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Abstract

In our previous papers, we once gave formulas and value for the classical electron
radius (1e=2.81794032658(43) fm) and the proton charge radius. In this paper, we give
new and more reasonable formulas and values for the proton charge radius, and the
values should be different according to the three different measurement methods, so we
give three wvalues, i.e., 1pn=0.8330977868 fm, rpH-,=0.8419605292 fm and
1pe=0.8311047299 fm. In addition, we also give formulas and values for the neutron
charge radius (rne=0.3312876729 fm), the deuteron charge radius (rap=2.142299805
fm, rap-=2.125297426 fm and rqe=2.127921954), the neutron equivalent radius in
deuteron (ryp=1.309202018 fm) and the charge radius of helium nucleus (o particle)
(twne=1.688564465 fm, rype-u= 1.678205173 fm and rqe=1.681409530).

Keywords: radius; electron; proton; neutron; deuteron; helium nucleus.

1. Introduction
In our previous papers' %, we gave formulas of the fine structure constant and their
applications or relevant developments. Some typical formulas and definitions of the

fine-structure constant are as follows.
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With these definitions and formulas, we calculated the classical electron radius re

as follows!.

iziz: ! i1ox@es—i+ L 1 ) =18788.865042381
Lo aa, 3 12.47 14-112-(2-173+1)
-11
. =aa, = 0,8, = 5.29177210903(80)x10 "M _, 41 794037658(43) fm
18788.865042381

The above calculated r.=2.81794032658(43) was more precise (with one more
effective digit) than current CODATA recommended value 1.=2.8179403262(13) fm.
In the same paper!, we also proposed the similar formulas for the proton charge

radius 1p as follows.
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Ay R0, R a,, 252.04, a could be called the second fine-structure constant.

2019/12/19-23
However, the above formulas for r, should not be satisfyingly correct and need
corrections. In this paper, we try to find more reasonable formulas and values for rp. In

addition, we also give formulas and values for neutron, deuteron and helium nucleus.

2. The Proton-radius Puzzle
Scientists developed two approaches to measure the proton charge radius, one is

hydrogen spectroscopy (Lamb shift measurement), the other is elastic electron-proton
2



scattering (p/e method). And the first approach was divided into two sub-branches
which are ordinary-hydrogen spectroscopy (p/H method) and muonic hydrogen
spectroscopy (p/H-p method). There were always discrepancies among the results of
the measurements with these three methods as shown in the following table and figure
(Table 1 and Fig. 1). This strange phenomenon is called the proton-radius puzzle.

Table 1. Values for the proton radius measured by the three methods

Year Method Ip Value (fm) Ref.
2010 Electronic-proton scattering Mple 0.879(8) 11
2010 Muonic-hydrogen spectroscopy Mp/H-u 0.84184(67) 12
2013 Muonic-hydrogen spectroscopy Fp/H-p 0.84087(39) 13
2017 Ordinary-hydrogen spectroscopy FoH 0.8335(95) 14
2018 Ordinary-hydrogen spectroscopy I/ 0.877(13) 15

2019 Ordinary-hydrogen spectroscopy M/ 0.833(10) 16
2019 Electronic-proton scattering Mple 0.831(14) 17

e Electron-proton scattering @ Ordinary-hydrogen spectroscopy Muonic-hydrogen spectroscopy
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2019 Xiong et al.

& :
2019 Bezginov et al.
[}
2018
—e
2017
2013
L ]
2010
2010
0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

Proton radius (fm)

Figure 1. Values for the proton charge radius (figure from Nature'?).
According to our points of view, these discrepancies are natural and should be exist
reasonably. Proton should be just like an elastic football which should give different
feelings (radii) to an adult or a child, by hand and by foot, so we suppose there should

be three kinds of the proton charge radius which are denoted as 1p/H, rpH-p and tpre.

3. Formulas for the Proton Charge Radius
In our previous formulas for the classical electron radius, we employed the fine-

structure constant o as follows.
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the key element and its isotopes: *****"*¥Bay, ., 5, (Note: 136 =8-17, 138 =6-23)
It is supposed that the situation should be similar for the proton charge radius, and
the critical point is to find the key element and its isotopes. And hence we construct the

following formulas for the proton charge radius to give reasonable and precise values.
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These formulas and values should not be absolutely correct, but it seems that they

are reasonable and should be relatively precise.

4. Formulas for the Neutron Charge Radius
With the same method, we construct the following formulas for the neutron charge

radius and give reasonable and precise value of it.
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A recent paper'® explained: “Despite the neutron zero-net electric charge, the
asymmetric distribution of the positively- (up) and negatively-charged (down) quarks,
a result of the complex quark-gluon dynamics, lead to a negative value for its squared
charge radius, r,2.” And it gave a relatively precise result of r,>=—0.110(8) fm?. By
referring to this result, we give the above formulas and value for the neutron charge

radius, and they seem to be still reasonable and much more precise.

5. Different Difficulties to Determine the Radii of Electron, Proton and Neutron

We noticed that the difficulties to determine the radii of electron, proton and neutron
are quite different by experimental measurements or theoretical calculations. But why?
Here we try to propose an explanation.

In our previous paper’, we developed Mass Model of Elementary Particles. The
main picture of the model is shown as follows (Fig. 2).

According to the model’s stipulations, electron is a Yang particle, we can assume it
should be hard, round and smooth like a steel ball, so its radius could be determined
easily and precisely. However, a proton contains two up quarks (u) which are Yin and
one down quark (d) which is Yang, so a proton is a net Yin particle, and we can assume
it should be soft, not very round, elastic and rough like a football, so it is difficult to

determine its radius and the determined values should depend on the measurement
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Figure 2.
methods. A neutron contains two down quarks (d) which are Yang and one up quark (u)

which is Yin, so a neutron is a net Yang particle, it should be not very difficult to

determine its radius, however, it is neutral in net electric charge, so it is still difficult
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to determine its electric charge radius which should be resulted from asymmetric
distribution of its component quarks and gluons. According to this explanation, we
could also predict that it should be relatively easy to determine the radii of Yang
particles such as Higgs boson (H) and the particle of dark matter (D), and it should be
relatively difficult to determine the radii of Yin particles such as muon, tauon, W boson,

Z boson and the neutrino particles.

6. Formulas for the Deuteron Charge Radius
Deuteron is the simplest compound nucleus consisting of a proton and a neutron,

it should one of typical and important nuclei. Although it should not be in spheric shape,
its root-mean square radius (or equivalent radius) could be measured by experiments.
And there are also three methods of measurement, i.e., ordinary-deuterium
spectroscopy, muonic-deuterium spectroscopy and elastic electron-deuteron scattering,
corresponding to three kinds of deuteron charge radius ra/p, ra/p-u and rqe respectively.
The experimental values of these three kinds of rq are listed as follows (Table 2).

Table 2. Values for the deuteron charge radius measured by the three methods

Year Method rd Value (fm) Ref.
1996 Electronic-deuteron scattering Fdse 2.128(11) 20
2017  Ordinary-deuterium spectroscopy Fao 2.1415(45) 21
2016 Muonic-deuterium spectroscopy FdiD-u 2.12562(78) 22

Here we construct the following formulas for the deuteron charge radius to give
reasonable and precise values.

a, ~52917.72109 fm

= 2.142299805 fm

o = > =

A57+8)"  (64+03+ (13)2
Mo u = Ty X @a- L )= 5291772103 fm X (1—i) =2.125297426 fm
=0 x (L 1 )= 52917.7210]? fm < (1— 1 )= 2127921954 fm

H H . 157
the key element and its isotope: *;,Gd,,
82,83,84 93 107,109 110,112 126 149 157 4.47
36 Kr46,47,48 41 Nb52 47 Ag 60,62 48 Cd62,64 52Te74 62 Sm87 64Gd93 76 C)3112
208 209> 237 * 257 * 2157 ie 8-47 ie 400 ie
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It could be supposed that rap should be composed of two parts which are rpn and

D (the proton charge radius in hydrogen and the neutron equivalent radius in deuteron)

as follows.

o = o + 15 = 0.8330977868+1.309202018 = 2.142299805 fm
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191,193 223 * 226 257 * 344,346,348
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7. Formulas for the Charge Radius of the Helium Nucleus

After hydrogen, helium is the second most abundant element in the universe.

Around one-fourth of the atomic nuclei that formed in the first few minutes after the

Big Bang were helium nuclei. A helium nucleus, which is especially stable, consists of
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two protons and two neutrons. For fundamental physics, it is crucial to know the
properties of the helium nucleus?*. One of the properties is the charge radius of it. There
are also three methods to measure its charge radius, i.e., ordinary-helium spectroscopy,
muonic-helium spectroscopy and elastic electron scattering, corresponding to three
kinds of the charge radius of the helium nucleus (also called a particle) rome, foHe-n and
roe respectively. The experimental values of these three kinds of 1, are listed as follows
(Table 3).

Table 3. Values for the charge radius of helium nucleus measured by the three methods

Year Method rd Value (fm) Ref.
2008 Elastic electron scattering Fafe 1.681(4) 23

Ordinary-deuterium spectroscopy rwre SO far no determination
2021 Muonic-deuterium spectroscopy Fo/He-t 1.67824(83) 24

Here we construct the following formulas for the charge radius of the helium

nucleus to give reasonable and precise values.

o = o= SPATRTZIONM__y Gagseases fm
Q77+0) @59+0) (12,1050 Ly
36—
35
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247 268 293 ie 294 344,346,348 408 ie 410 ie

Bk150 105 Db163 116 LV177 117Tsl77 136,137,138 Fy208 209,210 162 Ch246 163Ch247
2021/8/11
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According to Krauth’s description®®, so far no determination of r, exists from
atomic spectroscopy. For the determination of absolute radii from He atoms (three-body
system with two electrons), theory is not yet advanced enough?. Sufficiently precise
experiments with the H-like He" ion, where the two-body theory of H is applicable, will
soon be available?®?’.

But here, we have already theoretically calculated the ryme value which is
1.688564465 fm. If the future experiments give values of rome close to our prediction,
that will be a strong proof to our theories.

We also notice that the deuteron charge radius is even larger that that of helium
nucleus. A deuteron is composed of a proton and a neutron, a helium nucleus consists

double of them, so this phenomenon is very strange. Here we also try to give their

relationship coefficient (ry/He/Tan).

8. Formulas for Radii of Electron, Proton, Neutron, Deuteron and Helium
Nucleus in Atomic Unites
In atomic unites (a.u.), Bohr radius ag is equal to 1, so the formulas for the radii of
electron, proton, neutron, deuteron and helium nucleus (a particle) in atomic unites will
be simplified to the following forms.
Atomic Unites (au): h =m=e =1, Bohrradius a, =1
" 1

elau —
112><(168—1+ ! !

3 12.47 14-112-(2-173+1)

)
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r = =
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(252+6)°" (9941534 S )
33+ —
17
1+L 1- L
3 2.47 _ 2-11-19
rp/H—y/au - 1 rp/e/au - 1
(99 +153+ 5 )? (99 +153+ 5 )?
33+ — 33+ —
17 17

the key element and its isotope: - Es,.,
Note: 99=9-11=3-33, 153=9-17, 252=2-126=9-28

1 1
n/elau — 2
(400-9) (157+243—;)2

the key element and its isotope: ;> Chl, (Note: 243 =3°)

A B
6

-t - L

. _ 126 P 149
d/D-plau — 1 d/elau — 1 )
(64 +93+ 6)2 (64 +93+ E)

the key element and its isotope: 2/Gd.,,
R S 1
n/D/au — 2
(201+6)° (goiqp14+ L 41 -

36-11+ ——
2-11

the key element and its isotope: 5y Hg,,,

1 1

ra/He/au: 2:
W77+6)° (7241054 1y

36—£

35
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-1 -1
; _ 163 , 4-591
) (72+105+ =)’

alHe-ulau 1 alelau —
6

(72+105+
36- 36-

35 35
the key element and its isotope: *//Hf . (Note: 177 = 3-59)
the key elements and its isotopes:
1361137'122 Ba80,81,82 1E?ZGd93 17727 HflOS 28001H912l 2955 ES;SI% féJ?Chéifﬂ

Notice the sequences: 56 64 72 80; 93 99 105; 137 157 177; 56 252

References:

© © N o g &~ w0 bdpoRE
Q aa a a a a a a

RN N T = T e e e o e =
b O © © N o o &~ w M = O

G.

Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2002.0203.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2008.0020.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2010.0252.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2012.0107.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2101.0187.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2102.0162.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2103.0088.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2104.0053.
. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2106.0042.
. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2106.0151.
. J. C., Bernauer, et al., Phys. Rev. Lett. 105, 242001 (2010).

. R. Pohl, et al., Nature 466, 213-216 (2010).

A. Antognini, et al., Science 339, 417-420 (2013).

A. Beyer, et al., Science 358, 79-85 (2017).

H. Fleurbaey, et al., Phys. Rev. Lett. 120, 183001 (2018).

N. Bezginov, et al., Science 365, 1007-1012 (2019).

W., Xiong, et al., Nature 575, 147-150 (2019).

H. Atac, et al., Nature Communications 12, 1759 (2021).

J-P Karr and D. Marchand, Nature 575, 61-62 (2019).

. L. Sick and D. Trautmann, Phys. Lett. B 375, 16-20 (1996).

. R. Pohl, et al., Metrologia 54, L1 (2017); arXiv:1607.03165.

13



22. R. Pohl, et al., Science 353, 669-673 (2016).

23. 1. Sick, Phys. Rev. C 77, 041302 (2008).

24. ].]. Krauth, et al., Nature 589, 527-531 (2021).

25. V. Patkos, et al., Phys. Rev. A 101, 062516 (2020).
26. M. Herrmann, et al., Phys. Rev. A 79, 052505 (2009).
27. J.J. Krauth, et al., Proc. Sci. 353, 049 (2019).

Acknowledgements
Yichang Huifu Silicon Material Co., Ltd., Guangzhou Huifu Research Institute Co.,
Ltd. and Yichang Huifu Nanometer Material Co., Ltd. have been giving Dr. Gang Chen
a part-time employment since Dec. 2018. Thank these companies for their financial
support. Specially thank Dr. Yuelin Wang and other colleagues of these companies for

their appreciation, support and help.

Appendix I: Research History

Section Page Date Location
Abstract 1 2021/7/30-8/1

1 1-2 2021/7/30-31

2 2-3 2021/7/31-8/1

3 3-5 2021/7/30-8/1

4 5-6 2021/7/31-8/3 Chengdu

5 6-8 2021/8/2-3

6 8-9 2021/8/5, 11-12

7 10-11 2021/8/11-12

8 11-13 2021/8/13

Preparing this paper 1-14 2021/7/30-8/13 Chengdu
Note: Date was recorded according to Beijing Time.

Appendix II: Version History

Version Period Pages Upload Open
vl 2021/7/30-8/3 9 2021/8/3 ViXra:2108:0011v1
v2 2021/7/30-8/13 14 2021/8/13  viXra:2108:0011v2

Note: Date was recorded according to Beijing Time.

14



