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Abstract
In this paper, we present a problem concerning the sum of powers of Binomial coefficients.
We prove two special cases of the problem using some simple identities involving Binomial
coefficients, and list another two cases but without proof.

Keywords: Franel numbers, Binomial coefficients.

1 Introduction

The binomial coefficients are the positive integers that occur as coefficients in the Bino-
mial theorem. A binomial coefficient is written as

(
n
k

)
, where n ≥ k ≥ 0. Many properties

of the Binomial coefficients have been discovered over time. For instance,

n∑
k=0

(
n

k

)
= 2n, (1)

as well as

n∑
k=0

(
n

k

)2

=

(
2n

n

)
, (2)

are two well known identities. We could see that (1) and (2) have simple closed forms.

In 1894, Franel [1] showed that

(n+ 1)2fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1,

where fn =
∑n

k=0

(
n
k

)3
and n is a positive integer. He proved that no first-order recurrence

exists for fn so, there is no simple closed form for fn. Also, in 1895, Franel [2] showed that

(n+ 1)3φn+1 = 2(2n+ 1)(3n2 + 3n+ 1)φn + 4(4n− 1)(4n+ 1)φn−1,
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where φn =
∑n

k=0

(
n
k

)4
and n is a positive integer.

In this paper, we generate a corresponding expression for

pfn =
n∑

k=0

(
n

k

)p

,

where n is any positive integer and p is any Complex number.

2 Problem

If n ≥ 1 is an integer and p is any Complex number, then

n∑
k=0

(
n

k

)p

= 6
n−1∑
k=0

(
n

k + 1

)p−2(
n− 1

k

)2

−4
n−1∑
k=0

(
n

k + 1

)p−3(
n− 1

k

)3

. (3)

3 Proofs of Special Cases

CASE p=1
From (3), if p = 1, we have that

n∑
k=0

(
n

k

)
= 6

n−1∑
k=0

(
n

k + 1

)−1(
n− 1

k

)2

− 4
n−1∑
k=0

(
n

k + 1

)−2(
n− 1

k

)3

.

Proof.

n∑
k=0

(
n

k

)
= 6

n−1∑
k=0

(
n

k + 1

)−1(
n− 1

k

)2

− 4
n−1∑
k=0

(
n

k + 1

)−2(
n− 1

k

)3

,

n∑
k=0

(
n

k

)
= 6

n−1∑
k=0

(
n−1
k

)(
n

k+1

)(n− 1

k

)
− 4

n−1∑
k=0

((
n−1
k

)(
n

k+1

))2(
n− 1

k

)
.

Note that (
n−1
k

)(
n

k+1

) =
k + 1

n
.

So,
n∑

k=0

(
n

k

)
= 6

n−1∑
k=0

(
k + 1

n

)(
n− 1

k

)
− 4

n−1∑
k=0

(
k + 1

n

)2(
n− 1

k

)
,

n∑
k=0

(
n

k

)
=

6

n

n−1∑
k=0

(
n− 1

k

)
(k + 1) − 4

n2

n−1∑
k=0

(
n− 1

k

)
(k + 1)2,
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n∑
k=0

(
n

k

)
=

6

n

(
n−1∑
k=0

(
n− 1

k

)
k +

n−1∑
k=0

(
n− 1

k

))
− 4

n2

(
n−1∑
k=0

(
n− 1

k

)
k2 + 2

n−1∑
k=0

(
n− 1

k

)
k +

n−1∑
k=0

(
n− 1

k

))
.

We know that
n−1∑
k=0

(
n− 1

k

)
=

2n

2
,

and
n−1∑
k=0

(
n− 1

k

)
k =

(n− 1)2n

4
,

and
n−1∑
k=0

(
n− 1

k

)
k2 =

n(n− 1)2n

8
.

So,

n∑
k=0

(
n

k

)
=

6

n

(
(n− 1)2n

4
+

2n

2

)
− 4

n2

(
n(n− 1)2n

8
+ 2

(n− 1)2n

4
+

2n

2

)
,

n∑
k=0

(
n

k

)
= 2n

(
3

n

(
(n− 1)

2
+ 1

)
− 2

n2

(
n(n− 1)

4
+ n

))
,

n∑
k=0

(
n

k

)
= 2n

(
3(n+ 1)

2n
− n+ 3

2n

)
n∑

k=0

(
n

k

)
= 2n.

CASE p=2
From (3), if p = 2, we have

4
n−1∑
k=0

(
n

k + 1

)−1(
n− 1

k

)3

= 6
n−1∑
k=0

(
n− 1

k

)2

−
n∑

k=0

(
n

k

)2

.

Proof.

4
n−1∑
k=0

(
n

k + 1

)−1(
n− 1

k

)3

= 6
n−1∑
k=0

(
n− 1

k

)2

−
n∑

k=0

(
n

k

)2

,

n−1∑
k=0

(
n−1
k

)(
n

k+1

)(n− 1

k

)2

=
3

2

n−1∑
k=0

(
n− 1

k

)2

− 1

4

n∑
k=0

(
n

k

)2

,
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n−1∑
k=0

k + 1

n

(
n− 1

k

)2

=
3

2

n−1∑
k=0

(
n− 1

k

)2

− 1

4

n∑
k=0

(
n

k

)2

,

1

n

n−1∑
k=0

(
n− 1

k

)2

(k + 1) =
3

2

n−1∑
k=0

(
n− 1

k

)2

− 1

4

n∑
k=0

(
n

k

)2

.

We know that
n∑

k=0

(
n

k

)2

=
2(2n− 1)(2n− 2)!

n(n− 1)!2
,

and
n−1∑
k=0

(
n− 1

k

)2

=
(2n− 2)!

(n− 1)!2
.

So,

1

n

n−1∑
k=0

(
n− 1

k

)2

(k + 1) =
3(2n− 2)!

2(n− 1)!2
− 2(2n− 1)(2n− 2)!

4n(n− 1)!2
,

n−1∑
k=0

(
n− 1

k

)2

(k + 1) =
3n(2n− 2)!

2(n− 1)!2
− (2n− 1)(2n− 2)!

2(n− 1)!2
,

n−1∑
k=0

(
n− 1

k

)2

(k + 1) =
(2n− 2)!

2(n− 1)!
(n+ 1),

n−1∑
k=0

(
n− 1

k

)2

k +
n−1∑
k=0

(
n− 1

k

)2

=
(2n− 2)!

2(n− 1)!
(n+ 1),

n−1∑
k=0

(
n− 1

k

)2

k +
(2n− 2)!

(n− 1)!
=

(2n− 2)!

2(n− 1)!
(n+ 1),

n−1∑
k=0

(
n− 1

k

)2

k =
(2n− 2)!

2(n− 1)!
(n+ 1) − (2n− 2)!

(n− 1)!
,

n−1∑
k=0

(
n− 1

k

)2

k =
(2n− 2)!

2(n− 1)!
(n− 1). (5)

From (5), let

S =
n−1∑
k=0

(
n− 1

k

)2

k =

(
n− 1

0

)2

0 +

(
n− 1

1

)2

1 +

(
n− 2

2

)2

2 + · · · +

(
n− 1

n− 1

)2

(n− 1).
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So,

2S =

[(
n− 1

0

)2

0 +

(
n− 1

1

)2

1 +

(
n− 2

2

)2

2 + · · · +

(
n− 1

n− 1

)2

(n− 1)

]

+

[(
n− 1

n− 1

)2

(n− 1) +

(
n− 1

n− 2

)2

(n− 2) + · · · +

(
n− 1

0

)2

0

]
.

Since
(
n−1
k

)2
=
(

n−1
n−k−1

)2
, we have

2S =

(
n− 1

0

)2

(n− 1) +

(
n− 1

1

)2

(n− 1) +

(
n− 2

2

)2

(n− 1) + · · · +

(
n− 1

n− 1

)2

(n− 1),

2S = (n− 1)

[(
n− 1

0

)2

+

(
n− 1

1

)2

+

(
n− 2

2

)2

+ · · · +

(
n− 1

n− 1

)2
]
,

2S = (n− 1)
(2n− 2)!

(n− 1)!
,

S = (n− 1)
(2n− 2)!

2(n− 1)!
.

4 Other Special Cases

We list some other special cases without proof here;

n∑
k=0

(
n

k

)4

= 5
n∑

k=0

(
n

k + 1

)2(
n− 1

k

)2

− 4n− 1

n

n−1∑
k=0

(
n− 1

k

)4

,

n∑
k=0

(
n

k

)4

= 20
n∑

k=0

(
n

k + 1

)(
n− 1

k

)3

− 6
4n− 1

n

n−1∑
k=0

(
n− 1

k

)4

.
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