,g�a�
|a � A�.The relation
between �n, and �n� is given by the formula:�n� � �n 	 �|��n�� 
 A�, where the second
component is

���n�,a
,��n�,a�
|a � A� � ��n�,a
, ,H��n,n,a�|a � A�. �12.4�

Thus we see that the sequence � can be defined by (a) if we substitute T for Z,z� for z
and let e�c,n� � c 	 ��n�,a
,H�c,n,a�|a � A� for c � T.

Now we shall prove the existence and uniqueness of the function satisfying (a). This
theorem shows that we are entitled to use definitions by induction of the type (a).
According to the remark made above, this will imply the existence of functions satisfying
the formulas (b), (c), and (d). Since the uniqueness of such functions can be proved in
the same manner as for (a), we shall use in the sequel definitions by induction of any of
the types (a)-(d).

Theorem 12.1. If Z is any set z � Z and e � ZZ
�� , then there exists exactly one
hyper infinite sequence � satisfying formulas (a).
Proof. Uniqueness. Suppose that ��1�n��n��� and ��2�n��n��� satisfy (a) and let

K � �n|n � �� � �1�n� � �2�n�� �12.5�

Then (a) implies that K is hyperinductive. Hence �� 	 K and therefore �1�n� � �2�n�.
Existence. Let 
�z,n, t� be the formula e�z,n� � t and let ��w,z,F� be the following



formula:

�F is a function� � �D1�F� � n�� � �F�0� � z� �	m�n
�F�m�,m,F�m���. �12.6�

In other words, F is a function defined on the set of numbers � n � �� such that
F�0� � z and F�m�� � e�F�m�,m� for all m � n � ��.
Remark 11.4.We assume now that predicate ��w,z,Fn� is unrestricted on variable n,
see Definition 11.4.
We prove by hyper infinite induction that there exists exactly one function Fn such that

��n,z,Fn�. The proof of uniqueness of this function is similar to that given in the first part
of Theorem 12.1. The existence of Fn can be proved as follows: for n � 0 it suffices to
take ��0,z
� as Fn; if n � �� and Fn satisfies ��n,z,Fn�, then Fn�� Fn 	 ��n�,e�Fn�n�,n�
�
satisfies the condition ��n�,z,Fn��.

Now, we take as � the set of pairs �n,s
 such that n � ��,s � Z and

�F���n,z,F� � �s � F�n���. �12.7�

Since F is the unique function satisfying ��n,z,F�, it follows that � is a function. For
n � 0 we have ��0� � F0�0� � z; if n � ��, then ��n�� � Fn��n�� � e�Fn�n�,n� by the
definition of Fn; hence we obtain ��n�� � e���0�,n�. Theorem 12.1 is thus proved.

We frequently define not one but several functions (with the same range Z) by a
simultaneous induction:
��0� � z, ��0� � t,
��n�� � f���n�,��n�,n�, ��n�� � g���n�,��n�,n�
where z, t � Z and f,g � ZZ
Z
�� .
This kind of definition can be reduced to the previous one. It suffices to notice that the

hypersequence �n � ���n�,��n�
 satisfies the formulas:�0 � �z, t
,�n� � e��n,n�,where
we set

e�u,n� � �f�K�u�,L�u�,n�,g�K�u�,F�w�,n�
, �12.8�

and K,L denote functions such that K��x,y
� and L��x,y
� � y respectively. Thus the
function � is defined by induction by means of (a). We now define � and � by
��n� � K��n�,��n� � L��n�.

12.2.Summation of the hyperfinite external ��-valued
sequences.

1.Addition operation of Robinson hypernatural numbers.
The function ��m,n� � m � n : �� 
 �� � �� is defined hyper inductively by
m � 0 � m,m � n� � �m � n��.
This definition is obtained from conditions (12.3) by seting

Z � A � ��,g�a� � a, f�p,n,a� � p�,p� � p � 1
This function satisfies all properties of addition such as: for all m,n,k � ��
(i) m � 0 � m (ii) m � n � n � m (iii) m � �n � k� � �m � n� � k.
2.Multiplicattion operation of Robinson hypernatural numbers.
The function 
�m,n� � m 
 n : �� 
 �� � �� is defined by
m 
 1 � 1,m 
 n� � m 
 n � m.
(i) m 
 1 � 1 (ii) m 
 n � n 
 m (iii) m 
 �n 
 k� � �m 
 n� 
 k.
4.Distributivity with respect to multiplication over addition.
m 
 �n � k� � m 
 n � m 
 k.



5. Let Z � A � XX,g�a� � IX, f�u,n,a� � u � a in (b). Then (12.3) takes on the following
form

��0,a� � IX,��n�,a� � ��n,a� � a. �12.9�

The external function ��n,a� is denoted by an and is colled n-th iteration of the function
a

a0�x� � x,an�
�x� � an�a�x��,x � X,a � XX,n � ��. �12.10�

6.Let A � �����
�
,g�a� � a0, f�u,n,a� � u � an� .Then (12.3) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� � an� �12.11�

The external function is defined by the Eqs.(12.11) is denoted by

Ext-�
i�0

n

ai �12.12�

7.Let A � �����
�
,g�a� � a0, f�u,n,a� � u 
 an� .Then (12.3) takes on the following form

��0,a� � a0,��n�,a� � ��n,a� 
 an� �12.13�

The external function is defined by the Eqs.(12.13) is denoted by

Ext-�
i�0

n

ai �12.14�

8. Similarly we define maxi�n�ai�,mini�n�ai�,n � ��.
Theorem 12.2. For any hyperfinite ��-valued sequences �ai�i�1

n , �bi�i�1
n ,�c i�i�1

n ,n � �#

the following equalities holds for any n,k1, l1 � �� :
(1) distributivity

b 
 Ext-�
i�0

n

ai � Ext-�
i�0

n

b 
 ai �12.15�

(2)

Ext-�
i�0

n

ai � Ext-�
i�0

n

bi � Ext-�
i�0

n

�ai � bi� �12.16�

(3) splitting a sum

Ext-�
i�0

n

ai � Ext-�
i�0

j

ai � Ext- �
i�j�1

n

ai �12.17�

(4)

Ext-�
i�k0

k1

Ext-�
j�l0

l1

aij � Ext-�
j�l0

l1

Ext-�
i�k0

k1

aij �12.18�

(5)

Ext-�
i�0

n

ai 
 Ext-�
j�0

n

bj � Ext-�
i�0

n

Ext-�
j�0

n

ai 
 bj �12.19�

(6)

Ext-�
i�0

n

ai 
 Ext-�
i�0

n

bi � Ext-�
i�0

n

ai 
 bi �12.20�

(7)



Ext-�
i�0

n

ai

m

� Ext-�
i�0

n

ai
m �12.21�

Proof. Imediately from Theorem 11.1 and hyperinfinite induction principle.
9.Let A � �����

�
,g�a� � a0, f�u,n,a� � u � an� .Then (12.3) takes on the following

form

��0,a� � a0,��n�,a� � ��n,a� � an� �12.22�

The external function is defined by the Eqs.(12.22) is denoted by

Ext-�
i�0

n

ai �12.23�

10.Let A � �����
�
,g�a� � a0, f�u,n,a� � u 
 an� .Then (12.3) takes on the following

form

��0,a� � a0,��n�,a� � ��n,a� 
 an� �12.24�

The external function is defined by the Eqs.(12.24) is denoted by

Ext-�
i�0

n

ai �12.25�

11. Similarly we define maxi�n�ai�,mini�n�ai�,n � ��.
Theorem 12.3. For any ��-valued hyperfinite sequences �ai�i�1

n , �bi�i�1
n ,�c i�i�1

n ,
n � ��

the following equalities holds for any n,k1, l1 � �� :
(1) distributivity

b 
 Ext-�
i�0

n

ai � Ext-�
i�0

n

b 
 ai �12.26�

(2)

Ext-�
i�0

n

ai � Ext-�
i�0

n

bi � Ext-�
i�0

n

�ai � bi� �12.27�

(3) splitting a sum

Ext-�
i�0

n

ai � Ext-�
i�0

j

ai � Ext- �
i�j�1

n

ai �12.28�

(4)

Ext-�
i�k0

k1

Ext-�
j�l0

l1

aij � Ext-�
j�l0

l1

Ext-�
i�k0

k1

aij �12.29�

(5)

Ext-�
i�0

n

ai 
 Ext-�
j�0

n

bj � Ext-�
i�0

n

Ext-�
j�0

n

ai 
 bj �12.30�

(6)

Ext-�
i�0

n

ai 
 Ext-�
i�0

n

bi � Ext-�
i�0

n

ai 
 bi �12.31�

(7)

Ext-�
i�0

n

ai

m

� Ext-�
i�0

n

ai
m �12.32�



Proof. Imediately from Theorem 12.1 and hyperinfinite induction principle.
12.Let A � �����

�
,g�a� � a0, f�u,n,a� � u � an� .Then (12.3) takes on the following

form

��0,a� � a0,��n�,a� � ��n,a� � an� �12.33�

The external function is defined by the Eqs.(12.33) is denoted by

Ext-�
i�0

n

ai �12.34�

13.Let A � �����
�
,g�a� � a0, f�u,n,a� � u 
 an� .Then (7.40) takes on the following

form

��0,a� � a0,��n�,a� � ��n,a� 
 an� �12.35�

The external function is defined by the Eqs.(12.35) is denoted by

Ext-�
i�0

n

ai �12.36�

14. Similarly we define maxi�n�ai�,mini�n�ai�,n � ��.
Theorem 12.4. For any ��-valued hyperfinite sequences �ai�i�1

n , �bi�i�1
n ,�c i�i�1

n ,
n � ��

the following equalities holds for any n,k1, l1 � �� :
(1) distributivity

b 
 Ext-�
i�0

n

ai � Ext-�
i�0

n

b 
 ai �12.37�

(2)

Ext-�
i�0

n

ai � Ext-�
i�0

n

bi � Ext-�
i�0

n

�ai � bi� �12.38�

(3) splitting a sum

Ext-�
i�0

n

ai � Ext-�
i�0

j

ai � Ext- �
i�j�1

n

ai �12.39�

(4)

Ext-�
i�k0

k1

Ext-�
j�l0

l1

aij � Ext-�
j�l0

l1

Ext-�
i�k0

k1

aij �12.40�

(5)

Ext-�
i�0

n

ai 
 Ext-�
j�0

n

bj � Ext-�
i�0

n

Ext-�
j�0

n

ai 
 bj �12.41�

(6)

Ext-�
i�0

n

ai 
 Ext-�
i�0

n

bi � Ext-�
i�0

n

ai 
 bi �12.42�

(7)

Ext-�
i�0

n

ai

m

� Ext-�
i�0

n

ai
m �12.43�

Proof. Imediately from Theorem 21.1 and hyper infinite induction principle.
Remark 12.1.Note that in general case



Ext-�
i�0

n

ai � Ext-�
k�0

n

�a2k � a2k�1�, �12.44�

where n � ��\�.
Remark 12.2.We remind that there exists an natural embedding [5]:

���� : � � ��. �12.45�

For any real number r � � let r� denote the constant function with value r in ��, i.e.,
r��n� � r, for all n � �. We then have embedding (11.30).We denote ����-image of � in
�� by ���� � ��st .
Remark 12.3.We remind that the following statement holds [5].
EXTENSION PRINCIPLE: �� is a proper extension of � and �r � r for all r � �. This
means that we identify � with its �-image ��st in ��.
Remark 12.4.We remind that [5]:(i) an element x � �� is called finite if |x| � �r
for some r � 0,(ii) every finite x � �� is infinitely close to some (unique) �r � ��st

in the sense that |x � �r | is either 0 or positively infinitesimal in ��.This unique �r is
called the standard part of x and is denoted by �x. If �r � ��st, then ���r� � r; if
x,y � �� are both finite, then

��x � y� � ��x� � ��y�, ��x � y� � ��x� � ��y�. �12.46�

Definition 12.1.Let �ai�i�0
� be a countable �-valued sequence and let ��ai�i�0

� be
corresponding countable ��st-valued sequence, where �ai � ��ai �. A sequence
��ai�i�0

� converges to standard limit a � ��stand abbraviate a � st-lim i��
�ai if for every

� � 0,� �� 0 there is an integer N � � such that |�ai � a| � � if i � N.Note that
a � �a,where a � lim i�� ai.
Theorem 12.4. (i) Let �ai�i�0

n , n � � be a countable �-valued sequence such that a
limit

a � lim i�� ai,a � � exists.Then a countable ��st-valued sequence converges to
standard

limit �a : �a � st-lim i��
�ai .

Proof. (i) Immediately from defininition12.1.

Example 12.1.lim i�� �
n�0

i ��1�n�2n�1

22n�1�2n � 1�!
� sin �

2
� 1.Then by Theorem 11.4

we get: st-lim i��
� �

n�0

i ��1�n�2n�1

22n�1�2n � 1�!
� �1.

Theorem 12.5. Let �ai�i�0
n , n � �#\� be a hyperfinite sequence such that:

(i) �ai � ai for any i � n and (ii) for any m � n : Ext-�
i�0

m

ai � � � ��st , then

� Ext-�
i�0

n

ai � Ext-�
i�0

n

ai . �12.47�

Proof. From Eq.(12.46) by the condition (ii) and hyper infinite induction we get

� Ext-�
i�0

n

ai � Ext-�
i�0

n
�ai . �12.48�

From Eq.(12.48) by the condition (i) we obtain Eq.(12.47).

12.3.Summation of the cauntable ��-valued sequences.



Definition 12.2. Let �an�n�� be ��-valued countable sequence. Let �an�k
m be any

hyperfinite sequence with m � ��\� and such that an � 0 if n � ��\�.Then we define
summation of the countable sequence �an�n�� by the following hyperfinite sum

Ext-�
n�k

m

an � �� �12.49�

and denote such sum by the symbol

Ext-�
n�k

�

an. �12.50�

Remark 12.5. Let �an�n�� be �-valued countable sequence. Note that: (i) for canonical
summation we always apply standard notation

�
n�k

�
an. �12.51�

(ii) the countable external sum (�-summ ) (12.50) in contrast with countable external
sum

(12.51) obviously always exists even if a series (12.51) diverges absolutely i.e.,
�n�k

� |an | � �.

Example 12.2. The �-sum Ext-�
n�1

�
1
n � ��\� exists by Theorem 12.1, however

�
n�1

�
1
n � �. �12.52�

Theorem 12.6. Let Ext-�
n�k

�

an � A and Ext-�
n�k

�

bn � B,where A,B,C � ��.Then

Ext-�
n�k

�

C 
 an � C 
 Ext-�
n�k

�

an �12.53�

and

Ext-�
n�k

�

�an � bn� � A � B. �12.54�

Proof. It follows directly from Theorem 12.4.
Theorem 12.7. Let �ai�i�0

n , n � � be a countable �-valued sequence such that a siries
�i�0

� ai converges absolutely. Assum that: st-lim m�� Ext-�i�m
� |�ai | � 0. Then

st- lim m�� �i�0
m �ai � Ext-�i�0

� �ai �12.55�

Proof. Note that

�i�0
m �ai � Ext-�i�0

� �ai � Ext-�i�m�1
� �ai � Ext-�i�m�1

� |�ai |. �12.56�

From (12.56) we get

st- lim m�� �i�0
m �ai � Ext-�i�0

� �ai � st- lim m�� Ext-�i�m�1
� |�ai | � 0. �12.57�

Eq.(12.55) follows directly from Eq.(12.57).
Example 12.2. Consider the countable sum

S���r� � Ext-�
n�0

�
�r n,��1 � �r � �1. �12.58�

it follows from (12.55)



S���r� � �1 � Ext-�
n�1

�
�r n � �1 � �r�

n�0

�
�r n � �1 � �rS���r� �12.59�

Thus

S���r� �
�1

�1 � �r
. �12.60�

Remark 12.6. Note that

S���r� � Ext-�
n�0

�
�r n � st- lim m�� �

n�0

m
�r n � �

n�0

�
�r n �12.61�

since as we know

S��r� � lim n�� �
n�0

n

rn � �
n�0

�
rn � 1

1 � r
. �12.62�

Theorem 12.8. Let �ai�i�� be a countable ��st -valued sequence, i.e. �ai � ai for any

i � n and st-lim m�� Ext-�
i�0

m

ai � 0, then

� Ext-�
i�0

�

ai � Ext-�
i�0

�

ai . �12.63�

Proof. It follows directly from Theorem 12.5 for the case if for any i � �#\� : ai � 0.
Theorem 12.9. Let �bi�i�0

� , be a countable �-valued sequence such that a limit
s � lim m�� �i�0

m bi exists.Then

�s � Ext-�
i�0

�
�bi . �12.64�

Proof. It follows directly from Theorem 12.7 and Eq.(12.63).

13.ee is transcendental number

13.1.e is #-transcendental number
Definition 13.1. Let g�x� : � � � be any real analytic function such that: (i)

g��x� � �
n�0

�

anxn, |x| � r,�n�an � ��, �13.1�

and where (ii) the sequence �an�n�� is recursive.
We will call any function given by Eq.(13.1) constructive �-analytic function and

denoted
such function by g��x�.
Definition 13.2. A transcendental number z � � is called #-transcendental number
over field �, if there does not exists constructive �-analytic function g��x� such that
g��z� � 0,i.e., for every constructive �-analytic function g��x� the inequality g��z� � 0
is satisfied.
Definition 13.3.A transcendental number z is called w-transcendental
number over field �,if z is not #-transcendental number over field �,i.e., there
exists an constructive �-analytic function g��x� such that g��z� � 0.
Notation 13.1.We will call for a short any constructive �-analytic function g��x� simply
�-analytic function.



Example 13.1. Number � is transcendental but number � is not #-transcendental

number over field � since:(i) function sinx is a �-analytic and (ii) sin �
2

� 1 i.e.,

�1 � �
2

� �3

233!
� �5

255!
� �7

277!
�. . .�

��1�n�2n�1

22n�1�2n � 1�!
�. . .� 0. �13.2�

Note that the sequence an �
��1�n�2n�1

22n�1�2n � 1�!
,n � 0,1,2. . . . .obviously is primitive

recursive.To prove that e is #-transcendental number we need to show that e is not

w-transcendental i.e., there does not exist real �-analytic function g��x� � �
n�0

�

anxn

with rational coefficients a0,a1, . . . ,an, . . .� � such that

�
n�0

�

aken � 0,�
n�0

�

|ak |en � �. �13.3�

Suppose that e is w-transcendental, i.e., there exists an �-analytic function

ğ��x� � �
n�0

�

ănxn,with rational coefficients:

ă0 � k0
m0

,ă1 � k1
m1

, . . . ,ăn � kn
mn

, . . .� �, ă0 � 0, �13.4�

such that the following equality is satisfied:

�
n�0

�

ănen � 0,�
n�0

�

|ăk |en � �. �13.5�

In this subsection we obtain an reduction of the equality is given by Eq.(13.5) to
equivalent equality given by Eq.(13.15). The main tool of such reduction that external
countable sum defined in subsection 12.2 above.
From Eq.(13.5) by Theorem 12.7 one obtains the equality

�ă0 ��
n�1

�
�ăn 
 �en � 0, �13.6�

where we abbreviate �
n�1

�
�ăn � st-lim m�� �

n�1

m
�ăn Note that from Eq.(13.6) by

Theorem 12.9 one obtains the equality

�ă0 � Ext-�
n�1

�
�ăn 
 �en

/�

� 0. �13.7�

Theorem 12.1.[4] The equality (13.6) is inconsistent.
Proof.Let � be a hypernatural number � � ��\� defined by countable sequence

� � �m0,m0 
 m1, . . . ,m0 
 m1 
. . .
mn, . . .� �

� �r0,r1, . . . ,rn, . . .�
�13.8�

where rn � m0 
 m1 
. . .
mn.From Eq.(13.7) and Eq.(13.8) one obtains



��ă0

�
�

Ext-�
n�1

�
��ăn 
 �en

�
� 0. �13.9�

From Eq.(12.9) one obtains

�0

�
�

Ext-�
n�1

�
�n 
 �en

�
� 0, �13.10�

where �n � � 
 ăn,n � 0,1,2, . . .Note that

�en � �e n �
�Mn�n,p�
�M0�n,p�

�
��n�n,p�
�M0�n,p�

, �13.11�

n � 1,2, . . . ,k � �,n,p ����,see Appendix A,Eq.(30). From Eq.(13.10) and Eq.(13.11)
by Theorem 12.6 we obtain

�0

�
�

Ext-�
n�1

�
�n 
 �en

�
�

�0

�
� Ext-�

n�1

�
�n 
 �Mn�n,p�
� 
 �M0�n,p�

�
�n 
 ��n�n,p�
� 
 �M0�n,p�

�

� �0

�
� Ext-�

n�1

�
�n 
 �Mn�n,p�
� 
 �M0�n,p�

� Ext-�
n�1

�
�n 
 ��n�n,p�
� 
 �M0�n,p�

� 0.

�13.12�

We abbreviate now

	�n,p� � �0

�
� Ext-�

n�1

�
�n 
 �Mn�n,p�
� 
 �M0�n,p�

�

�0 
 �M0�n,p� � Ext-�
n�1

�
�n 
 �Mn�n,p�

� 
 �M0�n,p�

�13.13�

and

��n,p� � Ext-�
n�1

�
�n 
 ��n�n,p�
� 
 �M0�n,p�

�

Ext-�
n�1

�
�n 
 ��n�n,p�

� 
 �M0�n,p�

�13.14�

From the Eq.(13.12) and Eq.(13.13)-Eq.(13.14) we get

	�n,p� � ��n,p� � 0. �13.15�

Note that

��n�n,p� �
n��g�n�� ��a�n��p�1

�p � 1�!
, �13.16�

n � 1,2, . . . ,k � �,n,p ����,see Appendix,Eq.(29). From Eq.(13.14) and (13.16) one
obtains



|��n,p�| �
Ext-�

n�1

�
�n 
 ��n�n,p�

� 
 �M0�n,p�
�

�
n��g�n�� ��a�n��p�1

�p � 1�!

Ext-�
n�1

�
�n

� 
 �M0�n,p�
.

�13.17�

Let p be a hyperfinite prime integer p � ��\� defined by countable sequence

p � �p0,p1, . . . ,pn, . . .�, �13.18�

where any pn � � is a prime integer such that pn � rn.Notice we willing to choose
a sequence �pn�n�� such that any inequality pn � rn,n � � is decidable, i.e.

�n�Val�pn � rn� � ��, �13.19�

since the sequence �rn�n�� is recursive.
We willing to choose now hyperfinite prime integer p in Eq.(13.13) p � �p���\� such

that
�p� max�|�0|,n. � �13.20�

From the Appendix Eq.(27) it follows
�p � ��M0�n,�p��. �13.21�

From the inequality (13.20) and (13.21) it follows
�p � ��M0�n,�p�� 
 �0. �13.22�

From the Appendix A, Eq.(28) one obtains
�p � ��Mn�n,�p��,n � 1,2, . . . . �13.23�

From (13.22)-(13.23) we get the inequality

�0 
 �M0�n,�p� � Ext-�
n�0

�
�n 
 �Mn�n,�p� � 1 �13.24�

and therefore from Eq.(13.13) we get

|	�n,�p�| � 1
|� 
 �M0�n,�p� |

. �13.25�

We willing to choose now hyperfinite prime integer �p in Eq.(13.16) such that in
additional the inequality is satisfied

n��g�n�� ��a�n��
�p�1 Ext-�

n�1

�
�n

��p � 1�!
� 1. �13.26�

From Eq.(13.17) and the inequality (13.26) we get

|��n,�p�| �
Ext-�

n�1

�
�n 
 ��n�n,�p�

� 
 �M0�n,�p�
� 1

|� 
 �M0�n,�p� |
. �13.27�

From the inequalities (13.25) and (13.27) finally we get the inequality

	�n,�p� � ��n,�p� � 0. �13.28�

But the inequality (13.28) contradicts with Eq.(13.15).This contradiction completed the
proof.

14.Generalized Lindemann-Weierstrass theorem.



Theorem 14.1.Let fl�z�, l � 1,2, . . . ,be a polynomials with coefficients in �.Assume
that

for any l � � algebraic numbers over the field � : 
1,l, . . . ,
kl,l, k l � 1,l � 1,2, . . . form a
complete set of the roots of fl�z� such that

fl�z� � ��z�, degfl�z� � k l, l � 1,2, . . . �14.1�

and al � �,a0 � 0,l � 1,2, . . . , . We assume now that

�
l�1

�

|al |�
k�1

kl

|e
k,l | � �. �14.2�

Then

a0 ��
l�1

�

al �
k�1

kl

e
k,l � 0. �14.3�

Note that from assumption above by Robinson transfer it follows that algebraic
numbers

�
1,l, . . . ,�
kl,l, k l � 1,l � 1,2, . . . ,over field �� for any l � 1,2, . . . , form a complete set
of

the roots of �fl�z� such that
�fl�z� � �

��z�, deg��fl�z�� � k l, l � 1,2, . . . . �14.4�

Assumption 14.1. We assume now that there exists an recursive sequence

ăl �
ql
ml

� �, l � 1,2, . . . ;r � 1,2, . . . �14.5�

and rational number

ă0 �
q0
m0

� �, �14.6�

such that

�
l�1

�

|ăl |�
k�1

kl

|e
k,l | � �. �14.7�

and

ă0 ��
l�1

�

ăl �
k�1

kl

e
k,l � 0. �14.8�

Assumption 14.2. We assume now that the all roots �
1,l, . . . ,�
kl,l,k l � 1,l � 1,2, . . .of
�fl�z� are real.
From Eq.(14.8) by Theorem 12.7 one obtains the equality

�ă0 � �
l�1

�
�ăl �

k�1

kl

�e
�
k,l � 0, �14.9�

where we abbreviate

�
l�1

�
�ăl �

k�1

kl

�e
�
k,l � st- lim m�� �

l�1

m
�ăn �

k�1

kl

�e
�
k,l .

Note that from Eq.(14.9) by Theorem 12.9 one obtains the equality



�ă0 � Ext-�
l�1

�
�ăl �

k�1

kl

�e
�
k,l

/�

� 0. �14.10�

Theorem 14.1.The equality (14.10) is inconsistent.
Proof.Let us considered hypernatural number � � ��� defined by countable sequence

� � �m0,m0 
 m1, . . . ,m0 
 m1 
. . .
mn, . . .� � �r0,r1, . . . ,rn, . . .� �14.11�

where rn � m0 
 m1 
. . .
mn.From Eq.(14.10) and Eq.(14.11) one obtains

��ă0

�
� �

�

 Ext-�

l�1

�
�ăl �

k�1

kl

�e
�
k,l �

� �0

�
�

Ext-�
l�1

�

�l �
k�1

kl

�e
�
k,l

�
� 0,

�14.12�

where

�0 � �ă0 �
�q0
m0

,�l � �ăl �
�ql
ml

. �14.13�

Note that

�e
�
k,l �

�Mk,l�N,p� � ��k,l�N,p�
�M0�N,p�

, �14.14�

where k � 1, . . . ,�k l, l � 1, . . . ,r,see Apendix C,Eq.(15).From Eq.(14.12) and Eq.(14.14)
we get

�0

�
�

Ext-�
l�1

�
�l �

k�1

kl �Mk,l�N,p� � ��k,l�N,p�

��M0�N,p�
�

�0
�M0�N,p�

��M0�N,p�
�

Ext-�
l�1

�
�l �

k�1

kl �Mk,l�N,p�

��M0�N,p�
�

�
Ext-�

l�1

�
�l �

k�1

kl ��k,l�N,p�

��M0�N,p�
�

�0
�M0�N,p� � Ext-�

l�1

�
�l �

k�1

kl �Mk,l�N,p�

��M0�N,p�
�

�
Ext-�

l�1

�
�l �

k�1

kl ��k,l�N,p�

��M0�N,p�
� 0

�14.15�

We abbreviate now

	�N,p� �
�0

�M0�N,p� � Ext-�
l�1

�
�l �

k�1

kl �Mk,l�N,p�

��M0�N,p�
�14.16�

and

��N,p� �
Ext-�

l�1

�
�l �

k�1

kl ��k,l�N,p�

��M0�N,p�
. �14.17�

From Eq.(14.15) and Eq.(14.16)-Eq.(14.17) we get



	�N,p� � ��N,p� � 0. �14.18�

Note that

|��k,l�N,p�| ��
��g0�r����gp�1�r��

�p � 1�!
, �14.19�

where k � 1, . . . ,�k l, l � 1, . . . ,r,N,p ����,see Appendix C,Eq.(12). From Eq.(14.17)
and

(14.19) one obtains

|��N,p�| �
Ext-�

l�1

�
�l �

k�1

kl ��k,l�N,p�

��M0�N,p�
�

Ext-�
l�1

�
�l��g0�r����gp�1�r��

�p � 1�!
�14.20�

Note that ���� � ��� ��� � 0�, there exists p � p���

��g0�r����gp�1�r��
�p � 1�!

� �. �14.21�

We will choose now infinite prime integer p in Eq.(3.56) p � �p���\� such that
�p � max�|a0|,bN, |b0|,�0�. �14.22�

Hence from the Appendix C, Eq.(8) it follows
�p � M0�N,�p�. �14.23�

From (14.22) and (14.23) one obtains:
�p � M0�N,�p,r� 
 �0. �14.24�

From the Appendix C, Eq.(10) it follows
�p � Mk,l�N,�p�,k, l � 1,2, . . . . �14.25�

From (14.24)-(14.25) we get the inequality

�0
�M0�N,p� � Ext-�

l�1

�
�l �

k�1

kl �Mk,l�N,p� � 1 �14.26�

and therefore from Eq.(14.16) we get

|	�n,�p�| � 1
|� 
 �M0�n,�p� |

. �14.27�

We willing to choose now hyperfinite prime integer �p in Eq.(14.18) such that in
additional the inequality is satisfied

|��N,p�| � 1
|� 
 �M0�n,�p� |

. �14.28�

From the inequalities (14.27) and (14.28) finally we get the inequality

	�n,�p� � ��n,�p� � 0. �14.29�

But the inequality (14.29) contradicts with Eq.(14.18).This contradiction completed the
proof.

Conclusion
In this paper intuitionistic set theory INC�#

# in infinitary set theoretical language is
considered. External induction principle in nonstandard intuitionistic arithmetic were
derived. Non trivial application in number theory is considered. Main results are:
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number ee is transcendental; (ii) the both numbers e � � and e � � are irrational [16].
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Appendix A.The basic definitions of the Shidlovsky
quantities

In this apendix we remind the basic definitions of the Shidlovsky quantities [15].Let
M0�n,p�,Mk�n,p� and �k�n,p� be the Shidlovsky quantities:

M0�n,p� � �
0

��
xp�1��x � 1�. . .�x � n��pe�x

�p � 1�!
dx � 0, �1�

Mk�n,p� � ek �
k

��
xp�1��x � 1�. . .�x � n��pe�x

�p � 1�!
dx,k � 1,2, . . . �2�

�k�n,p� � ek �
0

k
xp�1��x � 1�. . .�x � n��pe�x

�p � 1�!
dx,k � 1,2, . . . �3�

where p � � this is any prime number.Using Eqs.(1)-(3) by simple calculation one
obtains:

Mk�n,p� � �k�n,p� � ekM0�n,p� � 0,k � 1,2, . . . . �4�

and consequently

ek �
Mk�n,p� � �k�n,p�

M0�n,p�

k � 1,2, . . .
�5�

Lemma 3.1.[15]. Let p be a prime number. Then M0�n,p� � ��1�n�n!�p � p�1,�1 � �.
Proof. ([15], p.128) By simple calculation one obtains the equality

xp�1��x � 1�. . .�x � n��p � ��1�n�n!�pxp�1 � �
��p�1

�n�1�
p

c��1x��1,

c� � �,� � p,p � 1, . . . ,��n � 1� 
 p� � 1,n � 0,

�6�

where p is a prime. By using equality ���� � �
0

�
x��1e�xdx � �� � 1�!, where � � �, from

Eq.(1) and Eq.(6) one obtains

M0�n,p� � ��1�n�n!�p ��p�
�p � 1�!

� �
��p�1

�n�1�
p

c��1
����

�p � 1�!
�

� ��1�n�n!�p � cpp � cp�1p�p � 1� �. . .�

� ��1�n�n!�p � p 
 �1,�1 � �.

�7�

Thus

M0�n,p� � ��1�n�n!�p � p � �1�n,p�,�1�n,p� � �. �8�
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Lemma 3.2.[15]. Let p be a prime number. Then Mk�n,p� � p � �2�n,p�, �2�n,p� � �,
k � 1,2, . . . ,n .

Proof.([15], p.128) By subsitution x � k � u 
 dx � du from Eq.(3.3) one obtains

Mk�n,p� � �
0

��
�u � k�p�1��u � k � 1� 
. . .
u 
. . .
�u � k � n��pe�u

�p � 1�!
du

k � 1,2, . . .

�9�

By using equality

�u � k�p�1��u � k � 1� 
. . .
u 
. . .
�u � k � n��p � �
��p�1

�n�1�
p

d��1u��1,

d� � �,� � p,p � 1, . . . ,��n � 1� 
 p� � 1,

�10�

and by subsitution Eq.(3.10) into RHS of the Eq.(3.9) one obtains

Mk�n,p� � 1
�p � 1�!

�
0

��

�
��p�1

�n�1�
p

d��1u��1du � p � �2�n,p�,

�2�n,p� � �,k � 1,2, . . . .

�11�

Lemma 1.3.[15]. (i) There exists sequences a�n�,n � � and g�n�,n � � such that

|�k�n,p�| � n � g�n� � �a�n��p�1

�p � 1�!
,

�12�

where sequences a�n�,n � � and g�n�,n � � does not depend on number p. (ii) For any
n � � : �k�n,p� � 0 if p � �.

Proof.([15], p.129) Obviously there exists sequences a�n�,n � � and g�n�,k � �,n � �
such that a�n�,n � � and g�n�,n � � does not depend on number p

|x�x � 1�. . .�x � n�| � a�n�, 0 � x � n �13�

and

|�x � 1�. . .�x � n�e�x�k | � g�n�, 0 � x � n,k � 1,2, . . . ,n. �14�

Substitution inequalities (13)-(14) into RHS of the Eq.(3) by simple calculation gives

�k�n,p� � g�n�
�a�n��p�1

�p � 1�!
�
0

k

dx � n � g�n� � �a�n��p�1

�p � 1�!
. �15�

Statement (i) follows from (15). Statement (ii) immediately follows from a statement (ii).
Lemma 1.4.[15]. For any k � n and for any � such that 0 � � � 1 there exists p � �

such that

ek � Mk�n,p�
M0�n,p�

� �. �16�

Proof.From Eq.(1.5) one obtains



ek � Mk�n,p�
M0�n,p�

�
|�k�n,p�|
M0�n,p�

. �17�

From Eq.(17) by using Lemma 1.3.(ii) one obtains (3.17).
Remark 1.1.We remind now the proof of the transcendence of e following Shidlovsky

proof is given in his book [8].
Theorem 1.1. The number e is transcendental.
Proof.([8], pp.126-129) Suppose now that e is an algebraic number; then it satisfies

some relation of the form

a0 ��
k�1

n

akek � 0, �18�

where a0,a1, . . . ,an � � integers and where a0 � 0.Having substituted RHS of the
Eq.(3.5) into Eq.(18) one obtains

a0 ��
k�1

n

ak
Mk�n,p� � �k�n,p�

M0�n,p�
� a0 ��

k�1

n

ak
Mk�n,p�
M0�n,p�

��
k�1

n

ak
�k�n,p�
M0�n,p�

� 0. �19�

From Eq.(19) one obtains

a0M0�n,p� ��
k�1

n

akMk�n,p� ��
k�1

n

ak�k�n,p� � 0. �20�

We rewrite the Eq.(20) for short in the form

a0M0�n,p� ��
k�1

n

akMk�n,p� ��
k�1

n

ak�k�n,p� �

� a0M0�n,p� � ��n,p� ��
k�1

n

ak�k�n,p� � 0,

��n,p� � �
k�1

n

akMk�n,p�.

�21�

We choose now the integers M1�n,p�,M2�n,p�, . . . ,Mn�n,p� such that:

p|M1�n,p�,p|M2�n,p�, . . . ,p|Mn�n,p�

where p � |a0|
�22�

and p � M0�n,p�. Note that p| ��n,p�.Thus one obtains

p � a0M0�n,p� � ��n,p� �23�

and therefore

a0M0�n,p� � ��n,p� � �, �24�

where a0M0�n,p� � ��n,p� � 0. By using Lemma 3.4 for any � such that 0 � � � 1 we
can choose a prime number p � p��� such that:

�
k�1

n

ak�k�n,p� � ��
k�1

n

|ak | � � � 1. �25�

From (25) and Eq.(21) we obtain

a0M0�n,p� � ��n,p� � � � 0. �26�



From (26) and Eq.(24) one obtains the contradiction.This contradiction finalized the
proof.

The Robinson transfer of the Shidlovsky quantities
M0�n,p�,Mk�n,p�,�k�n,p�

In this subsection we will replace using Robinson transfer [5], the Shidlovsky quantities
M0�n,p�,Mk�n,p�,�k�n,p� by corresponding nonstandard quantities �M0�n,p�, �Mk�n,p�,
��k�n,p�.The properties of the nonstandard quantities �M0�n,p�, �Mk�n,p�, ��k�n,p� one
obtains directly from the properties of the standard quantities M0�n,p�,Mk�n,p�,�k�n,p�
using Robinson transfer[4],[5].

1.Using Robinson transfer principle [4],[5] from Eq.(8) one obtains directly

�M0�n,p� � ��1�n�n!�p � p 

�
�1�n,p�,

��1�n,p� �� �� � �
�/�,n,p ����.

�� � �
�\�.

�27�

From Eq.(11) using Robinson transfer principle one obtains �k�k � �� :

�Mk�n,p� � p 

�
�2�n,p� ,

��2�n,p� � �
��,k � 1,2, . . . ,k � �,n,p ����.

�28�

Using Robinson transfer principle from inequality (3.15) one obtains �k�k � �� :

��k�n,p� �
n � ��g�n�� � ��a�n��p�1

�p � 1�!
,

k � 1,2, . . . ,k � �,n,p ����.

�29�

Using Robinson transfer principle, from Eq.(3.5) one obtains �k�k � �� :

�
�ek� � ��e�k �

�Mk�n,p�
�M0�n,p�

�
��k�n,p�
�M0�n,p�

,

k � 1,2, . . . ,k � �,n,p ����.
�30�

Lemma 5. Let n � ���, then for any k � � and for any � � 0,� � �
�� there exists

p � ��� such that

�ek �
�Mk�n,p�
�M0�n,p�

� �. �31�

Proof. From Eq.(30) we obtain �k�k � �� :

�
ek �

�Mk�n,p�
�M0�n,p�

�
|��k�n,p�|

|�M0�n,p�|
,

k � �,n,p ����.

�32�

Appendix B.Generalized Shidlovsky quantities
In this apendix we remind the basic definitions of the Shidlovsky quantities,see [15]
p.132-134.
Theorem 1.[15] Let fl�z�, l � 1,2, . . . ,r be a polynomials with coefficients in �.Assume
that for any l � 1,2, . . . ,r algebraic numbers over the field � : 
1,l, . . . ,
kl,l,



k l � 1,l � 1,2, . . . ,r form a complete set of the roots of fl�z� such that

fl�z� � ��z�, degfl�z� � k l, l � 1,2, . . . ,r �1�

and al � �, l � 1,2, . . . ,r,a0 � 0.We assume now that

�
l�1

�

|al |�
k�1

kl

|e
k,l | � �. �2�

Then

a0 ��
l�1

r

al �
k�1

kl

e
k,l � 0. �3�

Let M0�Nr,p�,Mk,l�Nr,p� and �k,l�Nr,p� be the quantities

M0�Nr,p� � �
0

��
bNr

�Nr�1�p�1zp�1fr
p�z�e�zdz

�p � 1�!
, �4�

where in (4) we integrate in complex plane � along line �0,���,see Pic.1.

Mk,l�Nr,p� � e
k,l �

k,l

��
bNr

�Nr�1�p�1zp�1fr
p�z�e�zdz

�p � 1�!
, �5�

where k � 1, . . . ,k l and where in (5) we integrate in complex plane � along line with initial
point 
k,l � � and which are parallel to real axis of the complex plane �,see Pic.1.

�k,l�Nr,p� � e
k,l �
0


k,l

bNr

�Nr�1�p�1zp�1fr
p�z�e�zdz

�p � 1�!
, �6�

where k � 1, . . . ,k l and where in (6) we integrate in complex plane � along contour
�0,
k,l �, see Pic.1.

Pic.1.Contour �0,
k,l � in complex

plane �.

From Eq.(3) one obtains

bNr

�Nr�1�p�1zp�1fr
p�z� � bNr

�Nr�1�p�1b0
pzp�1 � �

s�p�1

�Nr�1�p

cs�1zs�1, �7�

where bNr b0 � 0,cs � �,s � p, . . . ,�Nr � 1�p � 1.Now from Eq.(4) and Eq.(7) using formula



��s� � �
0

�
xs�1e�xdx � �s � 1�!, s � �

one obtains

M0�Nr,p� �
bNr

�Nr�1�p�1b0
p

�p � 1�!
�
0

��

zp�1e�zdz � �
s�p�1

�Nr�1�p
cs�1

�p � 1�!
�
0

��

zs�1e�zdz �

bNr

�Nr�1�p�1b0
p � �

s�p�1

�Nr�1�p
�s � 1�!
�p � 1�!

cs�1 � bNr

�Nr�1�p�1b0
p � pC,

�8�

where bNr b0 � 0,C � �.We choose now a prime p such that p � max�|a0|,bNr , |b0|�.Then
from Eq.(4.8) follows that

p � a0M0�Nr,p�. �9�

From Eq.(4.3) and Eq.(4.5) one obtains

Mk,l�Nr,p� � e
k,l

�p � 1�!
�

k,l

��

bNr

Nrp�1zp�1zp�1 �
j�1

r

�
i�1

kj

�z � 
i,j�
p e�z�
k,ldz, �10�

where k � 1, . . . ,k l, l � 1, . . . ,r.By change of the variable integration z � u � 
k,l in RHS of
the Eq.(10) we obtain

Mk,l�Nr,p� � 1
�p � 1�!

�
0

��

bNr

Nrp�1�u � 
k,l�p�1upe�u �
j�1
j�l

r

�
i�1
i�k

kj

�z � 
k,l � 
i,j�
p du, �11�

where k � 1, . . . ,k l, l � 1, . . . ,r.Let us rewrite now Eq.(11) in the following form

Mk,l�Nr,p� �

1
�p � 1�!

�
0

��

�bNr u � bNr
k,l�p�1upe�u �
j�1
j�l

r

�
r i�1
i�k

kj

�bNr u � bNr
k,l � bNr
i,j�
p du

�12�

Let �A be a ring of the all algebraic integers. Note that [8]

�i,j � bNr
i,j � �A, i � 1, . . . ,k j, j � 1, . . . ,r. �13�

Let us rewrite now Eq.(12) in the following form

Mk,l�Nr,p� � 1
�p � 1�!

�
0

��

�bNr u � �k,l�p�1upe�u �
j�1
j�l

r

�
i�1
i�k

kj

�bNr u � �k,l � �i,j�
pdu �14�

where k � 1, . . . ,k l, l � 1, . . . ,r.From Eq.(14) one obtains



�
l�1

r

al �
k�1

kl

Mk,l�Nr,p� � �
0

�
upe�u
r�u�
�p � 1�!

du,


r�u� � �
l�1

r

al �
k�1

kl

�bNr u � �k,l�p�1upe�u �
j�1
j�l

r

�
i�1
i�k

kj

�bNr u � �k,l � �i,j�
p

�15�

The polynomial 
r�u� is a symmetric polynomial on any system 	l of variables
�1,l,�2,l, . . . ,�kl,l, where

	l � ��1,l,�2,l, . . . ,�kl,l�, l � 1, . . . ,r.

�1,l,�2,l, . . . ,�kl,l � �A, l � 1, . . . ,r.
�16�

It well known that 
r�u� � ��u� (see [8] p.134) and therefore

up
r�u� � �
s�p�1

�Nr�1�p

cs�1us�1,cs � �. �17�

From Eq.(15) and Eq.(17) one obtains

�
l�1

r

al �
k�1

kl

Mk,l�Nr,p� � �
0

�
upe�u
r�u�
�p � 1�!

du �

�
s�p�1

�Nr�1�p
cs�1

�p � 1�!
�
0

�

us�1e�udu � �
s�p�1

�Nr�1�p

cs�1
�s � 1�!
�p � 1�!

� pC,C � �.

�18�

Therefore

��Nr,p� � �
l�1

r

al �
k�1

kl

Mk,l�Nr,p� � �,

p|��Nr,p�.

�19�

Let OR � � be a circle wth the centre at point �0,0�.We assume now that
�k�l�
k,l � OR�. We will designate now

gk,l�r� �
|z|�R
max |bNr

�1fr�z�e�z�
k,l |,

g0�r� �
1�k�kl,1�l�r

max g k,l�r�,g�r� �
|z|�R
max |bNr

�1zfr�z�|.
�20�

From Eq.(6) and Eq.(20) one obtains

|�k,l�Nr,p�| � �
0


k,l

bNr

�Nr�1�p�1zp�1fr
p�z�e�z�
k,ldz

�p � 1�!
�

1
�p � 1�!

�
0


k,l

|bNr
�1f�z�e�z�
k,l |�|bNr

�1zfr�z�|�
p�1dz � g0�r�gp�1�r�|
k,l |

�p � 1�!
� g0�r�gp�1�r�R

�p � 1�!
,

�21�

where k � 1, . . . ,k l, l � 1, . . . ,r.Note that



g0�r�gp�1�r�R
�p � 1�!

� 0 if p � �. �22�

From (4.22) follows that for any � � �0,�� there exists a prime number p such that

�
l�1

r

al �
k�1

kl

�k,l�Nr,p� � ��p� � 1. �23�

where k � 1, . . . ,k l, l � 1, . . . ,r.From Eq.(4)-Eq.(6) follows

e
k,l �
Mk,l�Nr,p� � �k,l�Nr,p�

M0�Nr,p�
�24�

where k � 1, . . . ,k l, l � 1, . . . ,r. Assume now that

a0 ��
l�1

r

al �
k�1

kl

e
k,l � 0. �25�

Having substituted RHS of the Eq.(24) into Eq.(25) one obtains

a0 ��
l�1

r

al �
k�1

kl
Mk,l�Nr,p� � �k,l�Nr,p�

M0�N,p�
�

a0 ��
l�1

r

al �
k�1

kl
Mk,l�Nr,p�
M0�Nr,p�

��
l�1

r

al �
k�1

kl �k,l�Nr,p�
M0�Nr,p�

� 0.

�26�

From Eq.(26) by using Eq.(19) one obtains

a0 � ��Nr,p� ��
l�1

r

al �
k�1

kl

�k,l�Nr,p� � 0. �27�

We choose now a prime p � � such that p � max�|a0|, |b0|, |bNr |� and ��p� � 1. Note that
p|��Nr,p� and therefore from Eq.(19) and Eq.(27) one obtains the contradiction. This
contradiction completed the proof.

Appendix.C.The Robinson transfer of the Shidlovsky
quantities

Let f�z� � fr�z� � ���z�,z � ��, l � 1,2, . . . ,r,r ���� be a nonstandard polynomial such
that

f�z� � fr�z� � �
l�1

r

fl�z� � b0 � b1z �. . .�bNzN �

� bN �
l�1

r

�
k�1

�kl

�z � ��
k,l��,b0 � 0,bN � 0,

N � Nr � �l�1
r ��k l� ����.

�4�

Let �M0�N,p�, �Mk,l�N,p� and ��k,l�N,p� be the quantities:



�M0�N,p� � �
0

� � �
bN
�N�1�p�1zp�1f p�z���e�z �dz

�p � 1�!
,

N,p � �
��,

�5�

where in (5) we integrate in nonstandard complex plaine �� along line ��0,���,see Pic.1.

�Mk,l�N,p� � ��e
�
k,l � �

�
k,l

�����
bN
�N�1�p�1zp�1f p�z���e�z �dz

�p � 1�!
,

N,p � �
��,

�6�

where k � 1, . . . ,�k l and where in (5.6) we integrate in nonstandard complex plain ��

along line with initial point �
k,l � �� and which are parallel to real axis of the complex
plane ��,see Pic.1.

��k,l�N,p� � ��e
�
k,l � �

0

�
k,l

bN
�N�1�p�1zp�1f p�z���e�z �dz

�p � 1�!
,

N,p � �
��,

�7�

where k � 1, . . . ,�k l and where in (5.7) we integrate in nonstandard complex plain ��
along contour ��0,�
k,l �.

1.Using Robinson transfer principle [4],[5],[6] from Eq.(5) and Eq.(8) one obtains
directly

�M0�N,p� � bN
�N�1�p�1b0

p � pC, �8�

where bNb0 � 0,C � ���.We choose now infinite prime p � ��� such that

p � max�|a0|,bN, |b0|�. �9�

2.Using Robinson transfer principle from Eq.(6) and Eq.(19) one obtains directly

�r�r � �� :

���N,p,r� � �
l�1

r

��al��
k�1

kl

�Mk,l�N,p� � pCr � �
��.

�10�

and therefore

�r�r � ���p|���N,p,r� �. �11�

3.Using Robinson transfer principle from Eq.(7) and Eq.(21) one obtains directly



|��k,l�N,p�| � ��e
�
k,l � �

0

�
k,l

bN
�N�1�p�1zp�1f p�z���e�z �dz

�p � 1�!
�

1
�p � 1�!

�
0

�
k,l

|bN
�1f�z���e�z���
k,l ��|�|bNr

�1zf�z�|�p�1dz �
��g0�r����gp�1�r��|�
k,l |

�p � 1�!

�
��g0�r����gp�1�r��

�p � 1�!
,

�12�

where k � 1, . . . ,�k l, l � 1, . . . ,r.Note that ���� �� ���� � 0�, there exists p � p���

��g0�r����gp�1�r��
�p � 1�!

� �. �13�

4. From (13) follows that for any � � �0,�� there exists an infinite prime p � ��� such
that �r�r � �� :

�
l�1

r

��al��
k�1

kl

���k,l�N,p�� � ��p� � 1 �14�

where k � 1, . . . ,�k l, l � 1, . . . ,r. .
5. From Eq.(5)-Eq.(7) we obtain

�e
�
k,l �

�Mk,l�N,p� � ���k,l�N,p��
�M0�N,p�

, �15�

where k � 1, . . . ,�k l, l � 1, . . . ,r.
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