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A Proof of Twin Prime Conjecture by Using  

Twin Prime Model Table and Sieve Functions 

Tae Beom Lee 

Abstract 

Twin Prime Conjecture(TPC) states that there are infinitely many prime pairs (p, p + 2), where p 

is prime. But, up to date there is no valid proof of TPC. To prove TPC we devised Twin Prime Model 

Table(TPMT) and Sieve Functions(SFs). TPMT is a 2-dimensional table representation of all possible 

twin prime pairs(TPPs). SF is a sine function, 𝑓𝑖(𝑥) = 𝑠𝑖𝑛
𝜋𝑥

𝑝𝑖
, where pi is the ith prime. SFs functionally 

represent the sieve of Eratosthenes because all zeros of 𝑓𝑖(𝑥) can’t be prime exept the first zero. 

TPMT explicitly shows the mechanism of how TPPs are found from the possible twin prime pairs. To 

functionally represent this mechanism we introduced various sinusoidal functions. And by using 

properties of sinusoidal functions we proved TPC.  

1. Introduction 

TPC [1][2] states that there are infinitely many prime pairs with distance 2, like (3, 5), (11, 

13). TPC remains unsolved since de Polignac, in 1849, made the more general conjecture 

that for every natural number k, there are infinitely many prime pairs such that (p, p + 2k).  

In 2013, Yitang Zhang [3][4] proved that there are infinitely many prime pairs that differ 

by (pn+1 − pn) < 7×107, where pn is the nth prime. After Zhang’s discovery mathematicians like 

Terence Tao [5] and James Maynard [6][7] reduced the gap to 6 [2]. 

Our purpose is to prove TPC generally and easily. To do so, we devised Twin Prime 

Model Table(TPMT) and Sieve Functions(SFs). TPMT is a infinitely expandable 2-

dimensional arrangement of all possible twin prime pairs, from which we can see the 

mechanism of how twin primes are found. This mechanism of sieving TPPs from TPMT is 

similar to sieving prime numbers from natural number sequence. SF is a sinusoidal function, 

𝑓𝑖(𝑥) = 𝑠𝑖𝑛
𝜋𝑥

𝑝𝑖
,  where pi is the ith prime(𝑝1 = 2 ). SFs functionally represent the sieve of 

Eratosthenes. 

The details of our proof may seem to be somewhat lengthy and complicated, but the proof 

is general and not difficult.  

2. Twin Prime Model Table(TPMT) 

Lemma 2.1. Twin Prime Pairs(TPPs), except (3, 5), have the form (6n - 1, 6n + 1), n = 1, 2, 

3, …. 
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Proof. If odd multiples of 3, like 9, 15, 21, exist between two odd numbers, as in 5, 7, 9, 11, 

13, 15, 17, 19, 21, 23, 25, 27, 29, …, the gap of two possible prime numbers will be greater 

than 2, failing to be a TPP. So, by removing multiples of 3 from odd number sequence, we get 

the form (6n - 1, 6n + 1) like (5, 7), (11, 13), (17, 19), (23, 25).                            ■ 

Definition 2.2. Twin Prime Model Table(TPMT): TPMT is an infinitely expandable 2-

dimensional table, which arranges all possible twin prime pairs of the form (6n - 1, 6n + 1). 

Table 1 shows the initial part of TPMT.  

Table 1. Initial part of TPMT. 

n 6n-1 6n+1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97 101 103 107 109 

1 5 7 1d 1u                                   

2 11 13   1d 1u                                 

3 17 19     1d 1u                               

4 23 25 5u      1d 1u                             

5 29 31         1d 1u                           

6 35 37 7d 5d         1d 1u                         

7 41 43             1d 1u                       

8 47 49  7u             1d 1u                     

9 53 55 11u  5u              1d 1u                   

10 59 61                   1d 1u                 

11 65 67 13d   5d                 1d 1u               

12 71 73                       1d 1u             

13 77 79  11d 7d                      1d 1u           

14 83 85 17u    5u                      1d 1u         

15 89 91  13u  7u                         1d 1u       

16 95 97 19d     5d                         1d 1u     

17 101 103                                 1d 1u   

18 107 109                                   1d 1u 

The properties of TPMT are as follows. 

 Horizontal arrangement.  

- n: Sequence of possible twin prime pairs. 

- 6n – 1: Smaller number of a possible TPP. Primes are marked as red. 

- 6n + 1: Larger number of a possible TPP. Primes are marked as red. 

- (5, 7), (11, 13), (17, 19), … : Horizontal arrangement of all possible twin prime pairs. 

 Vertical arrangement.  

- (n, 6n - 1, 6n + 1) triples are vertically arranged. TPPs are marked as all red.  
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 Inner cells.  

- Inner cells are empty or marked as md or mu, where m = 1, 5, 7, 11, … and are 

explained below. 

Definition 2.3. Seed value: A number from the first row like 5, 7, 101. It is used in sieving 6n 

– 1 or 6n + 1. We use letter s as a seed value variable. 𝑠𝑖 means ith seed value. 

Definition 2.4. Up-number and down-number: In (6n - 1, 6n + 1), 6n – 1 is down-number 

and denoted by d, 6n + 1 is up-number and denoted by u. So, (6n - 1, 6n + 1) can be denoted 

as (down-number, up-number) = (d, u). 

If 6n – 1 or 6n + 1 is divisible by some seed value s, it is sieved and is marked as md or 

mu, where m = 1, 5, 7, 11, …. If down-number 6n – 1 = ms, it is marked as md. If up-number 

6n + 1 = ms, it is marked as mu. 

If m = 1, it is marked as (1d, 1u) pair, which means that (6n - 1, 6n + 1) pair is always 

divisible by itself. So, it does not mean sieved. If one or two numbers in (6n – 1, 6n + 1) pair 

is sieved, then (6n – 1, 6n + 1) can not be a TPP, because at least one of (6n – 1, 6n + 1) can 

not be prime.  

Definition 2.5. Vertical pairs: Vertically arranged (6n - 1, 6n + 1) pairs.  

Definition 2.6. Horizontal pairs: Horizontally arranged (6n - 1, 6n + 1) pairs.  

From the above lemmas and definitions, we can see the mechanism of how TPPs are 

found in TPM, through sieve patterns between horizontal and vertical pairs.  

 Sieve patterns between horizontal and vertical pairs.  

- Diagonal (1d, 1u) pair pattern: A horizontal (6n - 1, 6n + 1) pair always divides a 

vertical pair when they are same. So, (1d, 1u) pair always appears diagonally.  

- Vertical pattern: For a horizontal pair, the first downward non-empty pair is always 

(1d, 1u). For a seed value s, (u, d) or (d, u) pattern repeats vertically. This is 

because, for m = 1, 5, 7, 11, …, ms = 6n -1 or ms = 6n + 1 match occurs alternately.  

From the above sieve patterns Lemma 2.7 follows.  

Lemma 2.7. In TPMT, if all cells left side of a diagonal (1d, 1u) pair are empty, then the 

corresponding (6n - 1, 6n + 1) is a TPP. 

Proof. If all cells left side of a diagonal (1d, 1u) pair are empty, the corresponding (6n - 1, 6n 

+ 1) is divisible only by itself, so, it is a TPP.                                           ■ 
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Definition 2.8. Phases: Phases are the values of n where the first downward md or mu 

appears. There are two kinds of phases. One is down-phase pd, the value of n where the first 

md appears. The other is up-phase pu, the value of n where the first mu appears. 

 Phase examples: The phase pair of seed 11 is (pd, pu) = (2, 9). The phase pair of seed 

13 is (pu, pd) = (2, 11). Note that seed s = pd + pu. The phase pair will be used when 

defining phased Sieve Functions(pSFs). Table 2 shows some (pd, pu) or (pu, pd) pairs. 

Table 2. Phase patterns. 

The sieve patterns of TPMT is summarized in Figure 1.  

Figure 1. Sieve patterns of TPMT. 
 

 

 
 

3. Sieve View of TPC 

In Table 1, we can see that every vertical pair (6n - 1, 6n + 1) is matched to a number 

sequence n = 1, 2, 3, …. So, we can transform sieving (6n - 1, 6n + 1) vertical pairs to sieving 

number sequence n, …, as in Figure 2.  

Seed 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 ... 

Phases 1, 4 1, 6 2, 9 2, 11 3, 14 3, 16 4, 19 4, 21 5, 24 5, 26 6, 29 6, 31 7, 34 7, 36 8, 39 8, 41 ... 

(6n-1, 6n+1) = (5, 7) is always divisible by (5, 7) itself, so, (1d, 1u) 
pair occurs diagonally.  

 

If left side cells of (1d, 1u) are all empty, it means that (6n-1, 6n+1) 
is divisible only by itself, so, it is a TPP(Lemma 2.7). 

Left side cells of (1d, 1u) are not all empty. Down value 
6n-1=65 is sieved by seed 5 and 13. 

Left side cells of (1d, 1u) are not all empty. Up value 
6n+1=91 is sieved by seed 7 and 13. 

integer sequence n 
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Figure 2. Patterns of sieving vertical pairs. 

seeds 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 ... s .... ... 

                    

                    

                    

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   Ω  

In Figure 2, arrows from each seed, sieve numbers from n = 1, 2, 3, … and the unsieved 

n represents a TPP. For example, for n = 1, (6n – 1, 6n + 1) = (5, 7) is a TPP. For n = 7, (6n 

– 1, 6n + 1) = (41, 43) is also a TPP. But for n = 6, (6n – 1, 6n + 1) = (35, 37) can’t be a TPP, 

because 6 is sieved by seeds 5 and 7. 

So, TPC can be stated as whether the seed values 5, 7, 11, 13, … can sieve all integers 

after some specific number Ω, which is marked as red in Figure 2. If such a specific number 

Ω exist, it means that TPPs are finite and so TPC is false.  

In this section, we transformed TPC view to a sieve view of an ordinary integer sequence 

n = 1, 2, 3, …, similar to the sieve of Eratosthenes. 

4. Sieve Functions 

To functionally treat the sieve of Eratosthenes, we introduce SFs and Composite Sieve 

Functions(CSFs). 

Definition 4.1. Sieve Function(SF): A sine function 𝑓𝑖(𝑥) = 𝑠𝑖𝑛
𝜋𝑥

𝑝𝑖
, where pi is the ith prime 

number, p1 = 2. Examples of SFs are shown in Figure 3. 

Figure 3. Example SFs. 

  

(a) SF for p1 = 2, 𝑓1(𝑥) = 𝑠𝑖𝑛
𝜋𝑥

2
. (b) SF for p2 = 3, 𝑓2(𝑥) = 𝑠𝑖𝑛

𝜋𝑥

3
. 

In Figure 3, the multiples of pi are the zeros of 𝑓𝑖(𝑥). So, we can say that numbers n = tpi, 

t = 2, 3, 4, … are sieved by 𝑓𝑖(𝑥). When, t = 1, n = pi is considered unsieved. 

Let’s see how SFs give functional view of the sieve of Eratosthenes. 

Lemma 4.2. In sieving numbers less than or equal to N, we need to sieve numbers which are 

the multiples of prime numbers only up to √𝑁. 

Proof. Suppose 𝑥𝑦 = 𝑁 = √𝑁√𝑁. If 𝑥 ≥ √𝑁, then 𝑦 ≤ √𝑁 and vice versa. Thus, if 𝑥𝑦 = 𝑁, 
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then one of x or y must be less than or equal to √𝑁. This means that if N can be factored, 

one of the factors which will sieve N, must be less than or equal to √𝑁.                   ■ 

For example, to find out prime numbers between 1 to 51, we sieve multiples of prime 

numbers between 2 and √50 > 7.07 , i.e., 2, 3, 5, 7. In functional view, four SFs, 𝑓1(𝑥) =

𝑠𝑖𝑛 (
𝜋𝑥

2
) , 𝑓2(𝑥) = 𝑠𝑖𝑛(

𝜋𝑥

3
), 𝑓3(𝑥) = 𝑠𝑖𝑛(

𝜋𝑥

5
), 𝑓4(𝑥) = 𝑠𝑖𝑛(

𝜋𝑥

7
) are required to sieve all composite 

numbers between 1 and 51. 

Definition 4.3. Composite Sieve Function(CSF): A product of SFs, 𝐹𝑘(𝑥) = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1 . An 

example CSF is depicted in Figure 4. 

Figure 4. Example CSF, k = 2, dotted or dashed graphs are SFs. 

 

Figure 4 depicts an example CSF, 𝐹2(𝑥) = ∏ 𝑓𝑖(𝑥)2
𝑖=1 = 𝑠𝑖𝑛(

𝜋𝑥

2
)𝑠𝑖𝑛(

𝜋𝑥

3
). The dotted and 

dashed graphs are 𝑓1(𝑥) = 𝑠𝑖𝑛(
𝜋𝑥

2
) and 𝑓2(𝑥) = 𝑠𝑖𝑛(

𝜋𝑥

3
), respectively. Numbers 𝑁 = 2𝑡 and  

𝑁 = 3𝑡, 𝑡 = 2, 3, 4, … are sieved by 𝑓1(𝑥) and 𝑓2(𝑥). The unsieved numbers between 1 and 

25 are all prime numbers, because 3 is the largest prime number less than 5 = √25. 

Definition 4.4. Sieved n: Integers that are sieved by some sieve function. 

Definition 4.5. Unsieved n: Integers that are not sieved by some sieve function. 

Lemma 4.6. A CSF 𝐹𝑘(𝑥) = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1  is a periodic function with period ∏ 𝑝𝑖

𝑘
𝑖=1 . 

Proof. A CSF 𝐹𝑘(𝑥) is the product of k periodic sine functions with period pi, so, a CSF is also 

a periodic function with period ∏ 𝑝𝑖
𝑘
𝑖=1  [8][9].                                         ■ 

Lemma 4.7. Any CSF 𝐹𝑘(𝑥) = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1  can not sieve all integers after some specific 

number Ω. 

Proof 1. If some CSF 𝐹𝑘(𝑥) can sieve all integers after a specific number Ω, it means that 

the prime numbers are finite, which contradicts.                                       ■ 

Proof 2. 𝐹𝑘(𝑥) has a finite-period with unsieved n within its period. So, it will repeats infinitely 

many times its period, which means that it is impossible to sieve all integers after some 

specific number Ω.                                                               ■ 

Lemma 4.7 states that any CSF can’t sieve all integers after some specific number Ω, 

leaving infinite prime numbers. It means that any multiplication of sine functions with period 

greater than 1, can’t have all integers after some specific number as zeros. Only 𝑠𝑖𝑛(𝜋𝑥) can 
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sieve all integers after a specific number, which means that to sieve all numbers after a 

specific number, all integers should be sieved. This also implies that 𝑠𝑖𝑛(𝜋𝑥)  can’t be 

expressed by multiplying or adding any other sine functions with period greater than 1.  

We also can prove the infinitude of prime numbers by induction.  

Lemma 4.8. There are infinitely many prime numbers.  

Proof. Let’s prove by induction.  

Step 1: At k = 1, there are infinitely many unsieved n of the sieve function 𝐹1(𝑥). 

Step 2: Suppose, at k, there are infinitely many unsieved n of the sieve function 𝐹𝑘(𝑥). 

Step 3: Then, at k + 1, adding a new seed pk+1, can not change that 𝐹𝑘+1(𝑥) is a finite-period 

function, with unsieved n within its period. So, by Lemma 4.7, there are infinitely many 

unsieved n of the sieve function 𝐹𝑘+1(𝑥), leaving infinitely many prime numbers.          ■ 

In this section, we introduced SFs and CSFs and showed that the sieve of Eratosthenes 

can be functionally treated by the sinusoidal sieve functions. The periodicity of sinusoidal 

sieve functions can give visible understanding on how prime numbers are found and why the 

last prime number can not exist.  

5. phased SFs 

The sieve patterns of TPMT have non-zero phases as in Definition 2.8. So, we need to 

define phased SFs. 

Definition 5.1. phased Sieve Function(pSF): A product of two sine functions, ℎ𝑖(𝑥) =

𝑑𝑖(𝑥)𝑢𝑖(𝑥) , where 𝑑𝑖(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥 – 𝑝𝑑)

𝑠𝑖
 is down-sieve-function and 𝑢𝑖(𝑥) = 𝑠𝑖𝑛

𝜋(𝑥 – 𝑝𝑢)

𝑠𝑖
 is 

up-sieve-function, and si is the ith seed of sequence s = 5, 7, 11, …, and (pd, pu) is a phase 

pair of ith seed. The example graphs of ℎ𝑖(𝑥) are depicted in Figure 5 (a) and (b). 

Definition 5.2. Composite phased Sieve Function(CpSF): The product of pSFs, 𝐻𝑘(𝑥) =

∏ ℎ𝑖(𝑥)𝑘
𝑖=1 , 𝑘 = 1, 2, 3, …, as in Figure 5 (c).  

Figure 5. pSF and CpSF examples. 

  

- red: ℎ1(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

5
𝑠𝑖𝑛

𝜋(𝑥−4)

5
, period=5. 

- dotted: 𝑑1(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

5
, pd = 1. 

- dashed: 𝑢1(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−4)

5
, pu = 4. 

- red: ℎ2(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

7
𝑠𝑖𝑛

𝜋(𝑥−6)

7
, period=7. 

- dotted: 𝑢2(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

7
, pu = 1. 

- dashed: 𝑑2(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−6)

7
, pd = 6. 

(a) ℎ1(𝑥), s1 = 5. (b) ℎ2(𝑥), s2 = 7. 
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(c) 𝐻2(𝑥) = 5ℎ1(𝑥)ℎ2(𝑥) (5 is multiplied to enlarge the graph), period Q = 5*7 = 35. 

Figure 6 shows how the sieve patterns of TPMT can be functionally represented for s1 = 

5 of Figure 5 (a).  

Figure 6. Functional representation of the sieve patterns of TPMT, s1 = 5. 
 
 
 

 
 

Figure 7 shows how the sieve patterns of TPMT can be functionally represented for s2 = 

7 of Figure 5 (b).  

  

Down phase for seed s1=5 is pd=n=1. So, 𝑑1(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

5
. 

n=1, 2, 3, … is sieved by 
𝑑𝑖(𝑥) or 𝑢𝑖(𝑥). 

Up phase for seed s1=5 is pu=n=4. So, 𝑢1(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−4)

5
. 

Graphs for seed s1 = 5. x-axis is sieved by ℎ1(𝑥). 

seed s1=5 



 

 

                           

                                                

- 9 - 

 

Figure 7. Functional representation of the sieve patterns of TPMT, s2 = 7.  
 

 

 
 

Like SFs and CSFs, pSFs and CpSFs are also periodic functions. Figure 8 depicts pSFs 

and CpSF with adjusted amplitude for visual effect. (a) depicts the graphs of 𝑑𝑖(𝑥) and 𝑢𝑖(𝑥) 

for 18 seeds si = 5, 7, 11, …, 55, 1 ≤ i ≤ 18. (b) depicts 𝐻18(𝑥) = ℎ1(𝑥) … ℎ18(𝑥). (c) depicts 

enlarged view of some zeros of (a). (d) depicts enlarged view of two concentration points 

inside the rectangle of (a). 

Figure 8. Graphs of pSFs and CpSF for the first 18 seeds.  

In Figure 8 (c), at least two graphs will cross n = 1, 2, 3, …, which stands for diagonal (1d, 

1u) pair in Table 1. Extra crosses stand for md or mu in Table 1, m ≠ 1. For example, for n = 

  

(a) 𝑑𝑖(𝑥) and 𝑢𝑖(𝑥), 1≤i≤18. (b) CpSF 𝐻18(𝑥). 

  

(c) Enlarged view of some zeros of (a). (d) Enlarged box in (a). 

B(1/6, -1/2) A(-1/6, -1/2) 

Up phase for seed s2=7 is pu=n=1. So, 𝑢2(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−1)

7
. 

n=1, 2, 3, … is sieved by 
𝑑𝑖(𝑥) or 𝑢𝑖(𝑥). 

Down phase for seed s2=7 is pd=n=6. So, 𝑑2(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−6)

7
. 

seed s2=7 

Graphs for seed s2 = 7. x-axis is sieved by ℎ2(𝑥). 
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6, all the left side cells of (1d, 1u) are not empty. There are two non-empty cells with 7d and 

5d, So, 4 graphs cross 6, and (6n – 1, 6n + 1) = (35, 37) can’t be a TPP.  

 Meaning of zeros: Figure 8 (c) is enlarged view of some zeros of (a). Two graphs 

cross 3, 5 and 7, meaning that all cells left side of (1d, 1u) in Table 1 are empty for n 

= 3, 5, 7, resulting TPPs. For n = 4, 6, more than two graphs cross them, meaning that 

in Table 1, left side cells of (1d, 1u) are not all empty for n = 4, 6, failing to be TPPs. 

So, in view of phased SFs, sieved n are integers that are crossed more than twice by 

graphs of 𝑑𝑖(𝑥) and 𝑢𝑖(𝑥), and let’s call it sieved n of the sieve function 𝐻𝑘(𝑥). Likewise, 

unsieved n are integers that are crossed twice by the graphs of di(x) and ui(x), and let’s call it 

unsieved n of the sieve function 𝐻𝑘(𝑥). 

Each graphs of (a) crosses one of the two points, we call them concentration points.  

 Concentration points: Figure 8 (d) shows two concentration points where all graphs 

of (a) should pass. Which point to pass is determined by the following rules.  

- Rule 1: For 𝑢𝑖(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−𝑝𝑢)

𝑠𝑖
, where pu is up-phase of seed si and 𝑠𝑖 = 6𝑖 + 1, 

𝑢𝑖 (−
1

6
) = 𝑠𝑖𝑛(−

𝜋

6

6𝑝𝑢+1

6𝑖+1
) . So, when 𝑖 = 𝑝𝑢  it will be sin (−

𝜋

6
) = −

1

2
. This means 

that graphs with up-phase will pass 𝐴(−
1

6
, −

1

2
). For example, for seed value 5, (pd, 

pu) = (1, 4), 𝑢𝑖 (−
1

6
) = 𝑠𝑖𝑛

𝜋(−
1

6
− 4)

5
= 𝑠𝑖𝑛 (−

25𝜋

30
) = 𝑠𝑖𝑛 (−

5𝜋

6
) = 𝑠𝑖𝑛 (−

𝜋

6
) = −

1

2
.  

- Rule 2: For 𝑑𝑖(𝑥) = 𝑠𝑖𝑛
𝜋(𝑥−𝑝𝑑)

𝑠𝑖
, where pd is down-phase of seed si and 𝑠𝑖 = 6𝑖 − 1, 

𝑑𝑖 (
1

6
) = 𝑠𝑖𝑛(−

𝜋

6

6𝑝𝑑−1

6𝑖−1
). So, when 𝑖 = 𝑝𝑑  it will be sin (−

𝜋

6
) = −

1

2
. This means that 

graphs with down-phase will pass 𝐵(
1

6
, −

1

2
). For example, for seed value 5, (pd, pu) 

= (1, 4), 𝑑𝑖 (
1

6
) = 𝑠𝑖𝑛

𝜋(
1

6
− 1)

5
= 𝑠𝑖𝑛 (−

5𝜋

30
) = 𝑠𝑖𝑛 (−

𝜋

6
) = −

1

2
. 

In this section, we introduced pSFs and related functions with non-zero phases. The 

periodic properties of pSFs and CpSFs are similar to those of SFs and CSFs, because they all 

inherit the properties of sinusoidal functions. By doing so, the sieve patterns of TPMT can be 

represented by pSFs and CpSFs, and we are ready to prove TPC. 
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6. Proof of TPC 

Lemma 6.1. A CpSF 𝐻𝑘(𝑥) is periodic with period 𝑄 = ∏ 𝑠𝑖
𝑘
𝑖=1 . 

Proof. 𝐻𝑘(𝑥) is the product of k periodic pSFs hi(x) with period si, so, it is also periodic with 

period 𝑄 = 𝑠1𝑠2 … 𝑠𝑘 = ∏ 𝑠𝑖
𝑘
𝑖=1 .                                                     ■ 

Lemma 6.2. A CpSF 𝐻𝑘(𝑥) can’t make all integers after some specific number Ω as sieved 

n, i.e., as its zeros.  

Proof. 𝐻𝑘(𝑥) is a finite-period function with non-sieved n within its period. So, it will repeats 

infinitely many times its period, which means that it is impossible to make all integers after a 

specific number Ω as sieved n, i.e., as its zeros.                                       ■ 

Lemma 6.3. There are infinitely many TPPs.  

Proof. Let’s prove by induction.  

Step 1: At k = 1, there are infinitely many unsieved n of the sieve function 𝐻1(𝑥). 

Step 2: Suppose, at k, there are infinitely many unsieved n of the sieve function 𝐻𝑘(𝑥). 

Step 3: Then, at k + 1, adding a new seed sk+1, can not change that 𝐻𝑘+1(𝑥) is a finite-period 

function, with unsieved n within its period. So, by Lemma 6.2, there are infinitely many 

unsieved n of the sieve function 𝐻𝑘+1(𝑥), leaving infinitely many TPPs.                  ■ 

As in Lemma 4.7, Lemma 6.2 and 6.3 state that any CpSF can not sieve all integers after 

some specific number Ω, leaving infinite TPPs. Only 𝑠𝑖𝑛(𝜋𝑥) can sieve all integers after a 

specific number. 

7. Conclusion 

In this thesis, we devised TPMT and SFs to prove TPC. In TPMT a TPP is found where all 

left cells of (1d, 1u) are empty. SFs and CSFs functionally represent the sieve of Eratosthenes 

and any CSFs can’t sieve all integers after some specific number Ω. The functional 

representations of sieve patterns of TPMT are pSFs and CpSFs. The properties of pSFs and 

CpSFs are similar to those of SFs and CSFs and any CpSF 𝐻𝑘(𝑥) can not sieve all integers 

after some specific number Ω, leaving infinite TPPs. Only 𝑠𝑖𝑛(𝜋𝑥) can sieve all integers after 

a specific number. A periodic function repeats values within a period infinitely many times. If 

values within a period are TPPs, they will also repeat infinitely many times, proving that there 

can’t be last TPP.  
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