A TOPOLOGICAL APPROACH TO THE TWIN PRIME AND DE POLIGNAC CONJECTURES

ANTONI CUENCA

Abstract

We introduce a topology in the set of natural numbers via a subbase of open sets. With this topology, we obtain an irreducible (hyperconnected) space with no generic points. This fact allows proving that the cofinite intersections of subbasic open sets are always empty. That implies the validity of the Twin Prime Conjecture. On the other hand, the existence of strictly increasing chains of subbasic open sets shows that the Polignac Conjecture is false for an infinity of cases.

1. Introduction

We will begin by introducing a topology in the set X of the odd prime numbers via a subbase of open sets. With this topology, X becomes an irreducible (or hyperconnected) space and also a T_{1} space. Moreover, using also a subbase, a topology is defined in the set X^{*} of the strictly positive integers. With this new topology, X^{*} also turns out to be an irreducible space.

In order to shorten, in this abstract, we call CISOS the cofinite intersections of subbasic open sets of the space X^{*}. We see immediately that if the twin primes conjecture was false then there would be a non-empty CISOS.

First we show that X^{*} has no generic points. A direct consequence of this is that no CISO can be a dense set. However, from the study of the notion of extremality introduced in section 3, it is obtained that if a CISOS is not the empty set then it must be dense (in fact it is seen that every non-empty intersection of subbasic open sets, not necessarily cofinite, must be dense). From all this, we deduce that all CISO must be empty and, so, the TPC must be true.

Finally, a strictly increasing chain of open subbasic sets of X^{*} is constructed. The existence of this chain shows that X^{*} is not a noetherian space and provides proof that de Polignac conjecture is false for an infinity of cases.

2. First properties of topological spaces X and X^{*}

Let X be the set of the odd prime numbers and \mathbb{N} the set of the strictly positive integers.

For every $m \in \mathbb{N}$ we consider the subset we consider the subset defined as

$$
O_{m}=\{p \in X: p+2 m \notin X\}
$$

[^0]We will denote H_{m} the complementary set

$$
X-O_{m}=\{p \in X: p+2 m \in X\}
$$

In order to clarify the notation, we will sometimes write $O(m)$ and $H(m)$ instead of O_{m} and H_{m} respectively.

We introduce in X the topology τ generated by the set of all the O_{m} as a subbase ([3]). This means that the open sets of this topology are all the reunions of finite intersections of the sets O_{m}, namely all sets of the form

$$
\bigcup\left(O\left(i_{1}\right) \cap \ldots \cap O\left(i_{n}\right)\right)
$$

We start by proving some properties of the topological space (X, τ)

Proposition 2.1. The space X is irreducible.
Proof. It is enough to see that the intersection of a finite number of $O_{n}, \mathrm{~s}$ is non-empty.

If we have $O\left(m_{1}\right) \cap \ldots \cap O\left(m_{r}\right)=\emptyset$ then $H\left(m_{1}\right) \cup \ldots \cup H\left(m_{r}\right)=X$. Let $\mu=\max \left\{m_{1}, \ldots m_{r}\right\}$. We know that there are arbitrarily large intervals of natural numbers that do not contain prime numbers (as an example of length $n-1$ of these intervals we can take $[n!+2, n!+n] \cap \mathbb{N}$). More specifically, for each natural number m there is a prime number q such that $s(q)-q>m$ where $s(q)$ is the prime number that follows q.

In particular, there must be a q such that $s(q)-q>2 \mu$ and, for this $q, \min \left\{j: q \in H_{j}\right\}>\mu \geq m_{i}$ for every $i=1, \ldots, r$ or, in other words, $q \notin H\left(m_{1}\right) \cup H\left(m_{r}\right)$ which is a contradiction.

Proposition 2.2. The space X is T_{1}
Proof. Let $p \in X$. Let's see that $\{p\}$ is a closed set. given a j such that $1 \leq j<p$, because $G C D(j, p)=1$, there is a $\lambda>1$ such that $j+\lambda p \in$ X. In fact, the Dirichlet theorem relative to prime numbers in arithmetic progressions ([1]; chapter 7) ensures the existence of an infinite amount of these λ.

For all $j=1, \ldots, p-1$ let $\nu_{j}=\min \{\lambda>1: j+\lambda p \in X\}$. We have:

$$
p \in H\left(\frac{1}{2}\left(1+\left(\nu_{1}-1\right) p\right)\right) \cap \ldots \cap H\left(\frac{1}{2}\left(p-1+\left(\nu_{p-1}-1\right) p\right)\right)
$$

Let $q \in H\left(\frac{1}{2}\left(1+\left(\nu_{1}-1\right) p\right)\right) \cap \ldots \cap H\left(\frac{1}{2}\left(p-1+\left(\nu_{p-1}-1\right) p\right)\right)$ and suppose that $q \equiv i \neq 0(\bmod p)$ where $i<p$ and let say that $q=i+\mu p, i<p$.

$$
\text { Because } q \in H\left(\frac{1}{2}\left(p-i+\left(\nu_{p-i}-1\right) p\right)\right) \text { we have that }
$$

$$
q+p-i+\left(\nu_{p-i}-1\right) p=i+\mu p+p-i+\left(\nu_{p-i}-1\right) p=\left(\mu+\nu_{p-i}\right) p \in X
$$ which is absurd because $\mu+\nu_{p-i}>1$. We deduce that it must be $i=0$ i.e. $q \equiv 0(\bmod p)$ which implies $q=p$. So that $\{p\}=\bigcap_{j=1}^{p-1} H\left(\frac{1}{2}\left(j+\left(\nu_{j}-1\right) p\right)\right)$ which is closed.

(We observe that T_{1} is the largest separation that allows an irreducible space).

Remark 1: We emphasize that we have proved that every point in X can be written as a finite intersection of the closed sets H_{m} that contain it.

Proposition 2.3. For every $m \in \mathbb{N}$ we have that $\bigcap_{\lambda \in N} O_{\lambda m}$ is the set of the odd primes that divide m. In particular, if p is a prime number then $\bigcap_{\lambda \in N} O_{\lambda p}=\{p\}$
Proof. Suppose that p is a prime divisor of m. If p belonged to some $H_{\lambda m}$ then $p+2 \lambda m=p\left(1+2 \lambda \frac{m}{p}\right) \in X$ which is absurd so that $p \in \bigcap_{\lambda \in N} O_{\lambda m}$

Let's see now that if p is an odd prime number that does not divide m then $p \notin \bigcap_{\lambda \in N} O_{\lambda m}$. If p does not divide m then $\operatorname{GCD}(p, m)=1$ and so, $G C D(p, 2 m)=1$. Applying again the Dirichlet theorem mentioned in proposition 2.2, there must be a λ such that $p+2 \lambda m \in X$, that is, $p \in H_{\lambda m}$.

Now we introduce a topology τ^{*} in the set $X^{*}=\mathbb{N}$ taking the sets

$$
O_{p}^{*}=\{m \in \mathbb{N}: p+2 m \notin X\}
$$

(where p is any prime number) as subbase of open sets. In a similar way to what we have previously done with the space X we will write $H_{p}^{*}=$ $\{m \in \mathbb{N}: p+2 m \in X\}$ to denote the complementary sets. Sometimes we will write $O^{*}(p)$ and $H^{*}(p)$ instead of O_{p}^{*} and H_{p}^{*}, respectively.

Let's start now the study of the space X^{*}.
Remark 2: Before starting the study of this space, we note that we now have a new language in order to enunciate the conjectures that are the object of this paper. Indeed, with this language, the de Polignac conjecture says that, for all m, the set $H_{m} \cap O_{1} \cap \ldots \cap O_{m-1}$ has infinite elements and the twin primes conjecture simply says that the closed set H_{1} is infinite.

Proposition 2.4. X^{*} is an irreducible topological space.
Proof. Again it is sufficient to prove that the intersection of a finite number of open sets of the form O_{q}^{*} is non empty.

Specifically, if $q_{1}, \ldots q_{r}$ are different primes then

$$
q_{1} \cdot \ldots \cdot q_{r} \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)
$$

because if for some $j=1, \ldots r$ were $q_{1} \cdot \ldots \cdot q_{r} \in H^{*}\left(q_{j}\right)$ then

$$
q_{j}+2 q_{1} \cdot \ldots \cdot q_{r}=q_{j}\left(1+2 q_{1} \cdot q_{2} \cdot \ldots \cdot \hat{q}_{j} \cdot \ldots \cdot q_{r}\right) \in X
$$

which is absurd. In fact, if () means "ideal" then

$$
\left(q_{1} \cdot \ldots \cdot q_{r}\right) \cap \mathbb{N}=\left\{\lambda q_{1} \cdot \ldots \cdot q_{r}: \lambda \in \mathbb{N}\right\} \subset O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)
$$

Proposition 2.5. We have:
a) If $H_{p}^{*} \subset H_{q}^{*}$ the $p=q$
b) The subspaces H_{p}^{*} are irreducible.

Proof. a) If $H_{p}^{*} \subset H_{q}^{*}$ then every m in H_{p}^{*} belongs to H_{q}^{*} or, in other words, if $p \in H_{m}$ then $q \in H_{m}$ or, put in other way, $\left\{m: p \in H_{m}\right\} \subset\left\{m: q \in H_{m}\right\}$ and that implies

$$
\bigcap_{q \in H_{m}} H_{m} \subset \bigcap_{p \in H_{m}} H_{m}
$$

From remark 1 after proposition 2.2, we deduce that, for every r,

$$
\bigcap_{q \in H_{r}} H_{r}=\{r\}
$$

and, so, the previous inclusion implies $\{q\} \subset\{p\}$ or, what is the same, $p=q$.
b) We must to prove that if T and T^{\prime} are closed sets then $H_{p}^{*} \subset T \cup T^{\prime}$ implies either $H_{p}^{*} \subset T$ or $H_{p}^{*} \subset T^{\prime}$. We begin proving that if $H_{p}^{*} \subset \bigcup_{i=1} H^{*}\left(q_{i}\right)$ then there is i such that $p=q$.

If $H_{p}^{*} \subset \bigcup_{i=1}^{r} H^{*}\left(q_{i}\right)$ then $\bigcap_{i=1}^{r} O^{*}\left(q_{i}\right) \subset O^{*}(p)$ which means that for all m such that $\left\{q_{1}, \ldots q_{r}\right\} \subset O_{m}$ we must have that $p \in O_{m}$, but for all $\lambda \in \mathbb{N}$,

$$
\left\{q_{1}, \ldots q_{r}\right\} \subset O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)
$$

so that, for all $\lambda \in \mathbb{N}, p \in O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)$ that is $p \in \bigcap_{\lambda \in N} O\left(\lambda q_{1} \cdot \ldots \cdot q_{r}\right)$.
By proposition 2.3, the last intersection is equal to $\left\{q_{1}, \ldots, q_{r}\right\}$ and therefore $p=q_{i}$ for some $i=1, \ldots, r$

Suppose that $H_{p}^{*} \nsubseteq T \cup T^{\prime}=$

$$
\left(\bigcap_{i}\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right)\right) \cup\left(\bigcap_{j}\left(H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)\right)\right)
$$

and that $H_{p}^{*} \nsubseteq T^{\prime}$. Then there must be a j such that
$H_{p}^{*} \nsubseteq H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)$ but, for every i, we have

$$
H_{p}^{*} \subset\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right) \cup\left(H^{*}\left(q_{j_{1}}\right) \cup \ldots \cup H^{*}\left(q_{j_{s(j)}}\right)\right)
$$

This implies that for each i exists a $t,\left(1 \leq t \leq r_{i}\right)$ such that $H_{p}^{*}=$ $H^{*}\left(p_{i_{t}}\right)$ since we can't have $H_{p}^{*}=H^{*}\left(q_{j_{k}}\right)$. Therefore, for every i, $H_{p}^{*} \subset H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)$ and, finally,

$$
H_{p}^{*} \subset \bigcap_{i}\left(H^{*}\left(p_{i_{1}}\right) \cup \ldots \cup H^{*}\left(p_{i_{r(i)}}\right)\right)=T
$$

Proposition 2.6. $H_{n} \subset H_{m}$ if and only if $\overline{\{m\}} \subset \overline{\{n\}}$ where the upper bar means closure in the space X^{*}
Proof. \Rightarrow)
Suppose that $m \notin \overline{\{n\}}$. Then there will be p_{1}, \ldots, p_{r} such that
$m \in O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{r}\right)$ and $n \in H^{*}\left(p_{1}\right) \cup \ldots \cup H^{*}\left(p_{r}\right)$. So, for each $i=1, \ldots, r, p_{i}$ belongs to O_{m} and there is a j such that p_{j} belongs to H_{n}. As $H_{n} \subset H_{m}$, this p_{j} belongs to H_{m} which is a contradiction with $p_{i} \in O_{m}$ for every $i=1, \ldots, r$
$\stackrel{\Leftarrow}{\{m\}} \subset \overline{\{n\}}$ implies $m \in \overline{\{n\}}$ and, therefore, for every p such that $m \in O_{p}^{*}$
we must have that $n \in O^{*}$ or, what is the same, for every p such that $n \in H_{p}^{*}$ we must have that $n \in O_{p}^{*}$ or, what is the same, for every p such that $n \in H_{p}^{*}$ we must have that $m \in H_{p}^{*}$. That means that, for every $p, p \in H_{n}$ implies $p \in H_{m}$. In other words, $H_{n} \subset H_{m}$.

Proposition 2.7. $\overline{\{m\}}=\bigcap_{p \in H_{m}} H_{p}^{*}$
Proof. ©)
Obviously, for every $p \in H_{m}$, we have $m \in H_{p}^{*}$ and therefore $m \in \bigcap_{p \in H_{m}} H_{p}^{*}$ so that

$$
\overline{\{m\}} \subset \overline{\bigcap_{p \in H_{m}} H_{p}^{*}}=\bigcap_{p \in H_{m}} H_{p}^{*}
$$

つ)
Be $n \in \bigcap_{p \in H_{m}} H_{p}^{*}$. If $n \notin \overline{\{m\}}$ then will exist q_{1}, \ldots, q_{s} such that
$n \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right)$ and $m \in H^{*}\left(q_{1}\right) \cup \ldots \cap \cup H^{*}\left(q_{s}\right)$. This tell us that there is an i such that $m \in H^{*}\left(q_{i}\right)$, that is such that $q_{i} \in H_{m}$. So, in particular, we have that $n \in H^{*}\left(q_{i}\right)$ because $n \in \bigcap_{p \in H_{m}} H_{p}^{*}$. That contradicts the fact that $n \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right)$.

Proposition 2.8. $H_{m} \cap H_{n}=\emptyset$ if and only if $m \in \bigcap_{p \in H_{n}} O_{p}^{*}$
Proof. We have successively: $H_{m} \cap H_{n}=\emptyset \Leftrightarrow H_{n} \subset O_{m} \Leftrightarrow$ for every $p \in H_{n}$ we must have that $p \in O_{m} \Leftrightarrow$ for all $p \in H_{n}$ it must have that $m \in O_{p}^{*} \Leftrightarrow$ $m \in \bigcap_{p \in H_{n}} O_{p}^{*}$

Proposition 2.9. The following conditions are equivalent:
i) $I \subset \mathbb{N}$ is a finite set.
ii) $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is an open non-empty set.
iii) The interior of $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is non-empty.

Proof. $i) \Rightarrow i i$) and $i i) \Rightarrow i i i$) are obvious (note that in $i) \Rightarrow i i), \bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is non empty because I is finite and, by proposition 1.4, X^{*} is an irreducible space). We're going to see $i i i) \Rightarrow i$).
If the interior of $\bigcap_{i \in I} O^{*}\left(p_{i}\right)$ is non-empty then there are $q_{1}, \ldots q_{s}$ such that $O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{s}\right) \subset \bigcap_{i \in I} O^{*}\left(p_{i}\right)$ or, which is equivalent, $\bigcup_{i \in I} H^{*}\left(p_{i}\right) \subset H^{*}\left(q_{1}\right) \cup \ldots \cup H^{*}\left(q_{s}\right)$ and, therefore, for every $i \in I$ we have that $H^{*}\left(p_{i}\right) \subset H^{*}\left(q_{1}\right) \cup \ldots \cup H^{*}\left(q_{s}\right)$. Using the proposition 2.5 , we obtain that, for every $i \in I$, there is a $j(1 \leq j \leq s)$ such that $H^{*}\left(p_{i}\right)=H^{*}\left(q_{j}\right)$. So that, for every $i \in I$, there is a $j(1 \leq j \leq s)$ such that $p_{i}=q_{j}$ and so, $\left\{p_{i}: i \in I\right\} \subset\left\{q_{1}, \ldots q_{s}\right\}$ and I is finite.

Proposition 2.10. Are equivalent:
i) For every $C \subset \mathbb{N}$ cofinite, $\bigcap_{q \in C} O_{q}^{*}=\emptyset$
ii) For every $m \in \mathbb{N}$, the closed set H_{m} has infinite points.

Proof. $i) \Rightarrow i i)$ If there is a $m \in \mathbb{N}$ such that H_{m} is finite then O_{m} is cofinite and, nevertheless, $\bigcap_{q \in O_{m}} O_{q}^{*} \neq \emptyset$ because $m \in \bigcap_{q \in O_{m}} O_{q}^{*}$.

Indeed, $n \in \bigcap_{q \in O_{m}} O_{q}^{*} \Leftrightarrow n \in O_{q}^{*}$ for every $q \in O_{m} \Leftrightarrow q \in O_{n}$ for every $q \in O_{m} \Leftrightarrow O_{m} \subset O_{n}$ and so, $m \in \bigcap_{q \in O_{m}} O_{q}^{*}$ because, obviously $O_{m} \subset O_{m}$.
ii) $\Rightarrow i)$ We have that $m \in O_{q}^{*} \Leftrightarrow q \in O_{m}$ and so, given any $I \subset X$, $m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow m \in O_{q}^{*}$ for every $q \in I$ which is equivalent to $q \in O_{m}$ for all $q \in I$ or, what is the same, $I \subset O_{m}$. Now, if there is a cofinite set C such that $\bigcap_{q \in C} O_{q}^{*} \neq \emptyset$ and $m \in \bigcap_{q \in C} O_{q}^{*}$, then $C \subset O_{m}$ and, therefore, $H_{m} \subset X-C$ which is finite.

Remark 3: We observe that if we prove $\bigcap_{q \in C} O_{q}^{*}=\emptyset$ for every cofinite C, in particular, we will have proven that H_{1} is an infinite set which, as we have already explained in remark 2 after proposition 2.3 , is equivalent to the Twin Prime Conjecture.

We will write $A_{n}=\left\{m: H_{m} \cap H_{n}=\emptyset\right\}$ which, from proposition 2.8. is equal to $\bigcap_{q \in H_{n}} O_{p}^{*}$.

Proposition 2.11. H_{n} is finite if and only if A_{n} is open.

Proof. If H_{n} is finite then $A_{n}=\left\{m: H_{m} \cap H_{n}=\emptyset\right\}=\bigcap_{q \in H_{n}} O_{p}^{*}$ is open because is an intersection of a finite number of open sets. The reciprocal follows from proposition 2.9.

Proposition 2.12. $H_{m}=\emptyset$ if and only if $\{m\}=X^{*}$ namely if and only if m is a generic point in X^{*}.

Proof. We have that $H_{m}=\emptyset \Leftrightarrow O_{m}=X$ and this is equivalent to $p \in O_{m}$ for every $p \in X$ or, in other words, $m \in O_{p}^{*}$ for every $p \in X$. That is the same as saying that m belongs to all open sets $U \subset X^{*}$ which is equivalent to say $\overline{\{m\}}=X^{*}$ since $\{m\}$ is dense if and only if m belongs to the all open sets.

We will call Z the set $\left\{m \in X^{*}: H_{m}=\emptyset\right\}$. Let's see that $Z=\emptyset$ namely X^{*} has no generic points.

Proposition 2.13. $Z=\bigcap_{q \in X} O_{q}^{*}$
Proof. We have $m \in Z \Leftrightarrow O_{m}=X \Leftrightarrow q \in O_{m}$ for every $q \in X \Leftrightarrow m \in O_{q}^{*}$ for every $q \in X \Leftrightarrow m \in \bigcap_{q \in X} O_{q}^{*}$.

Proposition 2.14. $Z=\bigcap_{m \in X^{*}} A_{m}$
Proof. We have:

$$
\bigcap_{m \in X^{*}} A_{m}=\bigcap_{m \in X^{*}} \bigcap_{q \in H_{m}} O_{q}^{*}=\bigcap_{q \in \cup_{m \in X^{*}} H_{m}} O_{q}^{*}=\bigcap_{q \in X} O_{q}^{*}=Z
$$

Proposition 2.15. $Z=\bigcap_{n \in X^{*}-Z} A_{n}$
Proof. From the proposition 2.8. we know that $A_{n}=\bigcap_{p \in H_{n}} O_{p}^{*}$ and by proposition 2.7, $\overline{\{n\}}=\bigcap_{p \in H_{n}} H_{p}^{*}$. Obviously, for every $n \in X^{*}-Z$ we have
$A_{n} \cap \overline{\{n\}}=\emptyset$ (note that $H_{n} \neq \emptyset$ because $n \in X^{*}-Z$). That is, for every $n \in X^{*}-Z$ we have $A_{n} \subset X^{*}-\{n\}$ so that

$$
\begin{gathered}
Z=\bigcap_{n \in X^{*}} A_{n} \subset \bigcap_{n \in X^{*}-Z} A_{n} \subset \bigcap_{n \in X^{*}-Z}\left(X^{*}-\overline{\{n\}}\right)=X^{*}-\bigcup_{n \in X^{*}-Z} \overline{\{n\}} \subset \\
\subset X^{*}-\bigcup_{n \in X^{*}-Z}\{n\}=X^{*}-\left(X^{*}-Z\right)=Z
\end{gathered}
$$

Proposition 2.16. $Z=\emptyset$ namely X^{*} has no generic points. In particular, $H_{m} \neq \emptyset$ for every $m \in X^{*}$
Proof. $A_{n}=\bigcap_{p \in H_{n}} O_{p}^{*}$ implies $X^{*}-A_{n}=\bigcup_{p \in H_{n}} H_{p}^{*}$ but $\overline{\{n\}}=\bigcap_{p \in H_{n}} H_{p}^{*}$ so that $\overline{\{n\}} \subset X^{*}-A_{n}$ and, therefore,

$$
\bigcup_{n \in X^{*}} \overline{\{n\}}=X^{*} \subset \bigcup_{n \in X^{*}}\left(X^{*}-A_{n}\right)=X^{*}-\bigcap_{n \in X^{*}} A_{n}
$$

From this we deduce that $X^{*}-\bigcap_{n \in X^{*}} A_{n}=X^{*}$ and, finally, that

$$
Z=\bigcap_{n \in X^{*}} A_{n}=\emptyset
$$

Proposition 2.17. We have:
a) X^{*} is T_{0} if and only if $O_{m} \neq O_{n}$ for every m, n such that $m \neq n$.
b) X^{*} is T_{1} if and only if $O_{m} \nsubseteq O_{n}$ for every m, n such that $m \neq n$.

Proof. We will show b). The proof of a) is analogous.
X^{*} is not T_{1} if and only if there are m, n with $m \neq n$ and such that $n \in O_{p_{1}}^{*} \cap \ldots \cap O_{p_{r}}^{*}$ for every $p_{1}, \ldots p_{r}$ such that $m \in O_{p_{1}}^{*} \cap \ldots \cap O_{p_{r}}^{*}$. That is equivalent to that exist m, n with $m \neq n$ and such that $\left\{p_{1}, \ldots p_{r}\right\} \subset O_{n}$ for every $p_{1}, \ldots p_{r}$ with $\left\{p_{1}, \ldots p_{r}\right\} \subset O_{m}$. Again, this amounts to that for each finite set $F, F \subset O_{m}$ implies $F \subset O_{n}$ and that is equivalent to $O_{m} \subset O_{n}$

3. Extremality

Definition Let $I \subset X$. We will say that I is an extremal set or, simply, an extremal if $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ and $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\bigcap_{q \in I \cup\{p\}} O_{p}^{*}=\emptyset$ for every $p \in X-I$.

Proposition 3.1. We have:
a) If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ then $\bigcap_{q \in X-I} H_{q}^{*} \subset \overline{\bigcap_{q \in I} O_{q}^{*}}$
b) $I \subset X$ is an extremal set if and only if $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ and

$$
\bigcap_{q \in X-I} H_{q}^{*}=\overline{\bigcap_{q \in I} O_{q}^{*}}
$$

Proof. a) If $\bigcap_{q \in X-I} H_{q}^{*}=\emptyset$ there is nothing to prove. Otherwise,
$m \in \bigcap_{q \in X-I} H_{q}^{*} \Leftrightarrow m \in H_{q}^{*}$ for every $q \in X-I \Leftrightarrow q \in H_{m}$ for every $q \in X-I \Leftrightarrow X-I \subset H_{m} \Leftrightarrow O_{m} \subset I^{(1)}$. Consider $q_{1}, \ldots q_{r}$ such that
$m \in O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right)$. This is equivalent to $\left\{q_{1}, \ldots q_{r}\right\} \subset O_{m}$ and, by (1), we have that $\left\{q_{1}, \ldots q_{r}\right\} \subset I$ so that $O^{*}\left(q_{1}\right) \cap \ldots \cap O^{*}\left(q_{r}\right) \cap \bigcap_{q \in I} O_{q}^{*}=\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$. Therefore, $m \in \overline{\bigcap_{q \in I} O_{q}^{*}}$
b) We know that in every topological space, if A is an open set and B is any set, then $A \cap \bar{B} \subset \overline{A \cap B}$ (see [2]; 1.7, prop. 5). In our case this tells us that for every $p \in X-I$, we have $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{q \in I \cup\{p\}} O_{q}^{*}$ but this last set is empty because I is an extremal and, so, $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset H_{p}^{*}$ for every $p \in X-I$, that is $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{p \in X-I} H_{p}^{*}$. Part a) completes the proof. Let's see the reciprocal of part b).
$\widehat{\bigcap} O_{q \in I}^{*}=\bigcap_{p \in X-I} H_{p}^{*} \Rightarrow \bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in X-I} H_{p}^{*}$ which means that for every m such that $I \subset O_{m}$ we have that $X-I \subset H_{m}$ that is to say that for every m such that $I \subset O_{m}$ we have that $I=O_{m}$. If there was $p \in X-I$ such that
$\bigcap O_{q}^{*} \neq \emptyset$ then there would be n such that $I \subset I \cup\{p\} \subset O_{n}$ and by $q \in I \cup\{p\}$
the previous observation we have that $I=I \cup\{p\} \subset=O_{n}$ which implies $p \in I$. This is a contradiction. Therefore, $\bigcap_{q \in I \cup\{p\}} O_{q}^{*}=\emptyset$ for every $p \in X-I$ and I is an extremal set.

Proposition 3.2. I is extremal \Leftrightarrow exists n such that $I=O_{n}$ and $\bigcap_{q \in O_{n}} O_{q}^{*}=$ $\left\{m: O_{m}=O_{n}\right\}$.
Proof. \Rightarrow)
We have $n \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow I \subset O_{n}$. In addition, if I is extremal then
$\bigcap O_{q}^{*} \subset H_{p}^{*}$ for every $p \in X-I$ which implies that, for every $p \in X-I$, if $\Omega_{q \in I}$
$I \subset O_{n}$, then $p \in H_{n}$. Therefore, if $I \subset O_{n}$ then $X-I \subset H_{n}$. That means that, if $I \subset O_{n}$ then $O_{n} \subset I$ and, so, $O_{n}=I$. In short, we must have $O_{n}=I$ for every $n \in \bigcap_{q \in I} O_{q}^{*}$ and so, $\bigcap_{q \in I} O_{q}^{*}=\left\{m: O_{m}=O_{n}\right\}$.
$\Leftarrow)$
$\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ because $I=O_{n}$ and therefore $n \in \bigcap_{q \in O_{n}} O_{q}^{*}=\bigcap_{q \in I} O_{q}^{*}$. If there was a $p \in X-I$ such that $\bigcap_{q \in I \cup\{p\}} O_{q}^{*} \neq \emptyset$ then there should be m that
$I \cup\{p\} \subset O_{m}$ but $I \varsubsetneqq I \cup\{p\} \subset O_{m}$ and, in particular, $I \subset O_{m}$ which implies $m \in \bigcap_{q \in I} O_{q}^{*}$ and $I=O_{n} \nsubseteq O_{m}$ which is absurd.

Definition: If $I \subset X$ we will call $N(I)$ the set

$$
N(I)=\left\{p \in X: O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\emptyset\right\}=\left\{p \in X: \bigcap_{q \in I \cup\{p\}} O_{q}^{*}=\emptyset\right\}
$$

We have:
a) If $\bigcap_{q \in I} O_{q}^{*}=\emptyset$ then $N(I)=X$ and reciprocally. Indeed, $N(I)=X$ implies that $\bigcap_{q \in I} O_{q}^{*} \subset H_{p}^{*}$ for every $p \in X$, namely $\bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in X} H_{p}^{*}$. But $m \in \bigcap_{p \in X} H_{p}^{*} \Leftrightarrow p \in H_{m}$ for every $p \in X$ which is equivalent to $H_{m}=X$ and this is absurd due to the existence of gaps of prime numbers of arbitrary length.
b) If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is dense, then $N(I)=\emptyset$.

Proposition 3.3. If $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \emptyset$ then $\bigcap_{q \in N(I)} H_{q}^{*}=\bigcap_{q \in X-N(I)} O_{q}^{*}$ and so, by proposition 3.1, $X-N(I)$ is extremal.

Proof. $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \emptyset$ implies $N(I) \neq \emptyset$ because, otherwise,
$\bigcap_{q \in X-N(I)} O_{q}^{*}=\bigcap_{q \in X} O_{q}^{*}=Z=\emptyset$.
We have that $\bigcap_{q \in I} O_{q}^{*} \subset H_{p}^{*}$ for all the $p \in N(I)$ and so, $\bigcap_{q \in I} O_{q}^{*} \subset \bigcap_{p \in N(I)} H_{p}^{*}$ which implies $\frac{\bigcap_{q \in I} O_{q}^{*}}{O_{p \in N(I)} H_{p}^{*(1)} \text { because } \bigcap_{p \in N(I)} H_{p}^{*} \text { is a closed set. } \bigcap_{q \in I} \text {. } \bigcap_{p \in N}(I)}$

Given that $\bigcap_{q \in X-N(I)} O_{q}^{*} \neq \emptyset$, by the proposition 3.1a), we have that

$$
\bigcap_{q \in N(I)} H_{q}^{*} \subset \bigcap_{q \in X-N(I)} O_{q}^{*(2)}
$$

On the other hand, $N(I) \subset X-I \Rightarrow I \subset X-N(I) \Rightarrow$

$$
\Rightarrow \bigcap_{q \in X-N(I)} O_{q}^{*} \subset \bigcap_{q \in I} O_{q}^{*} \Rightarrow \overline{\bigcap_{q \in X-N(I)} O_{q}^{*}} \subset \overline{\bigcap_{q \in I} O_{q}^{*}}{ }^{* 3)}
$$

Therefore, $\overline{\bigcap_{q \in I} O_{q}^{*}} \subset \bigcap_{p \in N(I)} H_{p}^{*} \subset \overline{\bigcap_{q \in X-N(I)} O_{q}^{*}} \subset \bar{\bigcap} \bigcap_{q \in I} O_{q}^{*}$ where inclusions come, respectively, from (1), (2) and (3). We finally obtain that

$$
\bigcap_{p \in N(I)} H_{p}^{*}=\bigcap_{q \in X-N(I)} O_{q}^{*}
$$

Proposition 3.4. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ then I is extremal if and only if $N(I)=X-I$.
Proof. We have $X-I \subset N(I) \Leftrightarrow \bigcap_{q \in I} O_{q}^{*} \cap O_{p}^{*}=\emptyset$ for every $p \in X-I \Leftrightarrow I$ is extremal. But if $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ then $X-I \subset N(I)$ which is equivalent to $X-I=N(I)$ because we always have $N(I) \subset X-I$.

Proposition 3.5. $N(I)=\bigcap_{I \subset O_{m}} H_{m}$
Proof. We have $I \subset O_{m} \Leftrightarrow m \in \bigcap_{q \in I} O_{q}^{*}$ and therefore
$p \in \bigcap_{I \subset O_{m}} H_{m} \Leftrightarrow p \in H_{m}$ for every $m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow m \in H_{p}^{*}$ for every
$m \in \bigcap_{q \in I} O_{q}^{*} \Leftrightarrow O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\emptyset \Leftrightarrow p \in N(I)$.

Proposition 3.6. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ then I is an extremal $\Leftrightarrow I=\bigcup_{I \subset O_{m}} O_{m}$
Proof. By proposition 3.4, I is an extremal if and only if $N(I)=X-I$ and, by proposition 3.5, $N(I)=\bigcap_{I \subset O_{m}} H_{m}$.

Proposition 3.7. $\bigcup_{I \subset O_{m}} O_{m} \neq X \Leftrightarrow J=\bigcup_{I=O_{m}} O_{m}$ is an extremal.
Proof. \Rightarrow)
If J was not an extremal then it should exists $p \in X-J$ such that $O_{p}^{*} \cap \bigcap_{q \in J} O_{q}^{*} \neq \emptyset$ and so there would be one $p \in X-J$ and one $s \in \mathbb{N}$ such that $J \cup\{p\}=O_{s}$ and therefore $J \varsubsetneqq O_{s}$, but $I \subset \bigcup_{I \subset O_{m}} O_{m}=J \varsubsetneqq O_{s}$ so that $I \subset O_{s}$. We deduce that s is one of the m such that $I \subset O_{m}$ and, so,

A. CUENCA

$O_{s} \subset \bigcup_{I \subset O_{m}} O_{m}=J$ which is contradictory to $J \varsubsetneqq O_{s}$.
$\Leftarrow)$ If we had $J=\bigcup_{I \subset O_{m}} O_{m}=X$ than $\bigcap_{q \in J} O_{q}^{*}=\emptyset$ which would go against the definition of extremal set.

Corollary 3.8. Suppose that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$. Then $N(I) \neq \emptyset \Leftrightarrow X-N(I)$ is extremal.
Proof. $N(I) \neq \emptyset \Leftrightarrow X-N(I)=\bigcup_{I \subset O_{m}} O_{m} \neq X$ (proposition 3.5). In addition, by proposition 3.7, $X-N(I)=\bigcup_{I \subset O_{m}} O_{m}$ and $J=X-N(I)$.

Proposition 3.9. The following conditions are equivalent:
i) There are no extremal sets.
ii) All sets $\bigcap_{q \in I} O_{q}^{*}$ that are non-empty are dense.

Proof. $i) \Rightarrow i i$) If there no extremal sets then, by proposition 3.7, for all I such that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ we must have $\bigcup_{I \subset O_{m}} O_{m}=X$. In other words, for every $p \in X$ has to exist a m such that $I \subset O_{m}$ and $p \in O_{m}$. This means that for every $p \in X, \bigcap_{q \in I \cup\{p\}} O_{q}^{*} \neq \emptyset$ that is $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ or, put it another way, for every I such that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ we must have $N(I)=\emptyset$

If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ was not dense then there should be p_{1}, \ldots, p_{k} such that

$$
\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k}\right)\right)=\emptyset
$$

Suppose that $\left\{p_{1}, \ldots p_{k}\right\}$ is minimal with this property, that is

$$
\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k-1}\right)\right) \neq \emptyset
$$

That implies that $p_{k} \in N\left(I \cup\left\{p_{1}, \ldots, p_{k-1}\right\}\right)$ which is a contradiction and, therefore, $\bigcap_{q \in I} O_{q}^{*}$ is dense.
$i i) \Rightarrow i$) If there was an extremal O_{μ} then $\bigcap_{q \in O_{\mu}} O_{q}^{*} \neq \emptyset$ which is not a dense set.

Proposition 3.10. If $I \subset J$ then $N(I) \subset N(J)$

Proof. $I \subset J$ implies $\bigcap_{q \in J} O_{q}^{*} \subset \bigcap_{q \in I} O_{q}^{*}$. If $p \in N(I)$ then $O_{p}^{*} \cap \bigcap_{q \in I} O_{q}^{*}=\emptyset$ and so $O_{p}^{*} \cap \bigcap_{q \in J} O_{q}^{*}=\emptyset$ which means that $p \in N(J)$.

Proposition 3.11. Suppose that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$. Then $N(I) \neq \emptyset \Rightarrow N(I)=$ $N(X-N(I))$.
Proof. By the corollary $3.8, N(I) \neq \emptyset$ if and only if $X-N(I)$ is an extremal so that by proposition 3.4, $N(X-N(I))=X-(X-N(I))=N(I)$.

Proposition 3.12. If $N(I) \neq \emptyset, I \subset J$ and $\bigcap_{q \in J} O_{q}^{*} \neq \emptyset$ then $N(I)=N(J)$ Proof. $I \subset J \Rightarrow \bigcap_{q \in J} O_{q}^{*} \subset \bigcap_{q \in I} O_{q}^{*} \Rightarrow \bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ because $\bigcap_{q \in J} O_{q}^{*} \neq \emptyset$. By the proposition 3.11, $N(I)=N(X-N(I))$ and by proposition $3.10, N(J) \neq \emptyset$ because, by hypothesis, we have $N(I) \neq \emptyset$ and $N(I) \subset N(J)$.

Again by proposition 3.11, we have that $N(J)=N(X-N(J))$ and we obtain

$$
N(X-N(I))=N(I) \subset N(J)=N(X-N(J))
$$

In addition, $X-N(J) \subset X-N(I)$ and, again by 3.10, we have that $N(X-N(J)) \subset N(X-N(I))$.

Finally we have $N(X-N(I))=N(I) \subset N(J)=N(X-N(J)) \subset$ $N(X-N(I))$ and in particular, $N(I)=N(J)$.

Proposition 3.13. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense then $N(X-N(I)) \neq \emptyset$.
Proof. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense then there are p_{1}, \ldots, p_{k} such that

$$
\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k}\right)\right)=\emptyset
$$

and

$$
\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k-1}\right)\right) \neq \emptyset
$$

Let's write $F=\left\{p_{1}, \ldots, p_{k}\right\}$ (F is empty if $k=1$). We have that $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ and $N(I \cup F) \neq \emptyset\left(\right.$ because $\left.p_{k} \in N(I \cup F)\right)$.

By the proposition 3.11, we have that

$$
\emptyset \neq N(I \cup F)=N(X-N(I \cup F))
$$

but $X-N(I \cup F) \subset X-N(I)$ and therefore

$$
\emptyset \neq N(X-N(I \cup F)) \subset N(X-N(I))
$$

and we deduce that

$$
N(X-N(I)) \neq \emptyset
$$

Proposition 3.14. $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense if and only if there is a finite set F such that $I \cup F$ is an extremal.
Proof. First we will show that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense if and only if there is a finite set F such that $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ and $N(I \cup F) \neq \emptyset$.
\Rightarrow) Suppose $\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k}\right)\right)=\emptyset$ where $F=\left\{p_{1}, \ldots, p_{k}\right\}$ is minimal whit this propriety. Let $F^{\prime}=\left\{p_{1}, \ldots, p_{k-1}\right\}$. Then $\bigcap_{q \in I \cup F^{\prime}} O_{q}^{*} \neq \emptyset$ and $N\left(I \cup F^{\prime}\right) \neq \emptyset$ because $p_{k} \in N\left(I \cup F^{\prime}\right)$
$\Leftarrow)$ Let $F=\left\{p_{1}, \ldots, p_{k}\right\}$ such that $N(I \cup F) \neq \emptyset$ and $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$. If $p \in N(I \cup F)$ then $\bigcap_{q \in I \cup F} O_{q}^{*} \cap O^{*}(p)=\emptyset$ that is

$$
\bigcap_{q \in I \cup F} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k}\right)\right) \cap O^{*}(p)=\emptyset
$$

and so, $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense.
Now let's see the thesis of 3.14.
$\Rightarrow)$ Let's suppose that $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is not dense. We just proved that there must be a finite set F such that $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ and $N(I \cup F) \neq \emptyset^{(1)}$. Let $J=I \cup F$ and let's suppose that for every finite set $G, I \cup G$ is not extremal. This implies that for every finite set $G, J \cup G$ is not extremal because $J \cup G=I \cup(F \cup G)$ and $F \cup G$ is finite.

Let's take any finite set G. Then, the fact that $J \cup G$ is not an extremal implies that there is p such that $\bigcap_{q \in J \cup G \cup\{p\}} O_{q}^{*} \neq \emptyset$. Because $I \cup F=J \subset J \cup G$ $q \in J \cup G \cup\{p\}$
and $\emptyset \neq N(I \cup F) \subset N(J \cup G)($ see $(1))$, we have $N(J)=N(J \cup G)$ (proposition 3.12).

So, $J \cup G \subset X-N(J \cup G)=X-N(J)$ for every finite set G and we obtain $X=\bigcup_{\text {all finite } G}(J \cup G) \subset X-N(J)$.

Therefore $N(J)=N(I \cup F)=\emptyset$ which is absurd.
\Leftarrow If $I \cup F$ is extremal then, by definition, $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ and so $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ If $F=\left\{p_{1}, \ldots, p_{k}\right\}$ and $p \in X-(I \cup F)$ then

$$
\emptyset=\bigcap_{q \in I \cup F} O_{q}^{*} \cap O_{p}^{*}=\bigcap_{q \in I} O_{q}^{*} \cap\left(O^{*}\left(p_{1}\right) \cap \ldots \cap O^{*}\left(p_{k}\right) \cap O_{p}^{*}\right)
$$

and $\bigcap_{q \in I} O_{q}^{*}$ is not dense.

Proposition 3.15. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ then $N(I)=\emptyset$
Proof. If $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset$ is dense then there is nothing to prove. Let's suppose that $\bigcap_{q \in I} O_{q}^{*}$ is not dense.

By the proposition 3.14, there is a finite set $F \subset X-I$ such that $I \cup F=O_{\mu}$ is an extremal ${ }^{(1)}$. We will distinguish two cases:
a) There is $p^{\prime} \in F$ such that $N\left(I \cup\left\{p^{\prime}\right\}\right)=\emptyset$
b) $N\left(I \cup\left\{p^{\prime}\right\}\right) \neq \emptyset$ for every $p^{\prime} \in F$.
a) Then $N(I) \subset N\left(I \cup\left\{p^{\prime}\right\}\right)=\emptyset$ and we're done.
b) Then for every $p^{\prime} \in F$:
$\emptyset \neq N\left(I \cup\left\{p^{\prime}\right\}\right) \subset N(I \cup F)=X-(I \cup F)=H_{\mu}{ }^{(2)}$ where $N(I \cup F)=$ $X-(I \cup F)$ comes from the proposition 3.4. However, $\bigcap_{q \in I \cup\left\{p^{\prime}\right\}} O_{q}^{*} \neq \emptyset$ because $\bigcap_{q \in I \cup F} O_{q}^{*} \subset \bigcap_{q \in I \cup\left\{p^{\prime}\right\}} O_{q}^{*}$ and $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ given that $I \cup F=O_{\mu}$ and, therefore $\mu \in \bigcap_{q \in I \cup F} O_{q}^{*}$. By the corollary 3.8, $X-N\left(I \cup\left\{p^{\prime}\right\}\right)$ is an extremal so that there is ν such that $X-N\left(I \cup\left\{p^{\prime}\right\}\right)=O_{\nu}$

We deduce that $N\left(I \cup\left\{p^{\prime}\right\}\right)=H_{\nu}$ for every $p^{\prime} \in F$ because, from (2),

$$
O_{\mu} \subset X-N\left(I \cup\left\{p^{\prime}\right\}\right)=O_{\nu}
$$

and O_{μ} is extremal.
We obtain that, for every $p^{\prime} \in F$ and all $p \in H_{\mu}$, we have
$\bigcap O_{q}^{*} \cap O_{p}^{*}=\emptyset$ or, in other words, for every $p^{\prime} \in F$ and all $p \in H_{\mu}$, $q \in I \cup\left\{p^{\prime}\right\}$
$\bigcap_{q \in I \cup\{p\}} O_{q}^{*} \cap O_{p^{\prime}}^{*}=\emptyset$
That means that for every $p \in H_{\mu}, F \subset N(I \cup\{p\}) \subset N\left(I \cup H_{\mu}\right)^{(3)}$ In addition, for every $p \in H_{\mu}$:

$$
\emptyset \neq N(I \cup\{p\}) \subset N\left(I \cup H_{\mu}\right) \subset X-\left(I \cup H_{\mu}\right)=
$$

$$
=(X-I) \cap O_{\mu}=(X-I) \cap(I \cup F)=F^{(4)}
$$

where the penultimate equality comes from (1). From (3) and (4) we obtain $N\left(I \cup H_{\mu}\right)=F^{(5)}$

Besides, $N(I \cup F)=N\left(O_{\mu}\right)=X-O_{\mu}=H_{\mu}{ }^{(6)}$, but

$$
\begin{aligned}
& I \subset I \cup H_{\mu} \Rightarrow N(I) \subset N\left(I \cup H_{\mu}\right)=F(\text { from (5) }) \text { and } \\
& \quad I \subset I \cup F \Rightarrow N(I) \subset N(I \cup F)=H_{\mu}(\text { from(6) }) .
\end{aligned}
$$

Intersecting these last inclusions we get $N(I) \subset F \cap H_{\mu}=\emptyset$ because

$$
I \cup F=O_{\mu} \Rightarrow F \subset O_{\mu} \Rightarrow F \cap H_{\mu}=\emptyset
$$

Proposition 3.16. $\bigcap_{q \in I} O_{q}^{*} \neq \emptyset \Rightarrow \bigcap_{q \in I} O_{q}^{*}$ is dense.
Proof. If $\bigcap_{q \in I} O_{q}^{*}$ is not dense, by the proposition 3.14, then must be a finite set F such that $I \cup F=O_{\mu}$ is an extremal, In particular, by the definition of extremal, we must have $\bigcap_{q \in I \cup F} O_{q}^{*} \neq \emptyset$ and then, by the proposition 3.15, $N(I \cup F)=\emptyset$. In addition, the fact that $I \cup F=O_{\mu}$ is an extremal implies that $N(I \cup F)=N\left(O_{\mu}\right)=X-O_{\mu}=H_{\mu} \neq \emptyset$ because if we have $H_{\mu}=\emptyset$ the $O_{\mu}=X$ and then we must have $\bigcap_{q \in O_{\mu}} O_{q}^{*}=\bigcap_{q \in I \cup F} O_{q}^{*}=\emptyset$ which is a contradiction.

Corollary 3.17. There are no extremal sets
Proof. The extremal are open sets O_{μ} such that $\bigcap_{q \in O_{\mu}} O_{q}^{*} \neq \emptyset$ but, by definition, they are not dense. This contradicts the proposition 3.16.

Corollary 3.18. For every cofinite set C we have that $\bigcap_{q \in C} O_{q}^{*}=\emptyset$.
Proof. If for some cofinite set C we had $\bigcap_{q \in C} O_{q}^{*} \neq \emptyset$ then, by proposition
3.16, $\bigcap_{q \in C} O_{q}^{*}$ should be dense but it is not because
$\bigcap_{q \in C} O_{q}^{*} \cap \bigcap_{q \in X-C} O_{q}^{*}=\bigcap_{q \in X} O_{q}^{*}=Z=\emptyset$ and $\bigcap_{q \in X-C} O_{q}^{*}$ is an open set because $X-C$ is finite.

Theorem 3.19. H_{m} is an infinite set for every $m \in \mathbb{N}$. In particular, H_{1} is an infinite set and so, the Twin Prime Conjecture is true.

Proof. If not, for some m, O_{m} would be cofinite and $\bigcap_{q \in O_{m}} O_{q}^{*} \neq \emptyset$ because, at least, $m \in \bigcap_{q \in O_{m}} O_{q}^{*}$

Theorem 3.20. The de Polignac Conjecture is false.
Proof. Let's take any O_{ν}. As $\bigcap_{q \in O_{\nu}} O_{q}^{*} \neq \emptyset$, by proposition 3.16, $\bigcap_{q \in O_{\nu}} O_{q}^{*}$ is dense and, therefore, if $p \in H_{\nu}$, we must have $\bigcap_{q \in O_{\nu} \cup\{p\}} O_{q}^{*} \neq \emptyset$. If $n_{1} \in$
$\bigcap_{q \in O_{\nu} \cup\{p\}} O_{q}^{*}$ then $O_{\nu} \varsubsetneqq O_{n_{1}}$. Iterating this process we get a strict chain:

$$
O_{\nu} \varsubsetneqq O_{n_{1}} \varsubsetneqq O_{n_{2}} \varsubsetneqq O_{n_{3}} \varsubsetneqq \cdots
$$

which shows that the space X is not noetherian ([4]) and, in particular, by proposition $1.17, X^{*}$ is not a T_{1} space. Let's consider the complementary chain

$$
H_{\nu} \equiv H_{n_{1}} \equiv H_{n_{2}} \supsetneqq H_{n_{3}} \equiv \ldots
$$

All the n_{j} are different because the $H_{n_{j}}$ are and so, there must be a k such that $n_{k}>\nu$. We have $H_{\nu} \supseteqq H_{n_{k}}$ which implies $H_{n_{k}} \cap O_{\nu} \subset H_{\nu} \cap O_{\nu}=\emptyset$ so that

$$
H_{n_{k}} \cap O_{1} \cap O_{2} \cap \ldots \cap O_{\nu} \subset H_{n_{k}} \cap O_{\nu}=\emptyset
$$

and, therefore

$$
H_{n_{k}} \cap O_{1} \cap O_{2} \cap \ldots \cap O_{\nu} \cap O_{\nu+1} \cap \ldots \cap O_{n_{k}-1}=\emptyset
$$

(note that $n_{k}>\nu \Rightarrow n_{k-1} \geq \nu$ which means that the subscript n_{k-1} is either ν or "comes" after ν).
The thesis is derived from remark 2 after the proposition 2.3.

Corollary 3.21. There are no gaps of prime numbers of length $2 n$ for infinite values of n.
Proof. It suffices to take $\nu=n_{k}$ and repeat the previous reasoning indefinitely.

Note however that, since H_{m} is always an infinite set, for each $m \in \mathbb{N}$ there are infinite couples of prime numbers that differ in $2 m$ units (although, perhaps, they are not couples of consecutive prime numbers).

References

[1] Apostol, Tom M, Introduction to analytic number theory, Springer Science \& Business Media. 2013
[2] Bourbaki, Nicolas, Topologie générale: Chapitres 1 à 4, Springer Science \& Business Media. 2007
[3] Hart, Klaas Pieter and Nagata, Jun-iti and Vaughan, Jerry E, Encyclopedia of general topology, Elsevier. 2003
[4] Hartshorne, Robi, Algebraic geometry, Springer Science \& Business Media. 2013

[^0]: 2010 Mathematics Subject Classification. 11N05.
 Key words and phrases. irreducible space (hyperconnected space), gaps of prime numbers, primes in arithmetic progressions, generic point.

