Some results of derivatives of Reimann Xi function from analytical expression of Riemann Xi function $\xi(s)$

Debasis Biswas Chakdaha . W.B. 741222. India Email – <u>biswasdebasis38@gmail.com</u>

Abstract : [In this paper some properties of integer order derivatives of Riemann Xi function os directly derived from expression of Riemann Xi function $\xi(s)$]

Key Words : Riemann Xi function, Riemann Zeta function, Functional equation, Derivatives.

The Riemann Xi function $\xi(s)$ and Riemann Zeta function $\zeta(s)$ are connected by the relation [1]

$$\xi(s) = \frac{1}{2} s(s-1) \pi^{-\frac{s}{2}} \Gamma(s/2) \zeta(s) \qquad \dots (1)$$

The Riemann Xi function $\xi(s)$ satisfies a functional equation

 $\xi(s) = \xi(1-s)$

... (2)

It was shown by this author that Riemann Xi function can be analytically represented [2,3] as $\xi(s) = F_2(l_1) + F_1(l_1) \cosh l_1 (s - \frac{1}{2}) \qquad \dots (3)$

where $F_2(l_1)$ and $F_1(l_1)$ are two positive unknown constants and l_1 is a unknown positive parameter.

From (3) we can easily find the derivatives of $\xi(s)$.

From (4) it easily follows that

 $\xi^{(2n)}(1/2) = l_1^{2n} F_1(l_1)$ which imply

 $\xi^{(2)}(1\!\!/\!\!2), \quad \xi^{(4)}(1\!\!/\!\!2) \ldots \quad . \quad . \mbox{ are all positive because } l_1, F_1(l_1) \mbox{ are positive } \mbox{ ... } (5)$ It also follows from (4) that

$$\xi^{(2n+1)}(\frac{1}{2}) = 0$$

i.e.,
$$\xi^{(1)}(\frac{1}{2}) = \xi^{(3)}(\frac{1}{2}) = \xi^{(5)}(\frac{1}{2}) = \dots = 0$$
 ... (6)

It also follows directly from (4) that all the derivatives of Xi function are positive for $s > \frac{1}{2}$

Other interesting results also follow from (4)

$$\xi^{(2n)}(0) = l_1^{2n} F_1(l_1) \cosh \frac{l_1}{2} \qquad \dots (7)$$

which imply

 $\xi^{(2)}(0), \quad \xi^{(4)}(0)$ are all positive And again from (4)

$$\xi^{(2n+1)}(0) = -l_1^{2n+1} F_1(l_1) \operatorname{Sinh} \frac{l_1}{2} \qquad \dots (8)$$

which imply

 $\xi^{(1)}(0), \quad \xi^{(3)}(0) \dots$ are all negative

The above results were obtained by Coffey after a long calculation [4]. However as shown above that these results of derivatives of Riemann Xi function follow directly from analytic expression of Xi function $\xi(s)$ [2,3].

References

1.	E. C. Ttichmarsh	The theory of Riemann Zeta function. Second edition
		O.U.P. 1986
2.	Debasis Biswas	Vixra 2103.0083 V-3
3.	Debasis Biswas	Vixra 2105.0039
4.	Mark W. Coffey	Journal of Computitioonal and Applied Mathematics 166
		(2004) 525 - 534