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Abstract: Fermat's Last Theorem(FLT) states that there is no positive integer set (𝑎, 𝑏, 𝑐, 𝑛) 

which satisfies 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 when 𝑛 ≥ 3. In this thesis, we related FLT to two polynomial 

equations. By doing so, we could analyze whether those two equations have equivalence 

properties in four aspects, ①irreducible factoring equivalence, ②constant term equivalence, 

③ rational root factor equivalence and ④ odd-even property equivalence of 𝑎, 𝑏, 𝑐. What 

we found is that those two equations can not have equivalence properties in all four aspects 

which is enough to prove FLT.  

1. Introduction 

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles [1] 

in 1995. But the proof is not easy even for mathematicians, requiring more simple proof. 

Let’s relate FLT with two polynomial equations (1.2) and (1.3) as follows. Constant terms 

of (1.2) and (1.3) are LHS and RHS of 𝑎𝑛 = 𝑐𝑛 − 𝑏𝑛. 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 (1.1) 

𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛 = 0 (1.2) 

𝑔(𝑥) = 𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛) = 0 (1.3) 

ℎ(𝑐) = 𝑐𝑛 − 𝑏𝑛 = 0 (1.4) 

By relating LHS and RHS of 𝑎𝑛 = 𝑐𝑛 − 𝑏𝑛 to constant terms of two polynomial equations 

(1.2) and (1.3), we can analyze whether the followings are true.  

① Whether the first degree irreducible factorings [2][3][4] over the complex numbers 

of (1.2) and (1.3) can be identical. 

② Whether 𝑐𝑛 − 𝑏𝑛 of (1.3) can be the constant term of equation type 𝑥𝑛 − 𝑎𝑛 = 0. 

③ How, by rational root theorem [5], the integer root(s) of (1.2) and (1.3) is(are) 

related to integer factor(s) of the constant term 𝑎𝑛 and 𝑐𝑛 − 𝑏𝑛.  

④ Whether the odd-even property [6] of 𝑎, 𝑏, 𝑐 in (1.1) causes some contradiction 

for odd 𝑛 ≥ 3.  

Our study showed that each contradiction from ① , ② , ③  proves FLT, and a 

contradiction from ④ proves FLT for odd 𝑛 ≥ 3. 

Equation (1.4) is a polynomial representation of the constant term of (1.3), considering 𝑐 

as a variable.   
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2. Definitions and Lemmas 

2.1 Number of Roots and Root Structure 

Definition 2.1.1 nth unity equation: The nth unity equation is (2.1) [2][7].  

𝑥𝑛 − 1 = 0. (2.1) 

Lemma 2.1.2 The number of roots of (2.1) is as follows. 

① Odd 𝒏 ≥ 𝟑: One integer root and 𝑛 − 1 complex roots. 

② Even 𝒏 ≥ 𝟒: Two integer roots and 𝑛 − 2 complex roots. 

Proof. The 𝑛 roots of (2.1) are 𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛. 

① Odd 𝒏 ≥ 𝟑: The graph of 𝑦 = 𝑥𝑛 − 1 crosses 𝑥 axis at (1, 0) once, so, (2.1) 

has one integer root and 𝑛 − 1 complex roots, as shown in Figure 1 (a).  

② Even 𝒏 ≥ 𝟒 : The graph of 𝑦 = 𝑥𝑛 − 1  crosses 𝑥  axis at (1, 0)  and (−1, 0)  

twice, so, (2.1) has two integer roots and 𝑛 − 2 complex roots, as shown in Figure 

1 (b).                                                           ■ 

Figure 1. Number of roots examples of (2.1). 

    

(a) Number of roots for odd 𝑛 = 5. 

  

(b) Number of roots for even 𝑛 = 6. 

Corollary 2.1.3 The number of roots of (1.2) is as follows. 
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① Odd 𝒏 ≥ 𝟑: One integer root and 𝑛 − 1 complex roots. 

② Even 𝒏 ≥ 𝟒: Two integer roots and 𝑛 − 2 complex roots. 

Proof. The 𝑛 roots of (1.2) are 𝑎𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, so, the number of roots of (1.2) is 

same as lemma 2.1.2.                                                             ■ 

Definition 2.1.4 Root structure: The geometric distribution of roots of (1.2) or (2.1) on a 

circle with radius 𝑎 or radius 1, as examples in Figure 2.  

Figure 2. Root structure examples. 

   

(a) Root structure of (1.2), 𝑛 = 5, 𝑎 = 3. (b) Root structure of (2.1), 𝑛 = 5, 𝑎 = 1. 

Lemma 2.1.5 The root structure of (1.2) and (2.1) for same 𝑛 differs only by the radius 

of circle where roots are laid. 

Proof. The 𝑛  roots of (1.2) are 𝑎𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛  and 𝑛  roots of (2.1) are 

𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛. So, the arguments of roots are same, but the magnitude of roots, which 

is the radius of the circle on which roots are laid, is different.                            ■ 

For 𝑛 = 1 or 𝑛 = 2, the root structure is on the 𝑥 axis, so, a circle on the complex plane 

is not required. For 𝑛 ≥ 3, the root structure on a circle is due to the existence of complex 

roots. 

2.2 Operations on Root Structures 

Definition 2.2.1 Corresponding roots: Roots of two 𝑛 -degree root structures whose 

arguments are same.  

Definition 2.2.2 Root structure notation: 𝑅𝑛(𝑎), where 𝑛 is the degree of equation and 

𝑎 is the magnitude of roots.  

Definition 2.2.3 Operations on 𝑅𝑛(𝑎): Operations on 𝑅𝑛(𝑎) are defined as follows.  

① Product: [𝑅𝑛(𝑎)] = ∏ 𝑎𝑒2(𝑘−1)𝑖/𝑛 =𝑛
𝑘=1 𝑎𝑛. 

② Addition: 𝑅𝑛(𝑎) + 𝑅𝑛(𝑏) = 𝑅𝑛(𝑎 + 𝑏).  

③ Subtraction: 𝑅𝑛(𝑎) − 𝑅𝑛(𝑏) = 𝑅𝑛(𝑎 − 𝑏), 𝑎 ≥ 𝑏. 
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Lemma 2.2.4 The product operation is not closed to addition under the root structure, i.e., 

[𝑅𝑛(𝑎)] + [𝑅𝑛(𝑏)] = 𝑎𝑛 + 𝑏𝑛 ≠ [𝑅𝑛(𝑎 + 𝑏)] = (𝑎 + 𝑏)𝑛.  

Proof.  

[𝑅𝑛(𝑎)] + [𝑅𝑛(𝑏)] = ∏ 𝑎𝑒2(𝑘−1)𝑖/𝑛𝑛
𝑘=1 + ∏ 𝑏𝑒2(𝑘−1)𝑖/𝑛 = 𝑎𝑛 + 𝑏𝑛𝑛

𝑘=1    

≠ [𝑅𝑛(𝑎 + 𝑏)] = ∏ (𝑎 + 𝑏)𝑒2(𝑘−1)𝑖/𝑛 = (𝑎 + 𝑏)𝑛𝑛
𝑘=1 .   

So, the product operation is not closed to addition under the root structure. Furthermore, 

note that the product operation itself is not closed under the root structure.                ■ 

Lemma 2.2.5 The addition operation is closed, i.e., 𝑅𝑛(𝑎) + 𝑅𝑛(𝑏) = 𝑅𝑛(𝑎 + 𝑏) is closed 

under the root structure.  

Proof. The 𝑛 roots of 𝑅𝑛(𝑎) are 𝑎𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, and the 𝑛 roots of 𝑅𝑛(𝑏) are 

𝑏𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, so, the roots 𝑅𝑛(𝑎) + 𝑅𝑛(𝑏) for corresponding roots are, 

𝑎𝑒2(𝑘−1)𝑖/𝑛 + 𝑏𝑒2(𝑘−1)𝑖/𝑛 = (𝑎 + 𝑏)𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛.   

So, the addition operation is closed under the root structure.                        ■ 

Lemma 2.2.6 The subtraction operation is closed, i.e., 𝑅𝑛(𝑎) − 𝑅𝑛(𝑏) = 𝑅𝑛(𝑎 − 𝑏), 𝑎 ≥ 𝑏 

is closed under the root structure.  

Proof. The 𝑛 roots of 𝑅𝑛(𝑎) are 𝑎𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, and the 𝑛 roots of 𝑅𝑛(𝑏) are 

𝑏𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, so, the roots 𝑅𝑛(𝑎) − 𝑅𝑛(𝑏) for corresponding roots are, 

𝑎𝑒2(𝑘−1)𝑖/𝑛 − 𝑏𝑒2(𝑘−1)𝑖/𝑛 = (𝑎 − 𝑏)𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛.   

So, the subtraction operation is closed under the root structure.                      ■ 

In view of operations on root structure, FLT implies whether 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛  can have 

solutions which are not closed under the root structure.  

2.3 Irreducible Factorings 

Lemma 2.3.1 The following (2.3.1) is the unique irreducible factoring of (2.1) over the 

complex numbers. 

𝑥𝑛 − 1 = ∏ (𝑥 − 𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=1 .  (2.3.1) 

Proof. The 𝑛 roots of (2.1) are 𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, and (2.3.1) is the degree 1 factoring 

of (2.1) over the complex numbers. So, (2.3.1) is the unique irreducible factoring of (2.1) over 

the complex numbers.                                                            ■ 

Corollary 2.3.2 The following (2.3.2) is the unique irreducible factoring of (1.2) over the 

complex numbers. 
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𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛 = ∏ (𝑥 − 𝑎𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=1 .  (2.3.2) 

Proof. The 𝑛  roots of (1.2) are 𝑎𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛 , and (2.3.2) is the degree 1 

factoring of (1.2) over the complex numbers. So, (2.3.2) is the unique irreducible factoring of 

(1.2) over the complex numbers.                                                    ■ 

Corollary 2.3.3 The following (2.3.3) is the unique irreducible factoring of (1.4) over the 

complex numbers. 

ℎ(𝑐) = 𝑐𝑛 − 𝑏𝑛 = ∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=1   (2.3.3) 

Proof. The 𝑛 roots of (1.4) are c = 𝑏𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛, and (2.3.3) is the degree 1 

factoring of (1.4) over the complex numbers. So, (2.3.3) is the unique irreducible factoring of 

(1.4) over the complex numbers.                                                    ■ 

Lemma 2.3.4 All factors of (2.3.3) can not have the same magnitude. 

Proof. The 𝑛  factors of (2.3.3) are c − 𝑏𝑒2(𝑘−1)𝑖/𝑛, 1 ≤ 𝑘 ≤ 𝑛 . Each factor can be 

considered as the difference vector between (𝑐, 0)  and (𝑏𝑐𝑜𝑠
2(𝑘−1)𝑖

𝑛
, 𝑏𝑠𝑖𝑛

2(𝑘−1)𝑖

𝑛
) , as 

shown in Figure 3.  

Figure 3. Vector factor examples of (2.3.3). 

  

(a) n = 5 example. (b) n = 6 example. 

Because |𝑏𝑒2(𝑘−1)𝑖/𝑛| = 𝑏  and 𝑐 > 𝑏 > 0 , |𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛|  is same only when two 

𝑏𝑒2(𝑘−1)𝑖/𝑛 are complex conjugates. So, |𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛| can not be same for all 𝑘.     ■ 

Lemma 2.3.5 A polynomial equation of 𝑛 roots, whose magnitudes are not all same, can 

not be the roots of polynomial equation type 𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛 = 0. 

c − 𝑏𝑒2(𝑘−1)𝑖/𝑛 
c − 𝑏𝑒2(𝑘−1)𝑖/𝑛 
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Proof. The 𝑛 roots of 𝑥𝑛 − 𝑎𝑛 = 0 lies on the circle with radius 𝑎, so, a polynomial 

equation of 𝑛 roots whose magnitudes are not all 𝑎 can not be the roots of any polynomial 

equation type 𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛 = 0, as shown in Figure 4.                              ■ 

Figure 4. Example factors of 𝑐𝑛 − 𝑏𝑛. 

 

2.4 Root-coefficient Relationships 

Let the 𝑛 roots of a monic polynomial 𝑝(𝑥) be 𝑥1, 𝑥2, … , 𝑥𝑛, then, 

𝑝(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛)   

= 𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + ⋯ + 𝑐𝑛−1𝑥 + 𝑐𝑛  (2.4.1) 

𝑐1 = (−1) ∑ 𝑥𝑘
𝑛
𝑘=1    

𝑐2 = (−1)2 ∑ 𝑥𝑘𝑥𝑙
𝑛
𝑘,𝑙=1,𝑘<𝑙    

…..  

𝑐𝑛 = (−1)𝑛 ∏ 𝑥𝑘
𝑛
𝑘=1    

Definition 2.4.1 Context: The situation where a number, a coefficient or a variable is used 

in a monic polynomial equation with degree 𝑛. 

Definition 2.4.2 Context structure: The root structure of a monic polynomial equation.  

Definition 2.4.3 Variable degree: The degree of 𝑥 of each term in (2.4.1).  

Definition 2.4.4 Coefficient degree: The number of roots that is multiplied to generate a 

coefficient 𝑐𝑖. Table 1 shows the relationship between coefficient and variable degree.  

Definition 2.4.5 Context free: The situation where a number, a coefficient or a variable is 

used in a constant function. 

In view of context, variables 𝑎, 𝑏, 𝑐 in 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 
are not context free. They have a 

context structure which we called root structure in definiftion 2.1.4. So, the simple algebraic 

c − 𝑏𝑒2(𝑘−1)𝑖/𝑛 

c − 𝑏 
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solution 𝑐 = √𝑎𝑛 + 𝑏𝑛𝑛
 may not give a right solution within the context concept, because, as 

in lemma 2.2.4, the product operation is not closed to addition.  

If we consider 𝑎𝑛  or 𝑐𝑛 − 𝑏𝑛  as the parametrized products of 𝑛  roots, and also 

considering the degree of variable and coefficient in Table 1, the degree 𝑛 of 𝑎𝑛 or 𝑐𝑛 − 𝑏𝑛 

is the number of roots to generate 𝑎𝑛 or 𝑐𝑛 − 𝑏𝑛. Likewise, the degree of factored constant 

terms, like 𝑐 − 𝑏, also is the number of roots to generate that factor. 

Table 1. Relationship between variable and coefficient degree. 

Terms 𝒙𝒏 𝒄𝟏𝒙𝒏−𝟏 𝒄𝟐𝒙𝒏−𝟐 … 𝒄𝒏−𝟏𝒙 𝒄𝒏 

Degree of variable 𝑥 𝑛 𝑛 − 1 𝑛 − 2 … 1 0 

Degree of coefficient 𝑐𝑖 0 1 2 … 𝑛 − 1 𝑛 

Degree of terms 𝑛 𝑛 𝑛 … 𝑛 𝑛 

Here, we focus on 𝑥𝑛 − 𝑎𝑛 = 0 type equation where all roots are on a circle of radius 𝑎. 

So, the root-coefficient relationships are restricted only to the constant term 𝑎𝑛 or 𝑐𝑛 − 𝑏𝑛.  

𝑎𝑛 = 𝑎 ⋅ 𝑎2 …, odd 𝑛 ≥ 3. (2.4.2) 

𝑎𝑛 = 𝑎2 ⋅ 𝑎2 …, even 𝑛 ≥ 4. (2.4.3) 

𝑐𝑛 − 𝑏𝑛 = (𝑐 − 𝑏)(𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1) , odd 𝑛 ≥ 3. (2.4.4) 

𝑐𝑛 − 𝑏𝑛 = (𝑐2 − 𝑏2)(𝑐𝑛−2 + 𝑏𝑐𝑛−3 + ⋯ + 𝑏𝑛−3𝑐 + 𝑏𝑛−3) , even 𝑛 ≥ 4. (2.4.5) 

If the degree of 𝑎 in (2.4.2) or (2.4.3) is 1, then, 1 root is required to generate it. If the 

degree of 𝑎 is 2, then, 2 roots are required to generate it, whether they are 2 complex 

conjugate roots or 2 integer roots. Likewise, in (2.4.4) or (2.4.5), the degree of 𝑐 − 𝑏 is 1, so, 

1 root is required to generate it, and so on. 

Definition 2.4.6 Integer part: The part of the constant term where only integer root(s) 

exist(s). For odd 𝑛 ≥ 3, if 𝑥1 is 1 integer root,  

𝑥1 = 𝑎 or  

𝑥1 = 𝑐 − 𝑏.  

For even 𝑛 ≥ 4, if 𝑥1, 𝑥2 are 2 integer roots,  

𝑥1𝑥2 = −𝑎2 or  

𝑥1𝑥2 = 𝑐2 − 𝑏2.  

Definition 2.4.7 Complex part: The part of the constant term where only complex roots 

exist. For odd 𝑛 ≥ 3, it is the product of 𝑛 − 1 complex roots.  
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𝑥2𝑥3 … 𝑥𝑛 = ∏ 𝑎𝑒
2(𝑘−1)𝑖

𝑛𝑛
𝑘=2 = 𝑎𝑛−1 or  

𝑥2𝑥3 … 𝑥𝑛 = 𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1.  

For even 𝑛 ≥ 4, it is the product of 𝑛 − 2 complex roots.  

𝑥3𝑥4 … 𝑥𝑛 = ∏ 𝑎𝑒2(𝑘−1)𝑖/𝑛 = 𝑎𝑛−2𝑛
𝑘=3  or   

𝑥3𝑥4 … 𝑥𝑛 = 𝑐𝑛−2 + 𝑏𝑐𝑛−3 + ⋯ + 𝑏𝑛−3𝑐 + 𝑏𝑛−2.  

Definition 2.4.8 Factor moving: A moving of any integer factor 𝑑 between integer and 

complex part.  

Lemma 2.4.9 A factor moving causes some root structure change.  

Proof. Suppose 𝑑 is any integer factor of 𝑥1𝑥2 … 𝑥𝑛, which belongs to integer or complex 

part. Then, moving 𝑑 between integer and complex part will cause some changes to at least 

two or more roots, at least one in integer part and at least one in complex part. Let 𝑥𝑘
′  be 

roots after moving of d, then, 

𝑥1
′ 𝑥2

′ … 𝑥𝑛
′ = 𝑎𝑛.  

There exist at least two 𝑥𝑘
′ ≠ 𝑥𝑘, 𝑘 = 1, 2, … , 𝑛, so,  

𝑥𝑛 − 𝑎𝑛 = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛) ≠ (𝑥 − 𝑥1
′ )(𝑥 − 𝑥2

′ ) … (𝑥 − 𝑥𝑛
′ ).  

So, any factor moving causes some root structure change.                          ■ 

2.5 Odd-even Relationships 

Lemma 2.5.1. In equation (1.1), 𝑎 or 𝑏 must be even, and others are odd. 

Proof. Table 2 shows all odd-even cases of 𝑎, 𝑏, 𝑐.  

Table 2. Odd-even cases of 𝑎, b, c. 

Case 𝒂 𝒃 𝒄 LHS RHS Remarks ox 

1 odd odd odd even odd odd-even mismatch x 

2 odd odd even even even 𝑎𝑛 + 𝑏𝑛 (𝑚𝑜𝑑 4) ≠ 𝑐𝑛(𝑚𝑜𝑑 4) x 

3 odd even odd odd odd  o 

4 odd even even odd even odd-even mismatch x 

5 even odd odd odd odd  o 

6 even odd even odd even odd-even mismatch x 

7 even even odd even odd odd-even mismatch x 

8 even even even even even not pairwise coprime x 

Only cases 3 and 4 are permitted, where 𝑎 or 𝑏 is even, and others are odd.         ■ 
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3. Proof of FLT 

Lemma 3.1. Each contradiction from ①, ②, ③ proves FLT, and a contradiction from 

④ proves FLT for odd 𝑛 ≥ 3.  

① The contradiction on the first degree irreducible factoring of (1.2) and (1.3) over 

the complex numbers. 

② 𝑐𝑛 − 𝑏𝑛 can not be the constant term of equation type 𝑥𝑛 − 𝑎𝑛 = 0. 

③ The rational root theorem requires the following identities, which contradicts. 

𝑎 = 𝑐 − 𝑏, odd 𝑛 ≥ 3. (3.1) 

𝑎2 = 𝑐2 − 𝑏2, even 𝑛 ≥ 4. (3.2) 

④ For odd 𝑛 ≥ 3 , constant term factoring of 𝑎𝑛  and 𝑐𝑛 − 𝑏𝑛  introduces a 

contradiction.  

Proof. Let’s expand (2.3.3) as follows, where integer and imaginary parts are divided. 

∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=1 = (𝑐 − 𝑏) ∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛

𝑘=2  , odd 𝑛 ≥ 3  

= (𝑐 − 𝑏)(𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1).  (3.3) 

∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=1 = (𝑐2 − 𝑏2) ∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛

𝑘=3  , even 𝑛 ≥ 4  

= (𝑐2 − 𝑏2)(𝑐𝑛−2 + 𝑏𝑐𝑛−3 + ⋯ + 𝑏𝑛−3𝑐 + 𝑏𝑛−3). (3.4) 

① (1.2) and (1.3) can not have identical irreducible factoring, because, by lemma 

2.3.4, the magnitude of roots of (1.3) can not be all same.  

② Lemma 2.3.5 states that 𝑐𝑛 − 𝑏𝑛 can not be the constant term of a polynomial 

equation type 𝑥𝑛 − 𝑎𝑛 = 0.  

③ By lemma 2.4.9, factor moving is prohibited.  

 In (3.3), the only integer part is 𝑐 − 𝑏, so, it should be the only integer root of 

(1.3) for odd 𝑛 ≥ 3. 

 In (3.4), the only integer part is 𝑐2 − 𝑏2, so, it should be the product of two 

integer roots 𝑎 and −𝑎 of (1.3) for even 𝑛 ≥ 4. 

④ By lemma 2.5.1, one of 𝑎 or 𝑏 is even, and others are odd. Let 𝑎 be even, then,  

𝑎 = 2t0p1
t1p2

t2…pk
tk, ti ≥ 0 integer, t0 ≥ 1, pk prime (3.5) 

𝑎𝑛 = (2t0p1
t1p2

t2…pk
tk)n (3.6) 
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In (3.3), 𝑐 − 𝑏 is even because 𝑏, 𝑐 are odd, and 𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1 is 

odd because 𝑏, c are odd and the number of terms in 𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1 is 𝑛 

which is odd 𝑛 ≥ 3. So, in (3.6), the factor (2t0)n must belong to 𝑐 − 𝑏, i.e., (2t0)n | (𝑐 − 𝑏). But, 

(1.2) and (1.3) should be identical equations, so, the complex part of (1.3), ∏ (𝑐 −𝑛
𝑘=2

𝑏𝑒2(𝑘−1)𝑖/𝑛), must be same as the complex part of (1.2), ∏ 𝑎𝑒2(𝑘−1)𝑖/𝑛𝑛
𝑘=2 , which must 

contain at least one 𝑎2= (2t0p1
t1p2

t2…pk
tk)2 factor. But, because the factor (2t0)n belongs to 𝑐 −

𝑏, 𝑎2 can not exist in ∏ (𝑐 − 𝑏𝑒2(𝑘−1)𝑖/𝑛)𝑛
𝑘=2 = 𝑐𝑛−1 + 𝑏𝑐𝑛−2 + ⋯ + 𝑏𝑛−2𝑐 + 𝑏𝑛−1.   ■ 

4. Conclusion 

In this thesis, we related FLT to two polynomial equations to compare whether those two 

equations have equivalence properties in four aspects, ① irreducible factoring equivalence, 

② constant term equivalence, ③ rational root factor equivalence and ④ odd-even property 

equivalence of 𝑎, 𝑏, 𝑐. We found that each contradiction from ①, ②, ③ proves FLT, and a 

contradiction from ④ proves FLT for odd 𝑛 ≥ 3. 
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