On $6 \mathrm{k} \pm 1$ Primes in Goldbach Strong Conjecture

Marcin Barylski (marcin.a.barylski@gmail.com)
Published: February 18, 2018
The last update: September 3, 2019

Abstract

Goldbach strong conjecture, still unsolved, states that all even integers $n>2$ can be expressed as the sum of two prime numbers (Goldbach partitions of n). Each prime $p>3$ can be expressed as $6 k \pm 1$. This work is devoted to studies of $6 k \pm 1$ primes in Goldbach partitions and enhanced Goldbach strong conjecture with the lesser of twin primes of form $6 k-1$ used as a baseline.

1 Introduction

Goldbach strong conjecture (GSC, also called binary) asserts that all positive even integer $n \geq 4$ can be expressed as the sum of two prime numbers. This hypothesis, formulated by Goldbach in 1742 in letter to Euler [1] and then updated by Euler to the form above is one of the oldest and still unsolved problems in number theory. Empirical verification showed that it is true for all $n \leq 4 \times 10^{18}$ [2] [3].

The expression of a given positive even number n as a sum of two primes p_{1} and p_{2} is called a Goldbach Partition $(G P)$ of n. Let's denote this relation as $G S C\left(n, p_{1}, p_{2}\right)$. Then Goldbach strong conjecture can be written as (1):

$$
\begin{equation*}
\forall_{x>1, x \in \mathbb{N}} \underset{p_{1}, p_{2} \in \mathbb{P}}{\exists} G S C\left(2 x, p_{1}, p_{2}\right) \tag{1}
\end{equation*}
$$

$26 \mathrm{k} \pm 1$ primes in GSC

Every prime $p>3$ can be written as $6 k \pm 1$, where $k \in \mathbb{N}$ (lemma proved in [4]). There are exactly two primes that are not of form $6 k \pm 1: 2$ and 3. Prime 2 is present in one partition only: $\operatorname{GSC}(4,2,2)$, while prime $p=3$ plays much important role in $G S C$ - it is the most frequent prime in the partitions for even $n<10^{6}[4]$.

Let's exclude both primes 2 and 3 from a set of primes used to fulfill $G S C$. All remaining primes are of form $6 k \pm 1$. It would not be possible to build neither 4 nor 6 nor 8 from a sum of two such primes (because these numbers always have $G P$ with either 2 or 3 : $\operatorname{GSC}(4,2,2), \operatorname{GSC}(6,3,3)$, $\operatorname{GSC}(8,3,5), G S C(8,5,3))$, but situation is changing for bigger even numbers. Let $R(n)$ be a set of GPs of n, while $R_{6 k \pm 1}(n)$ a set of $G P s$ of n but without using primes 2 and 3 in any $G P$. As shown above: $R_{6 k \pm 1}(4)=\emptyset, R_{6 k \pm 1}(6)=$ $\emptyset, R_{6 k \pm 1}(8)=\emptyset$.

Lemma 1. $0 \leq|R(n)|-\left|R_{6 k \pm 1}(n)\right| \leq 1$
Proof. There are exactly two primes 2 and 3 that are not of form $6 k \pm 1$, where $k \in \mathbb{N}$. Let's analyze two cases: $n=4$ and $n>4$. For first case we have: $R(4)=(2,2)$, $R_{6 k \pm 1}(4)=\emptyset$, thus $|R(4)|-\left|R_{6 k \pm 1}(4)\right|=1$ which fulfills
the lemma. 2 is not a part of any other $G P$. Let's take a look at even $n>4$. There are n for which 3 is present in $G P$ (i.e. $R(22)=(3,19),(5,17),(11,11), R_{6 k \pm 1}(22)=$ $(5,17),(11,11)$) or missing (i.e. $R(24)=R_{6 k \pm 1}(24)=$ $(5,19),(7,17),(11,13) . \quad 3$ can exist in at least one $G P$ for $n>4$ because in $\operatorname{GSC}\left(n, 3, p_{1}\right)$ we have just one way to express p_{1} : $p_{1}=n-3$. Thus for $n>4$ we have that $|R(n)|-\left|R_{6 k \pm 1}(n)\right|$ is either 0 or 1 , and this fulfills the remaining part of the lemma.

Let $R_{6 k+1}(n)$ be a set of GPs of n that both factors are primes of form $6 k+1$, and $R_{6 k-1}(n)$ be a set of GPs of n that both factors are primes of form $6 k-1$. By definition $R_{6 k+1}(n) \subseteq R_{6 k \pm 1}(n)$ and $R_{6 k-1}(n) \subseteq R_{6 k \pm 1}(n)$.

Lemma 2.

$$
\begin{equation*}
\forall_{n \in \mathbb{N}}\left|R_{6 k-1}(6 n)\right|=\left|R_{6 k+1}(6 n)\right|=0 \tag{2}
\end{equation*}
$$

Proof. Every number of form $6 n, n \in \mathbb{N}$, is divisible by both 2 and 3 . Let's assume that p_{1} is of form $6 k_{1}-1$ and p_{2} is of form $6 k_{2}-1\left(k_{1}, k_{2} \in \mathbb{N}\right)$. Then $s=p_{1}+p_{2}=$ $6 k_{1}-1+6 k_{2}-1=6\left(k_{1}+k_{2}\right)-2=2\left(3 k_{1}+3 k_{2}-1\right) . s$ is divisible by 2 but is not divisible by 3 because 3 does not divide $3 k_{1}+3 k_{2}-1$. Similar reasoning can be done for a case when both p_{1} and p_{2} are of form $6 k+1$. This means that $6 n$ cannot be built from a sum of neither two primes of form $6 k-1$ nor $6 k+1$.

3 GSC broken down into three

Original GSC does not say anything particular about primes. Let's take a look at even numbers $n>8$. Each such number can be expressed as either $3 x$ or $3 x+1$ or $3 x+2$, where $x \in \mathbb{N}$. Calculations run for small n show that original $G S C$ can be extended to a form (3):

$$
\forall_{m>4, m \in \mathbb{N}} \begin{cases}G S C\left(2 m, p_{6 k-1}, p_{6 k+1}\right) & \text { if } m \bmod 3=0 \tag{3}\\ G S C\left(2 m, p_{6 k+1}, p_{6 k+1}\right) & \text { if } m \bmod 3=1 \\ G S C\left(2 m, p_{6 k-1}, p_{6 k-1}\right) & \text { if } m \bmod 3=2\end{cases}
$$

where $p_{6 k-1}$ is a prime of form $6 a-1$ [5] and $p_{6 k+1}$ is a prime of form $6 b+1[6](a, b \in \mathbb{N})$. Conjecture (3) uses limited set of prime numbers in $G S C$ - primes 2 and 3 are excluded.

Every twin prime pair different than $(3,5)$ is of form $(6 k-1,6 k+1)$, where $k \in \mathbb{N}[4]$. This gives a hint that yet stronger version of conjecture (3) is potentially possible. If we assume that k is the same in all three conditions for the same n, and both $p_{6 k-1}$ are the lesser of twin primes $\left(\mathbb{P}_{\mathbb{L T}}\right)$, then we can articulate the following hypothesis (4):

$$
\begin{equation*}
\frac{\exists}{A \in \mathbb{N}} \underset{n>A, n \in \mathbb{N} p_{1}, p_{2} \in \mathbb{P}_{\mathbb{L T}}}{\forall} G S C\left(6 n-2, p_{1}, p_{2}\right) \tag{4}
\end{equation*}
$$

where A is a constant to be provided.
Lemma 3. If conjecture (4) is true, then we have a method to proof or invalidate GSC.

Proof. If both p_{1} and p_{2} in $G S C\left(6 n-2, p_{1}, p_{2}\right)$ are the lesser of twin primes, then we have $G S C\left(6 n, p_{1}+2, p_{2}\right)$ and $G S C\left(6 n+2, p_{1}+2, p_{2}+2\right)$. This is true because both $p_{1}+2$ and $p_{2}+2$ are the greater of twin primes. $G S C$ is formulated for even numbers >2. If $n \in \mathbb{N}$, then numbers $6 n-2,6 n$ and $6 n+2$ can build every even number >2. Conjecture (4) starts from point $A+1$. If A is finite, then we have a finite number of additional cases $(\leq A)$ to verify against $G S C$.

4 Results of experiments

Experiments were focused, firstly, on confirmation of conjecture (3) for bigger even numbers, secondly, on search for value of A in conjecture (4), and thirdly, on looking for possible patterns between $R_{6 k \pm 1}(n)$ and $R(n)$, and inside $R_{6 k \pm 1}(n)$.

Figure 1: $R_{6 k \pm 1}(n)\left(4<n<2 \times 10^{6}, n=2 k, k \in \mathbb{N}\right)$
Conjecture (3) was confimed for $4 \leq m \leq 2 \times 10^{6}$ - this means that all even numbers n that $8<n<4 \times 10^{6}$ have (3) fulfilled. Figure 1 depicts number of $G P s$ of even $n>4$ built from primes $p>3$. There is only one non- $6 k \pm 1$-like prime which can be a member of such partition, 3 , but for s given n it can be present in one GP only (Lemma 1). This means that Figure 1 is very close to shape of original Goldbach's comet.

Calculations run for $1 \leq n \leq 4 \times 10^{6}$ confirmed that there are only 12 known cases when even number of form $6 n-2>2$ is not a sum of two the lesser of twin primes: 4 , $94,400,514,784,904,1114,1144,1264,1354,3244,4204$. This sequence was submitted to OEIS database as OEIS A321221 [7]. A in conjecture (4) is taken from last term: if $6 n-2=4204$, then $n=701$, thus $A=701$. A321221 is a subset of sequence A007534 [9] described in [10]. 701 is also the last term of related sequence [8].

Figure 2 illustrates number of $G P s$ of $n(4 \bmod 6)$ with two primes that are the lesser of twin primes. Let $R_{L T P}(n)$

Figure 2: Number of GPs for n with both primes that are the lesser of twin primes, with average values $\left(n=4 \bmod 6,2<n<4 \times 10^{5}, n=2 k, k \in \mathbb{N}\right)$

Figure 3: Ratio of $\left|R_{L T P}(n)\right|$ to $|R(n)|$, with average values $\left(n=4 \bmod 6,2<n<4 \times 10^{5}, n=2 k, k \in \mathbb{N}\right.$)
be a set of all partitions of n where both primes are the lesser of twin primes. Figure 3 depicts ratio of number of elements of $R_{L T P}(n)$ to number of elements of $R(n)$. Obviously this ratio is 0 only for n from OEIS A321221.

It has been computationally verified that the following even numbers of form $6 n-2$ have just one partition with two primes that are the lesser of twin primes: $10,16,28$, $40,52,64,106,124,136,172,184,226,262,304,394,412$, $442,484,544,556,604,634,664,682,694,724,736,754$, $772,802,874,934,976,994,1012,1984,1174,1204,1324$, $1384,1414,1534,1564,1594,1606,1744,1786,1852,1864$, 1996, 2074, 2164, 2584, 2674, 3052, 3424, 3502, 3844, 9844, 12742, 15124, 15814, 24094, 24532 - no further terms were found so far. Figure 2 demonstrates ascending trend of average number of partitions of $6 n-2$.

Figures 4 and 5 are devoted to differences between primes of form $6 k-1$ and $6 k+1$ in GPs. In general we can observe two cases: the first one with difference close to 0 , and the second one - with difference either positive or negative (and with generally ascending trend for bigger $n)$.

Figure 4: Number of primes of form $6 k-1$ in $R(n)-$ number of primes of form $6 k+1$ in $R(n)\left(2<n<4 \times 10^{5}\right.$, $n=2 k, k \in \mathbb{N})$

Figure 5: $\left|R_{6 k-1}(n)\right|-\left|R_{6 k+1}(n)\right|\left(2<n<4 \times 10^{5}\right.$, $n=2 k, k \in \mathbb{N})$

5 Summary and next steps

Executed experiments confirmed that (3) is true for $4 \leq$ $n \leq 4 \times 10^{6}$ and (4) with $A=701$ is true at least for $1 \leq n \leq 4 \times 10^{6}$. As a result this work led to more precise conjecture (5):

$$
\begin{equation*}
\forall \underset{n>701, n \in \mathbb{N} p_{1}, p_{2} \in \mathbb{P}_{\mathrm{LT}}}{\forall} G S C\left(6 n-2, p_{1}, p_{2}\right) \tag{5}
\end{equation*}
$$

If (5) is true, then $G S C$ is true.
Furthermore, even if 3 looks to be the most common prime in GPs, executed experiments revealed that all even $n>8$ have at least one partition without prime 3 , with both primes of form $6 k \pm 1$. This observation raised another open question which can be foundation of further research work: which primes can be skipped in $G S C$? Maybe prime set is much bigger than required to fullfil $G S C$?

References

[1] Christian Goldbach, On the margin of a letter to Leonard Euler, 1742.
[2] Tomás Oliveira e Silva, Goldbach conjecture verification. http://sweet.ua.pt/tos/goldbach.html, 2012.
[3] Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4×10^{18}., Mathematics of Computation, vol. 83, no. 288, pp. 2033-2060, July 2014 (published electronically on November 18, 2013.
[4] Marcin Barylski, Studies on Twin Primes in Goldbach Partitions of Even Numbers, http://tasmoto.org/research/TwinPrimesInGoldbachPartitions.pdf, 2018.
[5] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A007528. Primes of form $6 \mathrm{n}-1$.
[6] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A002476. Primes of the form $6 \mathrm{~m}+1$.
[7] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A321221. Numbers of the form $6 \mathrm{n}-2$ which are not a sum of two numbers that are the lesser of twin primes.
[8] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A243956. Positive numbers n without a decomposition into a sum $\mathrm{n}=\mathrm{i}+\mathrm{j}$ such that $6 \mathrm{i}-1,6 \mathrm{i}+1,6 \mathrm{j}-1,6 \mathrm{j}+1$ are twin primes.
[9] OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A007534. Even numbers that are not the sum of a pair of twin primes.
[10] Dan Zwillinger, A Goldbach Conjecture Using Twin Primes, Math. Comp. 33, No.147, p.1071, 1979.

