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Abstract. In this article we will examine the behavior of certain free abelian subgroups

of the multiplicative group of the positive rationals and their relationship with the group

of units of integers modulo n.

1. Introduction

This paper studies the unit group of integers modulo n in Number Theory. It relates
two seemingly unrelated areas of mathematics, which are the multiplicative subgroups of
positive rational numbers and the unit group of integers modulo n. In order to study
deeper this relationship we will define two subgroups of positive rationals called Sd and Ωd

which carry a lot of information about the unit group of integers modulo d. The central
result of this paper is that the quotient group Ωd/Sd is isomorphic to U(Zd), where U(Zd)
is the unit group of integers modulo d. This theorem is the link that we will use to prove
deeper results about the unit group.

The methods that we will use in this paper are purely algebraic. Using these methods we
will compute the order of a special subgroup of U(Zd) called Ud,λ for all λ with λ | d, which is
equal to the number of natural numbers n such that n < d, gcd(n, d) = 1 and n ≡ 1 (modλ).

This number will be shown to be φ(d)
φ(λ) , where φ is the Euler’s totient function. This result

will prove a generalization of Euler’s totient formula, i.e. rφ(d) ≡ 1 (mod d)∀r ∈ U(Zd).
This will be generalized as r

φ(d)
φ(λ) ≡ 1 (mod d)∀r ∈ U(Zd) with r ≡ 1 (modλ). By putting

λ = 1 we get the Euler’s totient formula.

2. Proof of the central theorem

In this section we will define the groups Sd and Ωd which are very central to this paper
and we will prove the central theorem of this paper, that is Ωd/Sd is isomorphic to U(Zd),
where U(Zd) is the unit group of integers modulo d. We begin with a theorem about free
abelian groups.
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Theorem 2.1. Suppose W is a subset of natural numbers such that 0 /∈ W and for every

w1, w2 ∈ W it is true that w1w2 ∈ W . Let F =
{
w1
w2
| w1, w2 ∈ W

}
. Then F is a free

abelian group, subgroup of Q>0, where Q>0 is the multiplicative group of positive rational

numbers.

Proof. It is easy to see that sk ∈ F for every s, k ∈ F and 1
s ∈ F for every s ∈ F . This

means that F is a multiplicative subgroup of Q>0. Also it is easy to see that Q>0 is a free

abelian group with basis the prime numbers, i.e. every positive rational number can be

written uniquely in the form pn1
1 ...pnss where ni ∈ Z, ni 6= 0 and pi primes. So F is a free

abelian group.

�

Suppose now d is a natural number. It is easy to see that the set Wd =
{
nd+ 1| n ∈ N

}
satisfies the hypothesis of the theorem 2.1. So the set

Sd =
{ nd+ 1

md+ 1
| n,m ∈ N

}
is a free abelian group, say Sd = Free(Ud) for some Ud ⊆ Sd, i.e. every number q = nd+1

md+1

where n,m ∈ N can be written uniquely in the form uλ11 ...uλss for ui ∈ Ud and λi ∈ Z. Also
if r is a natural number with gcd(r, d) = 1 then

Sd =
{ nd+ 1

md+ 1
| n,m ∈ N

}
=
{ nd+ r

md+ r
| n,m ∈ N

}
. This is true because if nd+1

md+1 ∈ Sd then nd+1
md+1 = ndr+r

mdr+r and conversely if we have u = nd+r
md+r ,

then since gcd(r, d) = 1 there exists k such that rk ≡ 1 (mod d), so u = ndk+rk
mdk+rk .

Corollary 2.2. Let r, d ∈ N with gcd(r, d) = 1. The set

Sd =
{ nd+ 1

md+ 1
| n,m ∈ N

}
=
{ nd+ r

md+ r
| n,m ∈ N

}
is a free abelian group, Sd = Free(Ud) and for every n ∈ N each number nd + r can be

written uniquely in the form nd+ r = ruλ11 ...uλss for ui ∈ Ud and λi ∈ Z.

We continue with a definition.

Definition 2.3. Let q a positive rational number. We say that the prime p is a factor of q

if in the analysis of q, q = pk11 ...p
ks
s where ki ∈ Z, pi primes and ki 6= 0, there exists i such

that pi = p.
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Remark 2.4. We will see that Ud is infinite for each d ∈ N. Let p a prime number with

p > d. Then p ≡ r (mod d) for some r < d with gcd(r, d) = 1. So by Corollary 2.2 p can

be written in the form ruλ11 ...uλss for ui ∈ Ud and λi ∈ Z. So this means that p is a factor

of some ui ∈ Ud. So finally every prime number greater than d is a factor of some u ∈ Ud,

which makes Ud an infinite set. Thus, it is clear that Sd ∼= ⊕n∈NZ.

Definition 2.5. Fix d ∈ N. We define Ωd to be the free abelian group generated by all

primes p with gcd(p, d) = 1.

It is clear that Sd ∼= Ωd
∼= ⊕n∈NZ.

Now we are in a position to give a full proof of the central theorem of this paper, that is
that the quotient group Ωd/Sd ∼= U(Zd).

Theorem 2.6. The quotient group Ωd/Sd is isomorphic to U(Zd), where U(Zd) is the

multiplicative group of the units of Zd which has order φ(d), where φ is the Euler’s totient

function.

Proof. We will prove that Ωd/Sd ∼= U(Zd). Let q ∈ Ωd. Then q = n
m where n,m ∈ N and

gcd(n, d) = gcd(m, d) = 1.

Now using Corollary 2.2 we have that n and m can be written in the form n = ruλ11 ...uλss

for ui ∈ Ud and λi ∈ Z, where Sd = Free(Ud) and m = sxk11 ...x
kl
l where xi ∈ Ud and

r, s < d with gcd(r, d) = gcd(s, d) = 1.

So the number q can be written uniquely in the form q = r
sy
m1
1 ...ymtt where yi ∈ Ud.

So let the function f : Ωd/Sd → U(Zd) with f(( rsy
m1
1 ...ymtt )Sd) = rs−1, where s−1 is the

multiplicative inverse of s in the group U(Zd). It is easy to see that f is an isomorphism. �

3. Applications of the central theorem

In this section we will turn our attention to applications of the central theorem(Theorem
2.7). We will prove some new theorems about the unit group U(Zd) for d natural number.

Suppose that we have two positive integers λ, d such that λ | d. Then it is clear that
Sd ≤ Sλ and Ωd ≤ Ωλ.
Let the function f : Ωd/Sd → Ωλ/Sλ with f(uSd) = uSλ, u ∈ Ωd. Then f is well defined
since Sd ≤ Sλ and it is clearly a homomorphism. Also we have

Kerf =
{
uSd ∈ Ωd/Sd| u ∈ Sλ

}
= (Ωd ∩ Sλ)/Sd.
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We have shown that Ωd/Sd ∼= U(Zd), where U(Zd) is the multiplicative group of the units
of Zd and also Ωλ/Sλ ∼= U(Zλ). Also it is true that (Ωd/Sd)/Kerf ∼= Imf , so it is clear
that (Ωd ∩Sλ)/Sd is a finite group and |(Ωd ∩Sλ)/Sd| | φ(d), where φ is the Euler’s totient

function. Also φ(d)
|(Ωd∩Sλ)/Sd| | φ(λ). Thus, we have that

φ(d)

φ(λ)
| |(Ωd ∩ Sλ)/Sd| | φ(d).

Also, it is evident that a quotient of U(Zd) can be embedded to U(Zλ).
We will continue with a definition

Definition 3.1. Let n a natural number. We define ω(n) to be the number of prime

divisors of n. For n = 1 trivially we define ω(1) = 0.

Now we are in a position to compute the isomorphism type of the quotient group Ωλ/Ωd

for λ | d.

Proposition 3.2. Let λ, d ∈ N such that λ | d. We have

Ωλ/Ωd
∼= Zω(d)−ω(λ)

Proof. Set k = ω(d) − ω(λ). Let a function h : Ωλ/Ωd → Zk with h((pm1
1 ...pmkk )Ωd) =

(m1, ...,mk), where p1, .., pk are the primes which divide d and do not divide λ. Clearly

the number of such primes is k = ω(d) − ω(λ). Then it is easy to see that h is an

isomorphism. �

We will define now a new function g : Sλ/Sd → Ωλ/Ωd with g(uSd) = uΩd, u ∈ Sλ. We
have that g is well defined, since Sd ≤ Ωd. Clearly g is a homomorphism. Also we have
that

Kerg =
{
uSd ∈ Sλ/Sd| u ∈ Ωd

}
= (Ωd ∩ Sλ)/Sd

, which we have shown that it is a finite group.
We are now ready to state and prove the following theorem.

Theorem 3.3. Let λ, d ∈ N such that λ | d.

The quotient group Sλ/Sd is a finite group if and only if ω(d) = ω(λ).

In this case |Sλ/Sd| = d
λ .

Proof. (⇐) Assume that ω(d) = ω(λ). Then by Proposition 3.2 we have Ωλ/Ωd
∼=

Zω(d)−ω(λ) ∼= 1. So the homomorphism g as defined above has trivial image. So Kerg =
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Sλ/Sd. But we have shown that Kerg = (Ωd ∩ Sλ)/Sd, which we have shown that it is a

finite group. So Sλ/Sd is a finite group.

(⇒) Assume now that Sλ/Sd is a finite group. Assume that ω(d) 6= ω(λ). Then there exists

a prime p such that p | d and p does not divide λ. Now using Theorem 7.9 in [2] we have

that there exists a prime q such that q > p and p ≡ q (modλ). Then by Corollary 2.2 we

have that p
q ∈ Sλ. Also g(pqSd) = p

qΩd 6= 1, since p
q /∈ Ωd because p | d. So Img 6= {1} and

also Img is a free abelian group since Img ≤ Ωλ/Ωd
∼= Zω(d)−ω(λ) by Proposition 3.2 and

Theorem 4 in Section 12.1 in [1]. So Img is an infinite group. But (Sλ/Sd)/Kerg ∼= Img.

This means that Sλ/Sd has an infinite quotient. So Sλ/Sd is an infinite group, which is

a contradiction. Therefore, finally ω(d) = ω(λ). Now, in the case where ω(d) = ω(λ),

we have Ωd = Ωλ. So we have (Ωd/Sd)/(Sλ/Sd) ∼= Ωd/Sλ= Ωλ/Sλ ∼= U(Zλ) and also

Ωd/Sd ∼= U(Zd). So φ(d)
|Sλ/Sd| = φ(λ)⇒ |Sλ/Sd| = φ(d)

φ(λ) . Also, φ(d) = d
∏
p|d(1 −

1
p) and

φ(λ) = λ
∏
p|λ(1− 1

p). But ω(d) = ω(λ), so
∏
p|d(1−

1
p) =

∏
p|λ(1− 1

p). So φ(d)
φ(λ) = d

λ , which

gives that |Sλ/Sd| = d
λ . �

Corollary 3.4. Let λ, d postive integers with λ | d and ω(d) = ω(λ). Then for every n ∈ N

with n ≡ 1 (modλ) we have n
d
λ ≡ 1 (mod d).

Proof. By Theorem 3.3 we have that |Sλ/Sd| = d
λ , so if n ∈ N with n ≡ 1 (modλ) then n ∈

Sλ, so nSd ∈ Sλ/Sd which gives (nSd)
d
λ = 1. Therefore n

d
λ ∈ Sd, so n

d
λ ≡ 1 (mod d). �

Suppose now that we have two positive integers λ, d with λ | d. Set k = ω(d) − ω(λ).
Let p1, ..., pk be the primes which divide d but do not divide λ. For each i ∈ {1, ..., k}
select a prime qi such that qi ≡ pi (modλ) and qi > pj for every j ∈ {1, ..., k}. This can be

done by Theorem 7.9 in [2] since pi ∈ Ωλ. We define now a function w : Zk → Sλ/Sd with
w(w1, ..., wk) = [(p1q1 )w1 ...(pkqk )wk ]Sd, for wi ∈ Z. It is easy to see that w is a homomorphism.

Also if w1, .., wk ∈ Z then (p1q1 )w1 ...(pkqk )wk ∈ Sd ⇐⇒ w1 = ... = wk = 0, since the primes pi
divide d. This shows that Kerw = 0, so w is an embedding.
We are now ready to compute the isomorphism type of the quotient group Sλ/Sd for λ | d.
From Theorem 3 of section 5.2 in [1] every finitely generated abelian group can be written
as direct sum of cyclic groups. The number of copies of Z(infinite cyclic) in the direct sum
decomposition of the finitely generated group G is denoted by rank(G). Also by Theorem
5 in section 12.1 in [1] the torsion group of a finitely generated abelian group G i.e. the
set of elements of G which have finite order is isomorphic to the direct sum of the finite
cyclic groups occuring in the direct sum decomposition of G.The torsion subgroup of G is
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denoted by Tor(G). We have

Tor(G) =
{
g ∈ G|∃n ∈ N(gn = 1)

}
Now we will prove the following theorem.

Theorem 3.5. Let λ, d positive integers such that λ | d. Then

Sλ/Sd ∼= Zω(d)−ω(λ) ⊕ (Ωd ∩ Sλ)/Sd

Proof. We have shown that the homomorphism w as defined above is an embedding. This

shows that rank(Sλ/Sd) ≥ ω(d)−ω(λ). Also if g : Sλ/Sd → Ωλ/Ωd with g(uSd) = uΩd then

we have seen that g is a homomorphism. Also we have seen that Kerg = (Ωd ∩ Sλ)/Sd,

which we have seen that it is a finite group. Also (Sλ/Sd)/Kerg ∼= Img, which gives

rank(Sλ/Sd)−rank(Kerg) = rank(Img) and rank(Kerg) = 0. Therefore rank(Sλ/Sd) =

rank(Img). But Img ≤ Ωλ/Ωd
∼= Zω(d)−ω(λ). So rank(Img) ≤ ω(d)−ω(λ). If we put it all

together we have that rank(Sλ/Sd) = ω(d)−ω(λ). Also we have that Kerg = (Ωd∩Sλ)/Sd

and (Sλ/Sd)/Kerg is torsion free. Therefore Tor(Sλ/Sd) ≤ (Ωd ∩ Sλ)/Sd. Also every

element of (Ωd∩Sλ)/Sd is an element of finite order. Therefore Tor(Sλ/Sd) = (Ωd∩Sλ)/Sd.

So finally,

Sλ/Sd ∼= Zω(d)−ω(λ) ⊕ (Ωd ∩ Sλ)/Sd.

�

Now we will define a subgroup of U(Zd) which is called Ud,λ. The importance of this
group will be shown later.

Definition 3.6. Let λ, d ∈ N with λ | d. Then we define

Ud,λ =
{
n ∈ U(Zd)|n ≡ 1 (modλ)

}
Let now u ∈ (Ωd ∩ Sλ)/Sd. Then u ∈ Sλ, so there exist m,n ∈ N such that m ≡ n ≡

1 (modλ) and u = m
n . Also we have m

n ∈ Ωd. Pick r, s < d such that m ≡ r (mod d) and
n ≡ s (mod d). It is evident that r ≡ s ≡ 1 (modλ). Then m

r ,
n
s ∈ Sd. So there exists

f ∈ Sd such that u = m
n = r

sf . We define now a function j : (Ωd ∩ Sλ)/Sd → Ud,λ with

j(( rsf)Sd) = rs−1, where s−1 is the multiplicative inverse of s in the group Ud,λ. Then we
can see that j is an isomorphism.

Corollary 3.7. If λ | d then (Ωd ∩ Sλ)/Sd ∼= Ud,λ
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Corollary 3.8. If λ | d then

Sλ/Sd ∼= Zω(d)−ω(λ) ⊕ Ud,λ.

4. The unit group of integers modulo d.

We have now developed the appropriate tools to investigate deeper the group U(Zd).
We will compute ther order of the group Ud,λ for λ | d and this will show a generalization
of Euler’s totient formula.

Theorem 4.1. Let λ, d ∈ N with λ | d. Then |Ud,λ| = φ(d)
φ(λ) .

Proof. Let x = |(Ωd ∩ Sλ)/Sd| = |Ud,λ| = number of natural numbers n such that n < d,

gcd(n, d) = 1 and n ≡ 1 (modλ).

We have seen that the function f : Ωd/Sd → Ωλ/Sλ with f(uSd) = uSλ has Kerf =

(Ωd ∩ Sλ)/Sd. We will show that (Ωλ/Sλ)/Imf = {1}.

Let yImf ∈ (Ωλ/Sλ)/Imf . Then y ∈ Ωλ/Sλ. So y = uSλ, where u ∈ Ωλ. Let u = pλ11 ...pλss

where pi are primes and λi ∈ Z. Fix i ∈ {1, .., s}. Then we consider two cases. Firstly if pi

do not divide d then pi ∈ Ωd. So piSλ ∈ Imf . Secondly, if pi | d then pick a prime qi > d

such that pi ≡ qi (modλ). This can be done because gcd(pi, λ) = 1 since u ∈ Ωλ and by

Theorem 7.9 in [2]. Then we have pi
qi
∈ Sλ. So piSλ = qiSλ and qi ∈ Ωd. So qiSλ ∈ Imf ,

which gives piSλ ∈ Imf . So finally in both cases we have piSλ ∈ Imf for every i ∈ {1, .., s}.

Thus, (pλ11 ...pλss )Sλ ∈ Imf , which gives y ∈ Imf . This shows (Ωλ/Sλ)/Imf = {1}. Now

we have that (Ωd/Sd)/Kerf ∼= Imf = Ωλ/Sλ. So φ(d)
x = φ(λ)⇒ x = φ(d)

φ(λ) and the theorem

is proved. �

Corollary 4.2. There are exactly φ(d)
φ(λ) natural numbers n such that n < d, gcd(n, d) = 1

and n ≡ 1 (modλ).

Corollary 4.3. Let λ, d natural numbers with λ | d. Then for every m ∈ N with m ≡

1 (modλ) and gcd(m, d) = 1, we have m
φ(d)
φ(λ) ≡ 1 (mod d).

Proof. Suppose m is a natural number with m ≡ 1 (modλ) and gcd(m, d) = 1. Then

we have m ∈ Sλ and m ∈ Ωd. So mSd ∈ (Ωd ∩ Sλ)/Sd and also by Theorem 4.1 and
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Corollary 3.7 the order of (Ωd ∩ Sλ)/Sd is φ(d)
φ(λ) . Thus m

φ(d)
φ(λ) ∈ Sd which means that

m
φ(d)
φ(λ) ≡ 1 (mod d). �

We are now ready to state and prove a theorem about the unit group modulo d. This
theorem is another property of the group Ud,λ.

Theorem 4.4. Let λ, d ∈ N with λ | d. Then U(Zd)/Ud,λ ∼= U(Zλ).

Proof. Consider the function h : U(Zd) → U(Zλ) with h([n]d) = [n]λ. We have that h is

well defined because if gcd(n, d) = 1 then it is true that gcd(n, λ) = 1 and also because if

we have n ≡ m (mod d) this implies n ≡ m (modλ). So h is well defined. Also obviously

h is a homomorphism. Now we have Kerh =
{

[n]d ∈ U(Zd)| n ≡ 1 (modλ)
}

= Ud,λ.

Also we have that U(Zd)/Ud,λ ∼= Imh. But the order of U(Zd)/Ud,λ is φ(d)

(
φ(d)
φ(λ)

)
= φ(λ).

Thus the order of Imh is φ(λ), which gives that Imh = U(Zλ) and h is surjective. So

U(Zλ) =
{

[n]λ| [n]d ∈ U(Zd)
}

. �

We are now proving the last theorem of this article.

Theorem 4.5. Let n be a natural number with n > 1. Suppose n = pλ11 ...pλkk where pi

distinct primes and λi positive integers. Then for every u1, ..., uk ∈ U(Zn) there exists

u ∈ U(Zn) such that u ≡ ui (mod pλii ) for every i ∈ {1, .., k}.

Proof. Let the function l : U(Zn)→ ⊕i(U(Zn)/U
n,p

λi
i

) with l(m) = (mU
n,p

λ1
1

, ...,mU
n,p

λk
k

).

Then clearly l is well defined and it is a homomorphism. Now we have

Kerl =
{
m ∈ U(Zn)| m ≡ 1 (mod pλii )∀i

}
= {1}.

So l is injective. Also we have that U(Zn)/U
n,p

λi
i

∼= U(Z
p
λi
i

) for every i by Theorem 4.4.

So ⊕i(U(Zn)/U
n,p

λi
i

) ∼= ⊕iU(Z
p
λi
i

). Now by Lemma A.3 in Appendix A in [3] we have that

U(Zn) ∼= ⊕iU(Z
p
λi
i

). This means that l is also surjective. Now let u1, .., uk ∈ U(Zn). Then

(u1Un,pλ11
, ..., ukUn,pλkk

) ∈ ⊕i(U(Zn)/U
n,p

λi
i

)

But l is surjective, so there exists u ∈ U(Zn) such that l(u) = (u1Un,pλ11
, ..., ukUn,pλkk

). This

means that u ≡ ui (mod pλii ) for every i ∈ {1, .., k}. �
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