Title: Unknown Pattern of prime numbers. Author: Zeolla, Gabriel Martin Comments: 7 pages gabrielzvirgo@hotmail.com

Keywords: Pattern, prime numbers, composite number.

Abstract:

This text develops and formulates the discovery of an unknown pattern for prime numbers, with amazing and calculable characteristics. Using a mechanism similar to the Collatz conjecture.

Prime numbers Pattern

A clear rule of thumb states exactly what makes a prime number: it is an integer that cannot be divided exactly by any other number except 1 and itself. But there is no discernible pattern in the appearance of the prime numbers. Beyond the obvious - after numbers 2 and 5, prime numbers cannot be even or end in 5. There seems to be little structure that can help predict where the next prime number will appear.

Discovering the pattern of prime numbers

Let the following operation be applicable to any odd natural number greater than 1. Let (m): the number to be tested. We apply

Development has two variables

Formula A	Formula B
$k > 1 \in \mathbb{N}$	$k > 1 \in \mathbb{N}$
$m = 2k + 1 \Leftrightarrow k \equiv 1 \lor 2 \pmod{4}$	$m = 2k + 1 \Leftrightarrow k \equiv 0 \lor 3 \pmod{4}$
$\rightarrow n = -1$ n = initial succession number	$ \rightarrow n = 1 n = initial succession number $

• If (n) is even, divide by 2.

• If (n) is odd, add (m) and divide by 2.

Formally, this corresponds to a function $f: \mathbb{N} \mapsto \mathbb{N}$

$$f(m) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ \frac{n+m}{2}, & \text{if } n \text{ is odd} \end{cases}$$

Given any number, we can consider its cycle, that is, the successive i images when iterating the function.

We can calculate the number of images that the cycle forms f_{χ} as follows:

For example: f(m) = 13:

$$f_x = \left(\frac{f(m) - 1}{2}\right) - 1$$
$$f_x = \left(\frac{13 - 1}{2}\right) - 1 = 5$$
$$\therefore 0 \le f_x \le 5$$

Formula A: Calculation of the starting number.

 $13 = 2 * 6 + 1 \Leftrightarrow 6 \equiv 1 \lor 2 \pmod{4} \rightarrow n = -1 \pmod{2}$

$$f_x(m) = i$$

$$f_5(13) = \frac{-1+13}{2} = 6$$

$$f_4(f_5(13)) = \frac{6}{2} = 3$$

$$f_3\left(f_4(f_5(13))\right) = \frac{3+13}{2} = 8$$

$$f_2\left(f_3\left(f_4(f_5(13))\right)\right) = \frac{8}{2} = 4$$

$$f_1\left(f_2\left(f_3\left(f_4(f_5(13))\right)\right) = \frac{4}{2} = 2$$

$$f_0\left(f_1\left(f_2\left(f_3\left(f_4(f_5(13))\right)\right)\right) = \frac{2}{2} = 1$$

Proposition:

• New conjeture of prime numbers: Once the function is executed f(m) all odd prime numbers end the sequence in $f_0 = 1$

 $P = \{3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,79,83,89,\dots\}$

- Base 2 pseudoprimes also end in 1.
- Therefore, odd composite numbers that are not base 2 pseudoprimes end with $f_0 \neq 1$

Pseudoprime numbers

 $Psp = \{561, 1.105, 1.729, 1.905, 2.047, 2.465, 3.277, 4.033, 4.681, 6.601, 8.321, 8.481, 10.585, 12.801, 15.841, 16.705, 25.761, 29.341, 42.799, \dots\}$

These represent a very small portion of the set of composite numbers. His images form patterns within the cycle.

The succession of images forms a cycle

- Each odd number (*m*) has a unique and unrepeatable cycle, with images (*i*) such that, 0 < (i) < m.
- The cycle will be formed by the total number of images, cycle = $f_x + 1$

Cycle characteristics

- A. A. There are cycles with repeated images, forming patterns.
- B. B. There are cycles with images without repeating.

A) Prime numbers with patterns in their cycles

They are those prime numbers whose images are repeated forming patterns.

 $P_A = \{31, 43, 73, 89, 109, 113, 127, 151, 157, 223, 229, 233, 241, 251, 257, 277, 281, 283, 307, \dots\}$

Example:

f f.	(m) = 31	$f_x = \left(\frac{f(m) - 1}{2}\right) - 1$
Jx	L	
f_{14}	16	
f_{13}	8	$f = \left(\frac{31-1}{2}\right) = 1 = 14$
f_{12}	4	$J_x = \begin{pmatrix} 2 \end{pmatrix} + 1 = 1 + 1$
f_{11}	2	
f_{10}	1	$\therefore 0 \le f_x \le 14$
f_9	16	Formula Pr
f_8	8	$\frac{101110110}{31} = 2 * 15 + 1 \Leftrightarrow$
f_7	4	$15 \equiv 0 \lor 3 \pmod{4}$
f_6	2	$\rightarrow n = 1$ (initial number)
f_5	1	
f_4	16	$f_{11} = \frac{1+31}{1-16} = 16$
f_3	8	
f_2	4	ciclo - f + 1
f_1	2	$ciclo = f_x + 1$ $ciclo = f_x + 1 = 15$
f ₀	1	

<u>The patterns of each cycle are linked to the dividers of the cycle.</u> Example above with loop 15, you have a pattern of 1 * 15, 15 * 1, 5 * 3, or 3 * 5. In this case you have 3 patterns of 5 images each.

B) Prime numbers with cycles without repetition

They are those prime numbers whose images are not repeated.

$P_B = \{3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 97, 101, 103, 107, \dots \}$

f(m) = 23f(m) = 17f(m) = 19i i i fx fx f_x 9 9 12 f7 f_8 f_{10} 13 14 6 f_7 f₆ f9 7 3 15 f_6 f_8 *f*5 16 13 13 f_4 f_5 f_7 8 f_4 f_6 18 16 f_3 4 9 8 f_2 f_3 f_5 2 f_2 f_1 4 f_4 16 2 8 f₀ f_1 f_3 4 Formula B f_2 f₀ 1 2 Formula B f_1 **f**₀ 1 Formula B

Examples of prime numbers with cycles without repeating numbers.

f	f(m) = 29		f(m) = 37
f_r	i	fr	i
f_{13}	14	f_{17}	18
f_{12}	7	f_{16}	9
f_{11}	18	f_{15}	23
f_{10}	9	f_{14}	30
f_9	19	f_{13}	15
f_8	24	f_{12}	26
f_7	12	f_{11}	13
f_6	6	f_{10}	25
f_5	3	f_9	31
f_4	16	f_8	34
f_3	8	f_7	17
f_2	4	f_6	27
f_1	2	f_5	32
f_0	1	f_4	16
	Formula A	f_3	8
		f_2	4
		f_1	2
		f_0	1
			Formula A

Odd Composite Numbers

The characteristic of odd composite numbers is that $f_0 \neq 1$, this happens for all odd composite numbers that are not base 2 pseudoprimes.

 $\mathcal{C} = \{9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 91, 93, 95, \dots \}$

f(m) = 15			f(m) = 25			f(m) = 27	
f_x	i		f_x	i		f_x	i
f_6	8		f_{11}	13		f_{12}	13
f_5	4		f_{10}	19		f_{11}	20
f_4	2		f_9	22		f_{10}	10
f_3	1		f_8	11		f_9	5
f_2	8		f_7	18		f_8	16
f_1	4		f_6	9		f_7	8
f_0	2		f_5	17		f_6	4
	Formula B		f_4	21		f_5	2
			f_3	23		f_4	1
			f_2	24		f_3	14
			f_1	12		f_2	7
			f_0	6		f_1	17
	Formula B					f_0	22
	Formula A						

Examples of odd composite numbers

Demonstration

Each image that forms the cycle has an order in the power of 2, so if we apply modular arithmetic to these we can obtain equivalent congruences for all images.

	f(m) = 19			2^{f_x}	$i \equiv (Mod f(m)19)$	
f_x	i					
f_8	9			2 ⁸	≡9 (Mod 19)	
f_7	14			27	≡14 (Mod 19)	
f_6	7			2 ⁶	≡7 (Mod 19)	
f_5	13			2 ⁵	≡13 (Mod 19)	
f_4	16			24	≡16 (Mod 19)	
f_3	8			2 ³	≡8 (Mod 19)	
f_2	4			2 ²	≡4 (Mod 19)	
f_1	2			2 ¹	≡2 (Mod 19)	
f_0	1			2 ⁰	≡1 (Mod 19)	

Example of what happens with prime numbers:

Example of what happens with odd composite numbers:

	f(m) = 25		2^{f_x}	$i \not\equiv (Mod f(m)25)$	
f_x	i		_		
f_{11}	13		211	≢13 (Mod 19)	
f_{10}	19		210	≢19 (Mod 19)	
f_9	22		2 ⁹	≢22 (Mod 19)	
f_8	11		28	≢11 (Mod 19)	
f_7	18		27	≢18 (Mod 19)	
f_6	9		26	≢9 (Mod 19)	
f_5	17		2 ⁵	≢17 (Mod 19)	
f_4	21		24	≢21 (Mod 19)	
f_3	23		2 ³	≢23 (Mod 19)	
f_2	24		2 ²	≢24 (Mod 19)	
f_1	12		2 ¹	≢12 (Mod 19)	
f_0	6		20	≢6 (Mod 19)	

"Then each image becomes a non-congruent residue"

Pseudoprime numbers have the same characteristic as prime numbers.

Conclution

After the function is executed, all prime numbers end in $f_0 = 1$. Which shows us a totally unknown and interesting new feature of prime numbers.

Professor Zeolla Gabriel M San Vicente, Buenos. Aires. Argentina

Download the spreadsheet to check more numbers and play with prime numbers. https://www.academia.edu/50803638/Patr%C3%B3n_desconocido_de_los_n%C3%BAmeros_p rimos

References

BECKER, M. E.; PIETROCOLA, N. Y SÁNCHEZ, C. (2001); Aritmética, Red Olímpica, Argentina. GRACIÁN, E. (2011); Los Números Primos, un Largo Camino al Infinito, Navarra: EDITEC. GÓMEZ, J. (2011); Matemáticos, Espías y Piratas Informáticos, Codificación y Criptografía, Navarra: EDITEC

Papadimitriou, Christos H.: Computational Complexity. Sección 10.2: "Primality", pp.222–227. Addison-Wesley, 1era edición, 1993. (ISBN201-53082-1.)

Caldwell, Chris, Finding primes & proving primality [1]

Caldwell, Chris: The Prime Pages. Universidad de Tennessee. (Ver enlaces externos.) Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin: "PRIMES is in P". Annals of Mathematics 160 (2004), no. 2, pp. 781–793.

H. W. Lenstra jr. and Carl Pomerance: "Primality testing with Gaussian periods".

Ball, W. W. R. and Coxeter, H. S. M. *Mathematical Recreations and Essays, 13th ed.* New York: Dover, p. 61, 1987.

Beiler, A. H. <u>*Recreations in the Theory of Numbers: The Queen of Mathematics Entertains.*</u> New York: Dover, 1966.