
Breaking Free From the Stability-Plasticity Dilemma With Incremental
Domain Inference on Sequential Data

Romain Mouret

mouret.romain@gmail.com

July 23, 2021

Abstract

We make the case for identifying the input domain prior to running downstream models and propose an
architecture that opens the door to lifelong learning systems that forget at a decreasing rate as the tasks grow
in complexity. Our model accurately identifies domains and is compatible with other continual learning
algorithms, provided they benefit from knowing the current domain beforehand.

I. Introduction

One of the most reliable approaches to over-
coming catastrophic forgetting is to replay the
training data[1], usually by storing the training
samples or by training a model to randomly
generate training samples.

Since replay is often expensive computation-
wise and memory-wise, new methods have
been developed to mitigate catastrophic for-
getting. Many of these methods [2, 3, 4] face
a dilemma: the more flexible the weights are,
the more likely the model will forget. Con-
versely, the more stable the weights are, the
more difficult it is for the model to fit new
data. In practice, under this paradigm, there
seems to be no tradeoff suitable for training
models over very large time scales, and there
is no promising sign hinting that the stability-
plasticity tradeoff can become more favorable
as we tackle harder tasks with larger models.
This is in stark contrast with the success of
deep learning, which has shown that scaling
up neural networks can lead to human-level
performance on some tasks.

II. Prior domain knowledge in

lifelong learning

I argue that approaches relying on prior knowl-
edge of the current task or domain [5, 6, 7, 8]
compare favorably to domain-unaware meth-
ods, but they are often dismissed on the basis

that knowing the domain beforehand is not
a realistic scenario in lifelong learning. Prima
facie, this is a valid criticism since domain and
task labels are normally not available during
inference, and inferring them using a dedicated
model is seemingly a problem of the same dif-
ficulty as class incremental learning [9] and of
similar nature as one-class classification [10]
if output scores were to be calibrated between
domains. We find ourselves stuck in a circular
logic: prior knowledge of the domain would
be exceedingly helpful in building a continual
learning (CL) system immune to catastrophic
forgetting (CF), but a CF-immune CL system is
required to robustly identify domains or tasks
[7].

I propose to solve this problem by having the
CL system detect discrepancies at the abstract
level. The abstract level is the last layer of the
feature processors. At this level, the values of
the latent units no longer depend on the input
domain. For example, the abstract representa-
tion of an ice cream truck seen on a rainy day
should be identical to its representation on a
sunny day despite contextual differences, as-
suming that the feature processors are trained
to produce consistent abstractions thanks to a
learning process like the one implemented by
Algorithms 1 and 2.

This domain-invariance property of abstrac-
tion allows the system to make some predic-
tions without already knowing the domain of
the current observation, thereby avoiding cir-

1

mailto:mouret.romain@gmail.com

cular logic.

III. Architecture

The proposed architecture requires future ab-
stract states to be predictable by current ab-
stract states. As a consequence, observations
and targets have to be of a sequential nature.
This includes text, time series, videos and vari-
ous settings in robotics.

In this architecture, the state at time t + 1
is predicted by two entities. (1) a model or a
program called Center that predicts the next
state from the current state, and (2) a feature
processor P that predicts the next state from
observations alone. These two predictions will
conflict. We resolve conflicts by choosing the
domain hypothesis under which P agrees the
most with Center, typically by minimizing the
Euclidean distance between Center’s predic-
tion and P’s prediction.

As a special case of this architecture, we will
build P as a collection of disjoint neural nets
P1, P2. . . Pn. Each network is trained to process
a different domain. While this simplifies the
training algorithm and allows the system to
instantiate domain-specialized networks, it is
memory inefficient and misses on the opportu-
nity to mutualize knowledge between domains.
It should be noted, however, that parameter
sharing[11, 8] and pruning[12] can mitigate
these issues.

IV. Algorithm

Below, A denotes the Action network mapping
abstract states to targets.

The networks are trained with stochastic gra-
dient descent using three loss functions oper-
ating on samples drawn from Dd, the distribu-
tion of the domain d under consideration.

Target loss For example, cross entropy:

Ld
1 = E

o∈Dd

[
1
|o|

|o|

∑
t=1

y(o, t) log(A(Pd(ot)))

]

where y maps an observation to its expected
binary target.

Abstract state prediction loss

Ld
2 = E

o∈Dd

[
1

|o| − 1

|o|−1

∑
t=1
‖Center(Pd(ot))− Pd(ot+1)‖

]

State amplitude loss

Ld
3 = 1− E

o∈Dd

[
1
|o|

|o|

∑
t=1
‖tanh(Pd(ot))‖

]

Ld
3 compensates for Ld

2’s tendency to push
amplitudes down.

Algorithm 1: Pre-training
Data: Small set X of arbitrary

pre-training domains
do

d← random domain from X ;
train Pd conjointly with A and Center,
minimizing Ld

1 + Ld
2 + Ld

3 on one
random sequence from d

until convergence;
Freeze A and Pd for every d ∈ X ;
do

d← random domain from X ;
Fine-tune Center minimizing Ld

2 on
one random sequence from d

until convergence;
Freeze Center ;
Throw away Pd for every d ∈ X

V. Results

We will showcase the architecture with a lan-
guage model trained on a dataset of cooking
recipes [13]. The words of the recipes are ran-
domly mapped to an integer between 0 and

2

distance
minimization

predicts

observation(t) observation(t+1)

feature model: (observation, domain)→state

abstract state(t) abstract state(t+1)

predicts

domain hypothesis

action model: (state, domain)→target

abstract state(t+1)

Figure 1: TDDI (Top-Down Domain Inference) Architecture
TDDI can also operate on task labels or pairs <task, domain>.

Algorithm 2: Incremental training

foreach domain d do
train a new processor Pd minimizing
Ld

1 + Ld
2

end

Algorithm 3: Inference
Data: Observation ot+1 and state St
Result: St+1, inferred domain d̂ and

target Tt+1
d̂← argmind‖Pd(ot+1)− Center(St)‖ ;
St+1 ← Pd̂(ot+1) ;
Tt+1 ← A(St+1, d̂)

4096 using a hash function. We create 7 do-
mains by randomly permuting the mapping be-
tween words and indices, and pre-train the full
system, including the abstraction layer, from
one domain only.

To facilitate batch processing, our setup
doesn’t allow observations of the same se-
quence to belong to different domains. Under
these circumstances, it would be too easy to
take advantage of the perfect correlation be-
tween the domain at time t and the domain at
time t + 1, so we are purposefully ignoring this
correlation while inferring the domain of the
current observation.

Feature processors are implemented as
masked convolution networks [14]. Center and

A are implemented as multi-layer perceptrons.

15 20 25 30 35 40 45
size of abstraction layer

0.5

1

2

4

8

16

32

64

ra
te

 (%
) [

lo
g

sc
al

e]

domain identification error rate
language model accuracy
softmax probability of expected word

Figure 2: Model evaluation

As shown on Figure 2, the domain identifi-
cation error rate quickly drops as we increase
the size of the abstraction layer. From size=16
to size=32, it is divided by 3.3. From size=32 to
size=48, it is further divided by 2.9. At size =
48, the average domain identification accuracy
is 99.23%, nearly eliminating catastrophic for-
getting for non-overlapping neural networks
on 7 domains or less.

The accuracy of the language model doesn’t
significantly increase as the abstraction layer
gets wider. In this instance, this goes to show
that the high accuracy of the domain identifi-
cation module is not a mere consequence of

3

increasing the accuracy of the entire system.
The PyTorch code is available on github [15].

VI. Limitations and future work

i. Training domain boundaries

Since it is possible to identify domains dur-
ing inference, one can utilize a similar process
and a distance threshold to detect unknown
domains at training time. The remaining un-
solved problem is to detect when two unknown
domains are the same.

ii. Broader range of CL scenarios

Center and A are frozen after training. This
is suitable for domain incremental learning [9]
but doesn’t leave any room for new abstrac-
tions and new targets. It is worth considering
relaxing the constraints imposed by the frozen
networks to let processors build new abstrac-
tions.

This will require replacing Center with a
continually trained model. We are not find-
ing ourselves in the same circular problem as
the one we started with, as Center solely op-
erates on abstract representations, which have
a known, controllable shape and occupy sig-
nificantly less storage space than raw sensory
inputs.

iii. Dynamic state alignment

If Center is accurate enough, one can improve
domain inference by allowing P to temporarily
nudge its weights to better match Center’s out-
put. Instead of minimum Euclidean distance,
the domain selection criterion would be the
smallest change of weights required to align
the two predictions.

VII. Conclusion

The main advantage of the proposed approach
is that discrepancies get easier to detect as la-
tent layers get wider, insofar as the additional
model capacity is not exclusively allocated to

new prunable or redundant units [16]. To avoid
redundancy, the abstraction layer should be
sized in proportion to the complexity of the
tasks at hand. In other words, as we tackle
more complex tasks, we are licensed to scale
up models and their abstraction layer, which
in turn lowers the likelihood of catastrophic
forgetting.

References

[1] T. L. Hayes, G. P. Krishnan, M. Bazhenov,
H. T. Siegelmann, T. J. Sejnowski, and
C. Kanan, “Replay in deep learning: Cur-
rent approaches and missing biological
elements,” arXiv:2104.04132, 2021.

[2] J. Kirkpatrick, R. Pascanu, N. Rabinowitz,
J. Veness, G. Desjardins, A. A. Rusu, K. Mi-
lan, J. Quan, T. Ramalho, A. Grabska-
Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell, “Overcom-
ing catastrophic forgetting in neural net-
works,” Proceedings of the National Academy
of Sciences, vol. 114, no. 13, pp. 3521–3526,
2017.

[3] S. Wang, X. Li, J. Sun, and Z. Xu, “Training
networks in null space of feature covari-
ance for continual learning,” in Proceed-
ings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pp. 184–193, June 2021.

[4] F. Zenke, B. Poole, and S. Ganguli, “Con-
tinual learning through synaptic intelli-
gence,” in Proceedings of the 34th Inter-
national Conference on Machine Learning
(D. Precup and Y. W. Teh, eds.), vol. 70
of Proceedings of Machine Learning Research,
pp. 3987–3995, PMLR, 06–11 Aug 2017.

[5] J. Serra, D. Suris, M. Miron, and A. Karat-
zoglou, “Overcoming catastrophic forget-
ting with hard attention to the task,” in
Proceedings of the 35th International Con-
ference on Machine Learning (J. Dy and
A. Krause, eds.), vol. 80 of Proceedings of
Machine Learning Research, pp. 4548–4557,
PMLR, 10–15 Jul 2018.

4

[6] M. Masana, T. Tuytelaars, and J. van de
Weijer, “Ternary feature masks: Zero-
forgetting for task-incremental learning,”
in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 3570–3579, June
2021.

[7] D. Abati, J. Tomczak, T. Blankevoort,
S. Calderara, R. Cucchiara, and B. E. Be-
jnordi, “Conditional channel gated net-
works for task-aware continual learning,”
in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[8] J. Pilault, A. E. hattami, and C. Pal, “Con-
ditionally adaptive multi-task learning:
Improving transfer learning in nlp using
fewer parameters & less data,” in Inter-
national Conference on Learning Representa-
tions, 2021.

[9] G. M. van de Ven and A. S. Tolias,
“Three scenarios for continual learning,”
arXiv:1904.07734, 2019.

[10] P. Perera, P. Oza, and V. M. Pa-
tel, “One-class classification: A survey,”
arXiv:2101.03064, 2021.

[11] M. Wortsman, V. Ramanujan, R. Liu,
A. Kembhavi, M. Rastegari, J. Yosinski,
and A. Farhadi, “Supermasks in superpo-
sition,” in Advances in Neural Information
Processing Systems (H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin,
eds.), vol. 33, pp. 15173–15184, Curran As-
sociates, Inc., 2020.

[12] J. Peng, H. Jiang, Z. Li, E. Guo, X. Wan,
M. Deng, Q. Zhu, and H. Li, “Overcoming
catastrophic forgetting by soft parameter
pruning,” arXiv:1812.01640, 2018.

[13] R. T. Lee, “Recipe Dataset.”
https://eightportions.com/datasets/

Recipes/, 2018.

[14] A. Van Oord, N. Kalchbrenner, and
K. Kavukcuoglu, “Pixel recurrent neural

networks,” in International Conference on
Machine Learning, pp. 1747–1756, PMLR,
2016.

[15] R. Mouret, “Domain Identification.”
https://github.com/rom1mouret/

domain_identification, 2021.

[16] S. Casper, X. Boix, V. D’Amario, L. Guo,
M. Schrimpf, K. Vinken, and G. Kreiman,
“Frivolous units: Wider networks are not
really that wide,” in AAAI, 2021.

5

https://eightportions.com/datasets/Recipes/
https://eightportions.com/datasets/Recipes/
https://github.com/rom1mouret/domain_identification
https://github.com/rom1mouret/domain_identification

	Introduction
	Prior domain knowledge in lifelong learning
	Architecture
	Algorithm
	Results
	Limitations and future work
	Training domain boundaries
	Broader range of CL scenarios
	Dynamic state alignment

	Conclusion

