An Impact Structure Ø 30 km and Impact Crater Ø 1,6 x 1,2 km in Southern Spain

- RAMAN Spectra of selected Rock Samples - by Harry K. Hahn , 30.6.2021 -

Summary :

Raman spectra of samples taken from the sample sites **50, 30** and **19** provide evidence that the large bow-shaped structure visible on the satellite image (see image below) was caused by an impact event. This bow-shaped structure $\approx 0/30$ km belongs to a large-scale impact event which according to my hypothesis was caused by (impacting) ejecta material from the Permian Triassic Crater in the Arctic Sea (\rightarrow weblink to my Permian Triassic Impact Hypothesis : see Part 1 (P1) and Part 2 (P2) of my study).

The bow-shaped impact structure is located near Puerto de Mazarron in the state of Murcia in Andalucia. This impact structure belongs to large Secondary Crater Chain of the PT-Impact Event.

Further evidence for the large-scale impact event in Southern Spain (Andalucia & Murcia) comes from rock-samples collected in a small elliptical Crater with Ø 1,6 x 1,2 km near the town of Rodalquilar. This elliptical crater in the remote East of Andalucia, which belongs to the assumed large-scale impact event in Southern Spain, has the potential to provide precise evidence for my hypothesis, because it provides the precise trajectory and impact angle of the impactor (\rightarrow ejecta from the P/T-Crater)!

The Raman spectra of quartz from sample site **50** on the outside of the crater-wall of the bow-shaped impact structure (near the tunnel exit of the AP7) provides clear evidence for an impact event !

The shift of the main Raman bands (peaks) to the lower frequencies **463**, **261**, **205** and **127** cm⁻¹ which is visible in the Raman Spectra of the quartz-sample, clearly indicates that the quartz was exposed to a **shock pressure of around 22 GPa**. (see explanation in the Appendix at page **24**). Similar shifts of the Raman bands are visible in the spectra of samples **19** & **30** from the center of the structure

The spectra of the quartz sample **40-B** from the center of the Ø 1,6 x 1,2 km elliptical Crater shows similar shifts of the Raman bands, e.g. the measured bands at **463**, **261/263**, **203** and **127** cm⁻¹, which also indicate a shock pressure of \approx **22 GPa** that can only be the result of an impact event !

All spectra were made with a **BRUKER Senterra-II Raman Microscope** (wavenumber precision <0.1cm⁻¹)

A shock pressure of 22 GPa far exceeds every pressure caused by normal terrestrial metamorphism. Therefore the quartz was clearly shocked by an impact event. The indicated shock pressure of 22 GPa is lower than the shock pressure that occured in other large impact craters on Earth, which can reach 100 GPa. This indicates that the bow-shaped structure was caused by an oblique impact That means the impactor which formed the struture (\rightarrow ejecta of the PT-Crater) impacted in a very shallow angle. The same is true for the yet unknown Ø 1,6 x 1,2 km elliptical Impact Crater near Rodalquilar.

 \rightarrow Images of the analysed rock samples and photos of the sample sites are in the Appendix at page 19.

- \rightarrow A general summary to all analysed sample sites is provided by Part 6 (P6) of my PTI-hypothesis (P1)
- → More images of all sample sites are available on <u>www.permiantriassic.de</u> or <u>www.permiantriassic.at</u>

Sample Site 50 : Stone 1_spectra 1 indicates : Quartz

$(\rightarrow$ see RRUFF_search results)

Microscopic Images : Sample from Site 50 \rightarrow original state (no preparation for analysis) Sample Site 50 : Stone 1_spectra 1 indicates : Quartz - Image size : ~ 400 x 300 μ m Note the exceptional fracture pattern visible in the quartz sample !

Sample Site 50 : Stone 1_spectra 1 indicates : Quartz

- Image size : ~ 300 x 200 μm

Sample Site 19-B : Stone 3_spectra 1 indicates : Quartz

(→ see RRUFF_search results)

Indication for a shock event are the shifts of the marked Quartz spectral lines towards 261, 205 and 127

Sample Site 40-B : Stone 1_spectra 1 indicates : Quartz

$(\rightarrow$ see RRUFF search results)

icite (53

odalite

X080015 Quartz SiO_2_ Synthetic

R080066

Search

Indication for a shock event are the shifts of the marked Quartz spectral lines towards 463, 264 and 127

140

Sample Site 40-B : Stone 1_spectra 2 indicates : Quartz

$(\rightarrow$ see RRUFF search results)

Sample :

CrystalSleuth: EXTRACT_40-B (SP3)_messung2.0_000000.0_NK_G2

- 0 ×

Indication for a shock event are the shifts of the marked Quartz spectral lines towards 263 and 127

Sample Site 40-B : Stone 2_spectra 1 (brown mineral) indicates : Quartz

$(\rightarrow$ see RRUFF search results)

Indication for a shock event are the shifts of the marked Quartz spectral line towards 263

Microscopic Images : Sample from Sites 19-B, 40-B and 40-C \rightarrow original state (no preparation)

Sample Site <mark>19-B</mark> : Stone 3_spectra 1 : Quartz - Image size : ~ 400 x 300 μm

Sample Site 40-B : Stone 1_spectra 2 : Quartz - Image size : ~ 400 x 300 μm

Sample Site 40-C : Stone 2 : Quartz, : ~ 300 x 200 μm

Sample Site 40-C : Stone 3_spectra 1 indicates : Quartz

$(\rightarrow$ see RRUFF_search results)

Indication for a shock event are the shifts of the marked Quartz spectral lines towards 261

The Spectral Lines 264 and 129 indicate that also Quartz is present in the sample

Sample Site 50 : Stone 2_spectra 1 indicates : Dolomite

$(\rightarrow$ see RRUFF_search results)

Sample :

CrystalSleuth: EXTRACT_50 (SP3)_stone2.0_000005.0_NK File Edit Mode Help

Sample Site 19-B : Stone 1_spectra 1 indicates : Reyerite

 $(\rightarrow$ see RRUFF_search results)

RRUFF ID:

R050195 R070149 R060849 R050849 R070384 R070281 R070504 R070272 R070091 R061098 R061099 Search

Sample Site 19-B : Stone 2_spectra 1 indicates : Reyerite

 $(\rightarrow$ see RRUFF_search results)

Sample Site 19-B : Stone 3_spectra 2 indicates : Sahamalite , Dolomite

(→ see RRUFF_search results)

Sample :

CrystalSleuth: EXTRACT_19-B(SP1)_1.0_000000.0_NK_G1 File Edit Mode Help

Sample Site 19-B : Stone 4 : no usable search result

Appendix 1: Photos of the rock samples from sample sites : 50, 30-B, 19-B, 40-B/C

Please note : Photos of the Sample- Sites 50, 30-B, 19-B, 40-B/C and other sample sites are available here \rightarrow weblink : Sample Sites : Spain Craters-2 & Spain Craters-1

side-strip of the highway isn't recommended !)

<u>Please note</u>: The rock samples 40-B were collected close to the center of an elliptical Crater Ø 1.6 x 1.2 km that is completely unknown to impact research yet ! All photos of the samples site here 40-B (or alternatively available here : 40-B) (\rightarrow Spain Craters-2 or Spain Craters-2

40-B

40-B 36° 49,823 N 2° 5,035 W 8 m **Spain 3** - (Southern Area)

Site 50 :

(the crater-wall) is accessible over the Highway AP7 (but a long stop on the side-strip of the highway isn't really recommended !) The site is located near the exitof the highway tunnel justoutside of the crater-wall

Site 19-B :

The site is very easy accesible by road.

From a little parking area on the coast it's a 300 m walk to the Impact-effected rocks

The image shows the rocks in the foreground.

Looking towards the parking area, in the background of the image the Crater-wall (the Site 50) of this Secondary Impact-Structure of the Permian Triassic (PT) Impact Event is visible

19-B

Site 40-B :

The image shows the center of the small Ø 1,6 x 1,2 km elliptical Impact Crater near the village Rodalquilar. In the background of the image a section of the crater-wall inner is visible. In the foreground an outcrop of impact breccia is visible The crater is accesible over an unsealed road. But there is a radar station on the crater rim. Permission mav be required for a expedition

Appendix 2: A short overview: The Raman bands (peaks) of Quartz shocked with 22-26 GPa

In order to verify a sample site as an impact site or impact structure, shock-metamorphic effects must be discovered in the rocks of the sample site. This can be done by different methods.

For example with the help of PDFs (planar deformation features) which are visible in the quartz with the help of a microscope. However this requires careful preparation of the samples and expertise.

Another, easier method, is the use of a RAMAN microscope. Micro-RAMAN Spectroscopy on quartz grains in the samples can provide the first evidence for a shock event, that was caused by an impact.

Mc Millan et al. (1992) and others have shown that the main RAMAN-peaks of Quartz shift towards lower frequencies if the Quartz was exposed the a shock-pressure > 15 GPa. \rightarrow see diagram below

The shift of the main quartz RAMAN-peaks can be used to identify quartz that was shocked by an impact

Quartz shocked with **22 GPa** and **26 GPA** shows shifts of the main RAMAN-peaks of 1 - 4 cm⁻¹ to lower frequencies

Weakly shocked alkali feldspar mainly developed irregular fractures and undulatory extinction. Note that the Raman-lines 210 and 765 are missing in the w-shocked feldspar, and an additional line at \approx 150 appears.

The shock pressure for the w-shocked feldspar was estimated to be between 5 and 14 GPa

References :

Photos of all Sample Sites & Rock Samples are available on : Spain Craters-2 & Spain Craters-1 (or : Spain-2 & Spain-1)

The Permian-Triassic (PT) Impact hypothesis - by Harry K. Hahn - 8. July 2017 :

Part 1: The 1270 X 950 km Permian-Triassic Impact Crater caused Earth's Plate Tectonics of the Last 250 Ma

Part 2: The Permian-Triassic Impact Event caused Secondary-Craters and Impact Structures in Europe, Africa & Australia

Part 3: The PT-Impact Event caused Secondary-Craters and Impact Structures in India, South-America & Australia

Part 4: The PT-Impact Event and its Importance for the World Economy and for the Exploration - and Mining-Industry

Part 5: Global Impact Events are the cause for Plate Tectonics and the formation of Continents and Oceans (Part 5) Part 6: Mineralogical- and Geological Evidence for the Permian-Triassic Impact Event

Alternative weblinks for my Study **Parts 1 - 6 with slightly higher resolution**: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6 Parts 1 – 6 of my PTI-hypothesis are also available on my website: www.permiantriassic.de or www.permiantriassic.at

Shock-metamorphic effects in rocks and minerals - https://www.lpi.usra.edu/publications/books/CB-954/chapter4.pdf

Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system Stöffler - 2018 - Meteoritics & Planetary Science – Wiley: https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.12912

A Raman spectroscopic study of shocked single crystalline quartz - by P. McMillan, G. Wolf, Phillipe Lambert, 1992 https://asu.pure.elsevier.com/en/publications/a-raman-spectroscopic-study-of-shocked-single-crystalline-quartz alternative : https://www.semanticscholar.org/paper/A-Raman-spectroscopic-study-of-shocked-single-McMillan-Wolf/cfaaf6eb3e46fbd2912fb91c7acf40e88e721132

Raman spectroscopy of natural silica in Chicxulub impactite, Mexico - by M. Ostroumov, E. Faulques, E. Lounejeva https://www.academia.edu/8003100/Raman_spectroscopy_of_natural_silica_in_Chicxulub_impactite_Mexico alternative : https://www.sciencedirect.com/science/article/pii/S1631071302017005

Shock-induced irreversible transition from α -quartz to CaCl2-like silica - Journal of Applied Physics: Vol 96, No 8 https://aip.scitation.org/doi/10.1063/1.1783609

Shock experiments on quartz targets pre-cooled to 77 K - J. Fritz, K. Wünnemann, W. U. Reimold, C. Meyer https://www.researchgate.net/publication/234026075_Shock_experiments_on_quartz_targets_pre-cooled_to_77_K

A Raman spectroscopic study of a fulgurite – by E. A. Carter, M.D. Hargreaves, ... https://www.researchgate.net/publication/44655699_Raman_Spectroscopic_Study_of_a_Fulgurite alternative : https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2010.0022

Shock-Related Deformation of Feldspars from the Tenoumer Impact Crater, Mauritania - by Steven J. Jaret https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1002&context=pursuit

A Study of Shock-Metamorphic Features of Feldspars from the Xiuyan Impact Crater - by Feng Yin, Dequi Dai https://www.researchgate.net/publication/339672303_A_Study_of_Shock-Metamorphic_Features_of_Feldspars_from_the_Xiuyan_Impact_Crater

Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada – A. E. Pickersgill–2015 https://onlinelibrary.wiley.com/doi/pdf/10.1111/maps.12495

Shock Effects in feldspar: an overview - by A. E. Pickersgill https://www.hou.usra.edu/meetings/lmi2019/pdf/5086.pdf

ExoMars Raman Laser Spectrometer RLS, a tool for the potential recognition of wet target craters on Mars https://www.researchgate.net/publication/348675414_ExoMars_Raman_Laser_Spectrometer_RLS_a_tool_for_the_potential_recognition_of_wet_target_craters_on_Mars