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Abstract. Lehmer’s totient problem asks if there exists a composite number d such

that its totient divide d− 1. In this article we generalize the Lehmer’s totient problem in

algebraic number fields. We introduce the notion of a Lehmer number. Lehmer numbers

are defined to be the natural numbers which obey the Lehmer’s problem in the ring of

algebraic integers of a number field.

1. Introduction

Lehmer’s totient problem is an open conjecture in Number Theory. It states that if for

a natural number d, φ(d) | d − 1 then d is a prime number. Here φ is the Euler’s totient

function. In this article we will generalize Lehmer’s totient problem on algebraic number

fields. The original Lehmer’s totient conjecture is equivalent to the generalized problem

in Q. Also, we define the concept of a Lehmer number over K. Then the generalized

Lehmer’s problem in K is equivalent to say that every natural number is a Lehmer number

over K. The generalized problem in a number field which is not Q is linked to the value of

the Riemann zeta function in the degree of the extension of K over Q. The main reason we

can not apply the same argument in Q is that the Riemann zeta function is infinite at 1.

For the generalized problem in a number field K, we generalize the Euler’s totient function

φ and denote it by φK . Of course, we have φQ = φ. We consider the generalized problem

only in number fields in which their ring of algebraic integers is a unique factorization

domain. This is because in order to talk about the generalized Euler’s totient function

we need the concept of the greatest common divisor. In the generalized problem integers

become algebraic integers of the number field.
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In this article, we will define the concept of a realizable number over K. A natural

number is defined to be realizable over K if every prime divisor of this number in Z is

irreducible element in the ring of algebraic integers of K. We will show that for a number

field which is not Q, if a natural number is realizable then it is a Lehmer number. Thus, the

generalized problem is linked to primes in Z which are irreducible elements of the domain

of algebraic integers of a number field. As a result, we discuss the Lehmer’s problem in

Q(i). In this article we define the notion of a normal number over K. We prove that d is

a Lehmer number over Q if and only if there exists a number field K such d is a normal

Lehmer number over K. Also, we prove that if [K : Q] ≥ 2, then K is a realizable field if

and only if K is a Lehmer field and every prime in Z is a normal number over K. Also,

we define the notion of a strongly Lehmer number. We have that in Q a natural number

is strongly Lehmer number if and only if it is a Lehmer number. However, in an arbitrary

number field these two notions do not coincide in general. Also, we prove that if [K : Q] ≥ 2

then K is a realizable field if and only if K is a strongly Lehmer field. We prove that if

K,L are number fields such that the extensions K/Q, L/Q are isomorphic, then K and L

have the same realizable numbers. Finally, we will prove a result concerning the Lehmer’s

totient problem over Q.

2. Congruences in number fields

To generalize the Euler’s totient function to a number field we need to define congruences

over the algebraic integers of the field. The definition of congruences is natural. We denote

the domain of algebraic integers of the field K by OK . From now on we will assume

that OK is a unique factorization domain. In a unique factorization domain the greatest

common divisor of two algebraic integers is always defined. From now on if x, y ∈ OK we

write ((x, y)) for the greatest common divisor of x and y.

Definition 2.1. Let K be an algebraic number field. Suppose that we have d ∈ N and

x, y ∈ OK . We define x ≡ y (mod d) iff d | x− y in OK .
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It is easy to see that ≡ is an equivalence relation. Let d be a natural number. The set

of equivalence classes of the relation ≡ in OK is denoted by Zd|K .

Definition 2.2. If x,y ∈ OK then in the set Zd|K we define [x]d + [y]d = [x + y]d and

[x]d[y]d = [xy]d, where [x]d and [y]d are the equivalence classes of x and y respectively.

Under these operations, it is easy to see that Zd|K is a ring. We will prove later that

Zd|K is a finite ring for every number field K. Now we can define the unit group of integers

modulo d in K. The elements of this group are equivalence classes of algebraic integers of

the number field.

Definition 2.3. Let d be a natural number and K be a number field. The set U(Zd)|K is

defined to be the set with elements all [x]d ∈ Zd|K such that ((x, d)) = 1. The set U(Zd)|K
is called the unit group of integers modulo d in K.

Like in Q we have that U(Zd)|K is a group under multiplication. It is evident to see

that U(Zd) = U(Zd)|Q. We have the following Proposition.

Proposition 2.4. Let K be a number field and d be a natural number. Then the ring Zd|K
is a finite ring. Moreover, if [K : Q] = n, then |Zd|K | = dn and also Zd|K ∼= (Zd)n as

additive groups, where Zd is the usual ring of rational integers mod d.

Proof. From [1] we have that the field K has an integral basis. Then, if the integral basis

is {w1, .., wn} we have that every algebraic integer x can be written uniquely in the form

x =
∑n

i=1 kiwi, where ki are rational integers. Now, since the numbers ki are rational

integers we get ki ≡ λi (mod d), for some λi ∈ {0, 1.., d − 1}. Thus, x =
∑n

i=1 kiwi ≡∑n
i=1 λiwi, (mod d). Now, the number of elements of the form

∑n
i=1 λiwi is finite, because

λi ∈ {0, 1, .., d − 1}. Therefore, it is evident that the ring Zd|K is a finite ring. For the

second result we define the map f : Zd|K → (Zd)n with f(
∑n

i=1 λiwi) = (λ1, .., λn). Now

we can see that this mapping is a group monomorphism under addition. Also, the number

of the elements of Zd|K is dn, since every number in Zd|K can be written uniquely in the

form
∑n

i=1[λi]d[wi]d. Thus the rings Zd|K and (Zd)n have the same number of elements.
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This gives that the mapping f is also surjective. Thus, it is a group isomorphism under

addition. �

Now, since we proved that integers modulo d in K form a finite ring, it is evident to

see that U(Zd)|K is a finite group. This is because U(Zd)|K ⊆ Zd|K . Now we are ready to

define the generalized totient function over a number field.

Definition 2.5. Let K be a number field and d ∈ N. The generalized totient function

φK(d) is defined to be the order of the group U(Zd)|K . That is, φK(d) = |U(Zd)|K |. It is

evident that φQ = φ.

Lemma 2.6. Let d ∈ N and K number field with [K : Q] = n. Then d is irreducible in

OK if and only if φK(d) = dn − 1.

Proof. Suppose d is irreducible in OK . Then ((w, d)) = 1 for every [w]d ∈ Zd|K with

[w]d 6= [0]d. Thus, U(Zd)|K = (Zd|K)∗ which gives φK(d) = dn − 1 by Definition 2.5 and

Proposition 2.4. Now, suppose φK(d) = dn − 1. This gives that U(Zd)|K = (Zd|K)∗ since

U(Zd)|K ⊆ (Zd|K)∗. This gives that ((w, d)) = 1 for every w ∈ OK with [w]d 6= [0]d.

Therefore, it is evident that d is irreducible in OK . �

Corollary 2.7. Zd|K is a field if and only if d is irreducible in OK .

3. The generalized totient function on Number Fields

As we have seen, the generalized totient function φK is the order of the group U(Zd)|K .

In this section we will prove some properties of φK similar to the properties of the Euler’s

totient function φ.

Proposition 3.1. Let K be a number field and m.n ∈ N relatively prime. Then we have

φK(mn) = φK(m)φK(n). That is, φK is a multiplicative arithmetic function for every

number field K. Moreover, we have Zmn|K ∼= Zm|K × Zn|K as rings and U(Zmn)|K ∼=

U(Zm)|K × U(Zn)|K as groups.
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Proof. The proof idea comes from [1]. Let a mapping g : OK → Zm|K × Zn|K , with

g(x) = ([x1]m, [x2]n), where x ≡ x1 (modm) and x ≡ x2 (modn). We can see that this map

is a well defined ring homomorphism. Let x ∈ Kerg. Then , m | x1 and n | x2. Thus,

m | x and n | x, by the definition of x1 and x2. Thus since m,n are relatively prime we

have mn | x. That is x ∈ mnOK . This shows that Kerg = mnOK . Therefore it is evident

that OK/mnOK ∼= img. Thus, Zmn|K ∼= img and also we have by Proposition 2.4 that

|Zmn|K | = (mn)[K:Q] = m[K:Q]n[K:Q] = |Zm|K × Zn|K |. Thus, img = Zm|K × Zn|K and

this shows that Zmn|K ∼= Zm|K × Zn|K as rings. Now, we can see that U(Zmn)|K is the

group of units of Zmn|K and U(Zm)|K × U(Zn)|K is the group of units of Zm|K × Zn|K .

Therefore, it is evident that U(Zmn)|K ∼= U(Zm)|K × U(Zn)|K as groups and this also

shows that φK(mn) = φK(m)φK(n) and the proof is complete. �

The next Proposition relates the Euler’s totient function with the generalized totient

function over a number field K.

Proposition 3.2. Let a number field K and d ∈ N. The unit group of rational integers

modulo d can be embedded to U(Zd)|K . Thus, we have φ(d) | φK(d) for every d and every

K number field.

Proof. Let j : U(Zd) → U(Zd)|K with j([x]d) = [x]d,K . Now, if x ∈ Z and x and d are

relatively prime in Z, then they are relatively prime in OK , since OK is a principal ideal

domain. This shows that j is a well defined group homomorphism. Assume [x]d,K = [1]d,K

for some x ∈ Z. Then d | x − 1 in OK .Thus, there exists y ∈ OK such that x − 1 = dy.

Thus, we have that y is a rational integer and this gives that d | x− 1 in Z. Therefore j is

a group monomorphism and the proof is complete. �

4. The Lehmer’s totient problem and its generalization

Now we will state the Lehmer’s totient problem and we will generalize this open problem

in algebraic number fields.

Conjecture 4.1. (Lehmer’s totient problem)

Assume d ∈ N. Then if φ(d) | d− 1 then d is a prime number.
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We have already showed that a natural number d is irreducible in OK if and only if

φK(d) = dn − 1, where n = [K : Q]. Also, we have that dn − 1 is the maximal value that

φK(d) can take. This is similar to Q, where the maximal value φ(d) can take is d − 1,

which is attained if and only if d is a prime number. It is easy to show that if for a natural

number d is true that φ(d) | d− 1, then we have that d is squarefree. Therefore, from now

on we are concerned only with squarefree numbers. This leads us to the following definition

of a Lehmer number.

Definition 4.2. Let d ∈ N and K be a number field with [K : Q] = n. We define that d

is a Lehmer number over K if and only if the following statements are equivalent.

1. φK(d) | dn − 1.

2. d is an irreducible element of OK .

Remark 4.3. In the light of Definition 4.2 we can easily see that the Lehmer’s totient

conjecture is true if and only if every natural number is a Lehmer number over Q. This

article examines the case where [K : Q] ≥ 2. There may be a connection from the number

fields K with [K : Q] ≥ 2 with the case K = Q, but we are not aware of it in this moment.

Definition 4.4. (Generalized Lehmer’s totient problem)

Let K be a number field. The field K satisfies the generalized Lehmer’s totient problem

if and only if every natural number is a Lehmer number over K. Such fields are called

Lehmer fields.

Definition 4.5. Let d be a natural number. We say that d is realizable over K if and only

if all prime divisors of d in Z are irreducible elements of OK .

Remark 4.6. It is evident that all natural numbers are realizable over Q. We will show

that if [K : Q] ≥ 2 then every realizable number is a Lehmer number. To avoid confusion

we should say that realizable numbers over Q are not necessairily Lehmer numbers over Q.

Note the [K : Q] ≥ 2 condition.

Definition 4.7. Let K be a number field. We say that K is realizable iff all natural

numbers are realizable over K.
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Now we find a characterization of realizable numbers relevant to the generalized totient

function over a number field.

Proposition 4.8. Let d ∈ N, squarefree and K be a number field with [K : Q] = n. Then

d is realizable over K if and only if φK(d) =
∏
p|d(p

n − 1), where the product is over all

prime divisors of d in Z.

Proof. Assume that d is realizable overK. By Proposition 3.1 we have φK(d) =
∏
p|d φK(p).

Then since d is realizable we have that each prime divisor of d in Z is an irreducible

element of OK . Thus, if p | d we have φK(p) = pn − 1, by Lemma 2.6. Therefore,

φK(d) =
∏
p|d(p

n − 1). Now, since for a prime number p in Z we have φK(p) ≤ pn − 1

with equality if and only if p is irreducible in OK , we get that if d is not realizable then

φK(d) <
∏
p|d(p

n − 1) and the proof is complete. �

For the following theorem we need the well known Riemann zeta function defined on real

numbers s > 1 discussed in [2]. We have that if s > 1, ζ(s) :=
∑∞

n=1
1
ns . Riemann’s zeta

function can be written as an absolutely convergent Euler product as ζ(s) =
∏
p:prime

1
1−p−s .

Theorem 4.9. Let d ∈ N and K be a number field with [K : Q] ≥ 2. We have that if d is

realizable over K then d is a Lehmer number over K.

Proof. From the assumptions and Proposition 4.8 we have φK(d) =
∏
p|d(p

n−1). Therefore,

dn−1
φK(d) =

(
∏

p|d p)
n−1∏

p|d(p
n−1) ≤

∏
p|d

1
1−p−n ≤

∏
p:prime

1
1−p−n = ζ(n). Thus, dn−1

φK(d) ≤ ζ(n). Assume

that φK(d) | dn−1. Assume that d is not irreducible element in OK . Thus, dn−1
φK(d) ≥ 2. This

gives that 2 ≤ ζ(n), which is a contradiction since ζ is stricly decreasing on {w ∈ R : w > 1}

and n ≥ 2. Now the proof is complete. �

Corollary 4.10. If a number field K 6= Q is realizable then it is a Lehmer field.

Example 4.11. We take K = Q(i). Then we have by [3] that a prime in Z is irreducible

in OK if and only if p ≡ 3 (mod 4). This gives that in Q(i) all numbers in which every

prime divisor is ≡ 3 (mod 4) are Lehmer numbers.
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Definition 4.12. Let K be a number field with [K : Q] = n and d be a natural number.

We call the number d normal in K iff φK(d)
φ(d) |

dn−1
d−1 . We say that K is a normal field iff

every natural number is normal in K.

Using this definition we prove the following Theorem.

Theorem 4.13. Let d be a natural number. Then, we have that d is a Lehmer number

over Q if and only if there exists a number field K such that d is Lehmer and normal over

K.

Proof. The only if part is obvious, since every natural number is normal over Q. Now,

assume that there exists a number field K such that d is Lehmer and normal over K.

Assume that φ(d) | d − 1. Then by the normality of d we have that (d − 1)φK(d) |

(dn − 1)φ(d). By assumption we have φK(d)φ(d) | (d− 1)φK(d) | (dn − 1)φ(d) which gives

that φK(d) | dn − 1. Therefore, we get that d is irreducible in OK , since d is a Lehmer

number over K. Thus, d must be prime and the proof is complete. �

In the next Lemma we characterize the primes which are normal elements over a number

field K.

Lemma 4.14. Assume [K : Q] = n.

If p is prime in Z, then p is a normal number over K if and only if φK(p) | pn − 1.

Proof. The proof is straightforward. By definition 4.12, we have p is normal over K if and

only if φK(p)
φ(p) |

pn−1
p−1 which is equivalent to φK(p) | pn − 1, since p is a prime number. �

Now, we will characterize the realizable Number fields.

Proposition 4.15. Let K be a number field with [K : Q] = n ≥ 2. Then, the following

are equivalent

1. K is a realizable field

2. K is a Lehmer field and every prime in Z is normal in K.
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Proof. For the ”only if” part. Assume that K is a realizable field. By Theorem 4.9 we

have that K is a Lehmer field. Also, if p is a prime number in Z, then p is an irreducible

element in OK by the realizability of K. Therefore, φK(p) = pn − 1 which gives that p is

a normal number in K. Thus, the field K is a Lehmer field and every prime number in Z

is normal in K.

For the ”if” part, we have that if p is a prime number in Z, then p is a normal element in

K. Therefore, by Lemma 4.14 we get φK(p) | pn − 1. Also p is a Lehmer number over K.

Therefore, we get that p is an irreducible element of OK . Therefore, p is realizable over K.

Thus, K is a realizable field and the proof is complete. �

Now we will define the notion of a strongly Lehmer number over a number field.

Definition 4.16. Let d be natural number and K be a number field with [K : Q] = n.

We say that d is a strongly Lehmer number over K if the following are equivalent.

1. φK(d) | dn − 1.

2. d is an irreducible number in OK .

3. d is a prime number in Z.

It is evident that strongly Lehmer numbers over K are Lehmer numbers over K for every

number field K.

Theorem 4.17. Let K be a number field with [K : Q] ≥ 2. Then K is a realizable field if

and only if K is a strongly Lehmer field.

Proof. For the ”only if” part we have the following. Let d be natural number. By Theorem

4.9 we get that d is a Lehmer number over K. Also, d is irreducible number over OK if

and only if d is a prime number in Z by the realizability of K. Thus, by Definition 4.16 we

get that d is a strongly Lehmer number over K.

For the ”if” part, let p be a prime number in Z. Then p is a strongly Lehmer number over

K. Thus, p is a prime number if and only if p is an irreducible element of OK . This proves

that p is realizable over K. Thus, K is a realizable field. �
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By [4] we have the following definition.

Definition 4.18. Let two field extensions K/L and M/N of number fields. Then, an

isomorphism between these extensions is a pair (λ, µ) of field isomorphisms λ : L → N ,

µ : K →M such that λ(x) = µ(x) for every x ∈ L.

Corollary 4.19. Let K,L be number fields. Then the extensions K/Q and L/Q are iso-

morphic iff there exists µ : K → L field isomorphism such that µ(q) = q for every q ∈ Q.

Theorem 4.20. If the extensions K/Q, L/Q are isomorphic and d be a natural number,

then d is realizable over K if and only if d is realizable over L.

Proof. By Corollary 4.19 we get that there exists µ : K → L field isomorphism such that

µ(q) = q for every q ∈ Q. Let d be a natural number. Let p prime with p | d. Assume

that d is a realizable number over L. Assume p = ζ1ζ2, where ζ1, ζ2 ∈ OK . Then we get

µ(p) = p = µ(ζ1)µ(ζ2) in OL. Thus, µ(ζ1) is a unit or µ(ζ2) is a unit, which gives that ζ1

is a unit or ζ2 is a unit. Thus, p is realizable over K. Therefore d is realizable over K. By

taking µ−1 : L→ K and by the same proof, we get that p is realizable over K only if p is

realizable over L. This completes the proof. �

Corollary 4.21. Let K,L be number fields such that K/Q ∼= L/Q. Then K is a strongly

Lehmer field if and only if L is a strongly Lehmer field.

Now we will state a result from [4], which we will use in the next Theorem.

Proposition 4.22. Suppose that K and L are subfields of C and i : K → L is an iso-

morphism. Let K(a), L(b) be simple algebraic extensions of K and L respectively, such

that a has minimal polynomial ma(t) over K and b has minimal polynomial mb(t) over L.

Suppose mb(t) = i(ma(t)). Then there exists an isomorphism j : K(a) → L(b) such that

j|K = i and j(a) = b.

Theorem 4.23. Let a, b ∈ C. Assume that there exists an irreducible polynomial p(t) in

Q[t] such that p(a) = p(b) = 0. Then a natural number is realizable over Q(a) if and only

if it is realizable over Q(b).
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Proof. If we take K = L = Q and i to be the identity map in Proposition 4.22, then by

Thorem 4.20 and Corollary 4.19 we get the result. �

5. Other Results

In this section we will prove a result concerning the Lehmer’s totient problem over Q.

Here we will deal with squarefree numbers. The reason for this is that a counterexample

to the Lehmer’s totient problem is necessarily squarefree.

Theorem 5.1. Let w be a squarefree number and l ∈ Q such that l < w
φ(w) . Then, there

exist finitely many d ∈ N with d squarefree such that w | d and d−1
φ(d) = l.

Proof. We have d−1
φ(d)=

(
∏

p|d p)−1∏
p|d(p−1)

=
∏
p|d(

1
1−p−1 )− 1

φ(d) .

For the sake of contradiction, we assume that there exist infinitely many d squarefree with

w | d and d−1
φ(d) = l. Then we can find a sequence of natural numbers with limn→∞ dn =∞

such that dn has this propetry. Thus, since φ(dn)→∞ as n→∞, we get
∏
p|dn( 1

1−p−1 )→ l,

as n→∞. Now since w | dn, we get
∏
p|dn( 1

1−p−1 ) ≥
∏
p|w( 1

1−p−1 )= w
φ(w) . By taking limits,

we get l ≥ w
φ(w) , which is a contradiction by assumption. �
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