
1 
 

Title: Unknown Pattern of prime numbers. 
Author: Zeolla, Gabriel Martin 
Comments: 11 pages 
gabrielzvirgo@hotmail.com 

  
 

Keywords: Pattern, prime numbers, composite number. 

 
Abstract:  
This text develops and formulates the discovery of an unknown pattern for prime 

numbers, with amazing and calculable characteristics. Using a mechanism similar to 

the Collatz conjecture. 

 

Prime numbers Pattern 

A clear rule of thumb states exactly what makes a prime number: it is an integer that cannot be 

divided exactly by any other number except 1 and itself. But there is no discernible pattern in 

the appearance of the prime numbers. Beyond the obvious - after numbers 2 and 5, prime 

numbers cannot be even or end in 5. There seems to be little structure that can help predict 

where the next prime number will appear.  

 

Discovering the pattern of prime numbers 
Let the following operation be applicable to any odd natural number greater than 1. 
Let (m): the number to be tested. 
We apply 

Development has two variables 

Formula A 
k > 1 ∈ ℕ 

 
𝑚 = 2𝑘 + 1 ⇔   𝑘 ≡ 1 ∨ 2 (𝑀𝑜𝑑 4) 

 
⟶ 𝑛 = −1 

𝑛 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

Formula B 
   k > 1 ∈ ℕ 

 
𝑚 = 2𝑘 + 1 ⇔   𝑘 ≡ 0 ∨ 3 (𝑀𝑜𝑑 4) 

 
⟶  𝑛 = 1 

𝑛 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

 If (n) is even, divide by 2. 

 If (n) is odd, add (m) and divide by 2. 

 

 

 

 

 

 

mailto:gabrielzvirgo@hotmail.com


2 
 

Formally, this corresponds to a function 𝑓: ℕ ↦ ℕ 

𝑓(𝑚) = {

𝑛

2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛 + 𝑚

2
,      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Given any number, we can consider its cycle, that is, the successive 𝑖 images when iterating the 

function. 

We can calculate the number of images that the cycle forms 𝑓𝑥   as follows: 

 For example: 𝑓(𝑚) = 13: 

𝒇𝒙 = (
𝒇(𝒎) − 𝟏

𝟐
) − 𝟏 

𝑓𝑥 = (
13 − 1

2
) − 1 = 5 

∴ 0 ≤ 𝑓𝑥 ≤ 5 
 

Formula A: Calculation of the starting number. 

 13 = 2 ∗ 6 + 1 ⇔   6 ≡ 1 ∨ 2 (𝑀𝑜𝑑 4) ⟶ 𝑛 = −𝟏 (nº initial) 

𝒇𝒙(𝒎) = 𝒊 

𝑓5(13) =
−1 + 13

2
= 𝟔 

𝑓4(𝑓5(13)) =
6

2
= 𝟑 

𝑓3 (𝑓4(𝑓5(13))) =
3 + 13

2
= 𝟖 

𝑓2 (𝑓3 (𝑓4(𝑓5(13)))) =
8

2
= 𝟒 

𝑓1 (𝑓2 (𝑓3 (𝑓4(𝑓5(13))))) =
4

2
= 𝟐 

𝑓0 (𝑓1 (𝑓2 (𝑓3 (𝑓4(𝑓5(13)))))) =
2

2
= 𝟏 

Proposition: 
 New conjeture of prime numbers: Once the function is executed 𝑓(𝑚) all odd 

prime numbers end the sequence in 𝑓0 = 1 
 
𝑃 = {3,5, 7,11,13,17,19,23,29,31,37,41,43, 47,53,59,61,67,71,79, 83,89, … . . . } 

 

 Base 2 pseudoprimes also end in 1. 

 Therefore, odd composite numbers that are not base 2 pseudoprimes end with 
𝑓0 ≠ 1 

 



3 
 

 
Pseudoprime numbers (Euler-Jacobi). 
 

𝑃𝑠𝑝 = {561, 1.105, 1.729, 1.905, 2.047, 2.465, 3.277, 4.033, 4.681, 6.601, 8.321, 8.481, 10.585,  
12.801, 15.841, 16.705, 18.705, 25.761, 29.341, 30.121, 33.153, 34.945, 41041, 42.799, … . } 

 
Reference OEIS A047713   

 
These represent a very small portion of the set of composite numbers. 

His images form patterns within the cycle. 
 
The succession of images forms a cycle 

 

 Each odd number (𝑚)  has a unique and unrepeatable cycle, with images (𝑖) 
such that, 0 <  (𝑖) <  𝑚. 

 The cycle will be formed by the total number of images, cycle = 𝑓𝑥 + 1 
 

Cycle characteristics 
A. A. There are cycles with repeated images, forming patterns. 
B. B. There are cycles with images without repeating. 

 
 

A) Prime numbers with patterns in their cycles 
They are those prime numbers whose images are repeated forming patterns. 
 
𝑃𝐴 = {31,43, 73, 89,109, 113, 127,151,157, 223,229,233,241,251,257,277,281,283,307, . . . } 

Reference OEIS A082595 
 
Example: 

 
 

𝑓(𝑚) = 31 
𝑓𝑥  𝑖 
𝑓14 16 
𝑓13 8 
𝑓12 4 
𝑓11 2 
𝑓10 1 
𝑓9 16 
𝑓8 8 
𝑓7 4 
𝑓6 2 
𝑓5 1 
𝑓4 16 
𝑓3 8 
𝑓2 4 
𝑓1 2 
𝒇𝟎 1 

𝒇𝒙 = (
𝒇(𝒎) − 𝟏

𝟐
) − 𝟏 

 

𝑓𝑥 = (
31 − 1

2
) − 1 = 14 

 
∴ 0 ≤ 𝑓𝑥 ≤ 14 

 
Formula B: 

  31 = 2 ∗ 15 + 1 ⇔ 
15 ≡ 0 ∨ 3 (𝑀𝑜𝑑 4) 

⟶ 𝑛 = 1 (initial number) 

 

𝑓14 =
1 + 31

2
= 1𝟔 

 
𝑐𝑦𝑐𝑙𝑒 = 𝑓𝑥 + 1 

𝑐𝑦𝑐𝑙𝑒 = 𝑓14 + 1 = 𝟏𝟓 

https://oeis.org/A047713
https://oeis.org/A082595


4 
 

 
The patterns of each cycle are linked to the dividers of the cycle. 
Example above with loop 15, you have a pattern of 1 * 15, 15 * 1, 5 * 3, or 3 * 5. 
In this case you have 3 patterns of 5 images each. 
 

B) Prime numbers with cycles without repetition 
They are those prime numbers whose images are not repeated. 

 
𝑃𝐵 = {3,5,7,11,13,17,19,23,29,37,41,47,53,59,61,67,71,79,83,97,101,103,107, … . . } 
 
Examples of prime numbers with cycles without repeating numbers.  

 
𝑓(𝑚) = 17  𝑓(𝑚) = 19  𝑓(𝑚) = 23 

𝑓𝑥  𝑖  𝑓𝑥  𝑖  𝑓𝑥  𝑖 

𝑓7 9  𝑓8 9  𝑓10 12 
𝑓6 13  𝑓7 14  𝑓9 6 
𝑓5 15  𝑓6 7  𝑓8 3 
𝑓4 16  𝑓5 13  𝑓7 13 
𝑓3 8  𝑓4 16  𝑓6 18 
𝑓2 4  𝑓3 8  𝑓5 9 

𝑓1 2  𝑓2 4  𝑓4 16 
𝒇𝟎 1  𝑓1 2  𝑓3 8 

 Formula B  𝒇𝟎 1  𝑓2 4 

    Formula A  𝑓1 2 

      𝒇𝟎 1 

       Formula B 
 

 
 

𝑓(𝑚) = 29   𝑓(𝑚) = 37 
𝑓𝑥  𝑖  𝑓𝑥  𝑖 

𝑓13 14  𝑓17 18 
𝑓12 7  𝑓16 9 
𝑓11 18  𝑓15 23 
𝑓10 9  𝑓14 30 
𝑓9 19  𝑓13 15 
𝑓8 24  𝑓12 26 
𝑓7 12  𝑓11 13 
𝑓6 6  𝑓10 25 
𝑓5 3  𝑓9 31 
𝑓4 16  𝑓8 34 
𝑓3 8  𝑓7 17 
𝑓2 4  𝑓6 27 
𝑓1 2  𝑓5 32 
𝒇𝟎 1  𝑓4 16 

 Formula A  𝑓3 8 

   𝑓2 4 

   𝑓1 2 

   𝒇𝟎 1 

    Formula A 
 



5 
 

 

Odd Composite Numbers 
 
The characteristic of odd composite numbers is that 𝒇𝟎  ≠ 𝟏, this happens for all odd 
composite numbers that are not base 2 pseudoprimes. 
 
𝐶 = {9,15,21,25,27,33,35,39,45,49,51,55,57,63,65,69,75,77,81,85,91,93,95, … . . . } 
 
Examples of odd composite numbers 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑓(𝑚) = 15  𝑓(𝑚) = 25  𝑓(𝑚) = 27 

𝑓𝑥  𝑖  𝑓𝑥  𝑖  𝑓𝑥  𝑖 

𝑓6 8  𝑓11 13  𝑓12 13 
𝑓5 4  𝑓10 19  𝑓11 20 
𝑓4 2  𝑓9 22  𝑓10 10 
𝑓3 1  𝑓8 11  𝑓9 5 
𝑓2 8  𝑓7 18  𝑓8 16 
𝑓1 4  𝑓6 9  𝑓7 8 
𝒇𝟎 2  𝑓5 17  𝑓6 4 

 Formula B  𝑓4 21  𝑓5 2 

   𝑓3 23  𝑓4 1 

   𝑓2 24  𝑓3 14 

   𝑓1 12  𝑓2 7 

   𝒇𝟎 6  𝑓1 17 

    Formula B  𝒇𝟎 22 

       Formula A 
 



6 
 

Demonstration 
Each image that forms the cycle has an order in the power of 2, so if we apply modular 
arithmetic to these we can obtain equivalent congruences for all images. 
 
Example of what happens with prime numbers:      

 𝑓(𝑚) = 19 
𝑓𝑥  𝑖 

𝑓8 9 
𝑓7 14 
𝑓6 7 
𝑓5 13 
𝑓4 16 
𝑓3 8 
𝑓2 4 
𝑓1 2 
𝒇𝟎 1 

 

2𝑓𝑥  ≡ 𝑖 (𝑀𝑜𝑑 𝑓(𝑚))  

   

28 ≡9 (Mod 19) 

27 ≡14 (Mod 19) 

26 ≡7 (Mod 19) 

25 ≡13 (Mod 19) 

24 ≡16 (Mod 19) 

23 ≡8 (Mod 19) 

22 ≡4 (Mod 19) 

21 ≡2 (Mod 19) 

20 ≡1 (Mod 19) 
 

 

"Ultimately each image is transformed into a congruent residue" 
 
Example of what happens with odd composite numbers: 
 

 𝑓(𝑚) = 25 

𝑓𝑥  𝑖 

𝑓11 13 
𝑓10 19 
𝑓9 22 
𝑓8 11 
𝑓7 18 
𝑓6 9 
𝑓5 17 
𝑓4 21 
𝑓3 23 
𝑓2 24 
𝑓1 12 
𝒇𝟎 6 

 

2𝑓𝑥  ≢ 𝑖(𝑀𝑜𝑑 𝑓(𝑚)) 

  

211 ≢13 (Mod 25) 

210 ≢19 (Mod 25) 

29 ≢22 (Mod 25) 

28 ≢11 (Mod 25) 

27 ≢18 (Mod 25) 

26 ≢9 (Mod 25) 

25 ≢17 (Mod 25) 

24 ≢21 (Mod 25) 

23 ≢23 (Mod 25) 

22 ≢24 (Mod 25) 

21 ≢12 (Mod 25) 

20 ≢6 (Mod 25) 
 

 

"Then each image becomes a non-congruent residue" 

 
 
Pseudoprime numbers have the same characteristic as prime numbers. 
 
 
 
 
 
 
 



7 
 

Alfa program with Python 3.9 
This program builds the sequence of images of the cycle and ends in 𝑓0, the program. 
Analyze if 𝑓0 =  1 if it is true it will be a prime number otherwise it is composite. 
Recall that base 2 pseudoprimes are hidden among prime numbers and also pass the 
test. 
 

# Argentest Alfa 

# Pyton 3.9..Unknown pattern of prime numbers, Author Zeolla Gabriel Martín 

# When the loop ends in 1,(number) is prime or with very low pseudo-

prime probabilities (Base 2 euler) 

 

number = int(input("Enter Odd number = ")) 

numb = (number -1) / 2 

if number % 2==0 or number<0: 

        print("ERROR, THE NUMBER IS INCORRECT") 

if numb % 4 == 1: 

   z = (number - 1)// 2  

   print("characteristic 1(Mod 4)") 

elif numb % 4 == 2: 

   z = (number - 1)// 2  

   print(" characteristic 2(Mod 4)") 

elif numb % 4 == 0: 

   z = (number + 1)// 2  

   print("characteristic 0(Mod 4)")  

else: 

   z = (number + 1)// 2  

   print("characteristic 3(Mod 4)") 

print(z) 

 

counter=2 

if z > 0:     

     while counter != (((number-1)//2)+1):  

        if z % 2:   

            z = (z + number) // 2 

        else: 

            z //= 2   

        print(z) 

        counter=(counter +1) 

        if (counter+1) > (((number-1)//2)+1): 

                   break       

 

print ("The ", number, "has a cycle of:",(number-1) //2 ) 

print("Is a possible prime number? ",z==1 ) 

 
 
 



8 
 

 
 

Beta program with Python 3.9 
Pseudoprimos removed 
The most effective way to detect a pseudo prime is knowing that they form patterns 
within their cycle. But there are prime numbers like Mersenne's and others that also 
form patterns. Therefore, this program does not confirm the primality of these 
numbers, but it does manage to certify the primality of 70% of the set of prime 
numbers and 99% of the set of composite numbers. 
 
This program builds the sequence of images of the cycle up to 𝑖 =  1 if possible and 
stops, if there is no image with that value, it completes the cycle until 𝑓0. 
 
The program parses and returns as a result: 
 𝑓0 =  1 →  𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑, since it has no patterns within the loop. 
𝑓0 ≠  1 →  𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 
𝑓𝑥 < 𝐶𝑦𝑐𝑙𝑒 Ʌ 𝑐𝑦𝑐𝑙𝑒 ≡  0 (𝑀𝑜𝑑 𝑓𝑥)  →  𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 !! 
Since it has Patterns in the cycle. So there is some possibility that it is pseudo-prime. 
 
 
 
 
 
 
Reference 
For more information on how to test primality without falling into the pseudo-prime trap, I 
expanded the research and did another work called: 
New Argentest primality test algorithm 
Download or read it online 
https://www.academia.edu/51147288/Nuevo_algoritmo_de_prueba_de_primalidad_Argentest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.academia.edu/51147288/Nuevo_algoritmo_de_prueba_de_primalidad_Argentest


9 
 

 

# Argentest Beta.  Professor Zeolla Gabriel Martín 

# Primality test using functions that generate patterns. 

#  (n) is PRIME CONFIRMATION or COMPOSITE NUMBER CONFIRMATION 

# (n) WITHOUT CONFIRMATION and True  "it is prime or pseudoprime (Base 2 euler) 

 

number = int(input("Enter Odd number = ")) 

numb = (number -1) / 2 

 

if numb % 4 == 1: 

   z = (number - 1)// 2    

elif numb % 4 == 2: 

   z = (number - 1)// 2   

elif numb % 4 == 0: 

   z = (number + 1)// 2     

else: 

   z = (number + 1)// 2  

print(z) 

 

counter=2 

if z > 0:                                       

     while z != 1:       

        if z % 2:   

            z = (z + number) // 2 

        else: 

            z //= 2              

        print(z) 

        counter=(counter +1)      

        if (counter+1) > (((number-1)//2)+1): 

                   break 

else: 

    print("The number entered is incorrect") 

 

if ((number-1) //2)== (counter-1): 

   print("Complete cycle ") 

else: 

      print("Incomplete cycle, has",((number-1) //2) /(counter-1 ),"patterns") 

 

print ("The ", number, "has a cycle of:",(number-1) //2 ) 

r=numb % (counter-1) 

print("Possible prime number!! " ,r==0 and z==1) 

if numb / (counter-1) ==1 and z==1: 

   print("PRIME NUMBER CONFIRMATION") 

if (r==0 and z==1)== False: 

   print("COMPOSTE NUMBER CONFIRMATION") 

 



10 
 

Fast Beta program with Python 3.9 
Solve the same as in the previous one without spewing the sequence of images 

 

# Argentest FAST.  Professor Zeolla Gabriel Martín 

# Primality test using functions that generate patterns. 

#  (n) is PRIME CONFIRMATION or COMPOSITE NUMBER CONFIRMATION 

# (n) WITHOUT CONFIRMATION and True  "it is prime or pseudoprime (Base 2 euler) 

number = int(input("Enter Odd number =")) 

if number % 2==0:                                

      print("ERROR, only Odd numbers")   

 numb = (number -1) // 2 

 

if numb % 4 == 1: 

   z = (number - 1)// 2    

elif numb % 4 == 2: 

   z = (number - 1)// 2   

elif numb % 4 == 0: 

   z = (number + 1)// 2     

else: 

   z = (number + 1)// 2  

 

counter=2 

if z > 0:                                       

     while z != 1:       

        if z % 2:   

            z = (z + number) // 2 

        else: 

            z //= 2              

        counter=(counter +1)    

        if (counter+1) > (((number-1)//2)+1): 

                   break 

else: 

    print("The number entered is incorrect") 

if ((number-1) //2)== (counter-1): 

   print("Complete cycle ") 

else: 

        print("Incomplete cycle, has",((number-1) //2) /(counter-1 ),"patterns") 

        print ("The ", number, "has a cycle of:",(number-1) //2 ) 

r=numb % (counter-1) 

print("Possible prime number!! " ,r==0 and z==1) 

if numb / (counter-1) ==1 and z==1: 

   print("PRIME NUMBER CONFIRMATION") 

if (r==0 and z==1)== False: 

   print("COMPOSTE NUMBER CONFIRMATION") 

 
 



11 
 

 
 

Conclution 
After the function is executed, all prime numbers end in 𝑓0 = 1. Which shows us a 
totally unknown and interesting new feature of prime numbers. 
The Alpha and Beta program is an effective technological tool to test the primality of 
numbers, it helps us to understand and reflect on the behavior of their cycles and 
patterns. 
The development of the Beta program for the elimination of pseudo-prime numbers is 
very interesting. 
While the pseudo prime number sequences are expressed in the OEIS encyclopedia. 
There is no paper or text that refers to this function as it is presented and developed in 
this document, nor did I find a primality test with these characteristics 
This function is built based on the number 2. But we can build infinite sequences by 
changing the base.  
 

 
Professor Zeolla Gabriel M 

San Vicente, Buenos. Aires. Argentina 
2021 

 

Download the spreadsheet to check more numbers and play with prime numbers. 
https://www.academia.edu/50803638 

Other works on prime numbers of the author 
https://independent.academia.edu/GabrielZeolla 
 

 
References 
 
BECKER, M. E.; PIETROCOLA, N. Y SÁNCHEZ, C. (2001); Aritmética, Red Olímpica, Argentina.  
GRACIÁN, E. (2011); Los Números Primos, un Largo Camino al Infinito, Navarra: EDITEC.  
GÓMEZ, J. (2011); Matemáticos, Espías y Piratas Informáticos, Codificación y Criptografía, 
Navarra: EDITEC 
Papadimitriou, Christos H.: Computational Complexity. Sección 10.2: "Primality", pp.222–227. 
Addison-Wesley, 1era edición, 1993. (ISBN201-53082-1.) 
Caldwell, Chris,Finding primes & proving primality [1] 
Caldwell, Chris: The Prime Pages. Universidad de Tennessee. (Ver enlaces externos.) 
Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin: "PRIMES is in P". Annals of Mathematics 160 
(2004), no. 2, pp. 781–793. 
H. W. Lenstra jr. and Carl Pomerance: "Primality testing with Gaussian periods". 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: 
Dover, p. 61, 1987. 
Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New 
York: Dover, 1966. 

 

https://www.academia.edu/50803638/Increible_Patron_desconocido_de_los_numeros_primos
https://independent.academia.edu/GabrielZeolla
https://www.amazon.com/exec/obidos/ASIN/0486253570/ref=nosim/ericstreasuretro
https://www.amazon.com/exec/obidos/ASIN/0486210960/ref=nosim/ericstreasuretro

