An Identity involving Tribonacci Numbers

Suaib Lateef
lateefholuyinka@gmail.com

Abstract

In this paper, we present an identity involving Tribonacci numbers. We prove the identity by extending the numbers of variables of Candido's identity to three.

Keywords: Candido's Identity, Binomial expansion, Tribonacci sequence.

1 Introduction

The Fibonacci numbers, commonly known as F_{n}, form a sequence, called the Fibonacci sequence, such that each number is a sum of the two preceeding ones, starting from 0 and 1. The Fibonacci sequence is denoted as

$$
F_{n}=F_{n-1}+F_{n-2}, n \geq 2, F_{0}=0, F_{1}=1 .
$$

The first few Fibonacci numbers are given by:

$$
1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

Many identities involving Fibonacci numbers have been discovered over time and one prime example is Candido's identity. Candido[1] (1871-1941) proved that

$$
\begin{equation*}
2\left(F_{n}^{4}+F_{n+1}^{4}+F_{n+2}^{4}\right)=\left(F_{n}^{2}+F_{n+1}^{2}+F_{n+2}^{2}\right)^{2} \tag{1.1}
\end{equation*}
$$

by showing that

$$
\begin{equation*}
2\left(a^{4}+b^{4}+(a+b)^{4}\right)=\left(a^{2}+b^{2}+(a+b)^{2}\right)^{2} . \tag{1.2}
\end{equation*}
$$

In 2005, R. B. Nelsen[3] gave a proof of (1.2) without words. Also, Darko Veljan[2] proved (1.2) using Heron's formula.

The Tribonacci sequence, commonly known as T_{n}, is a generalization of Fibonacci sequence where each number is a sum of the three preceeding ones, starting from 0,1 , and 1. The Tribonacci sequence is denoted as

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3}, n \geq 3, T_{0}=0, T_{1}=1, T_{2}=1
$$

The first few Tribonacci numbers are given by:

$$
1,1,2,4,7,13,24,44,81,149,274, \ldots
$$

In this work, we will provide a generalization of (1.2) which will be intrumental in proving our main result. Our main result is connected to Tribonacci numbers and hence, a generalization of (1.1). In section 2, we state our main result and give a proof in section 3.

2 The Main Result

Identity: If T_{n} is the nth Tribonacci number, then

$$
\begin{equation*}
2\left(\left(T_{n}+T_{n+1}\right)^{4}+\left(T_{n}+T_{n+2}\right)^{4}+\left(T_{n+1}+T_{n+2}\right)^{4}\right)+4\left(T_{n}^{4}+T_{n+1}^{4}+T_{n+2}^{4}+T_{n+3}^{4}\right)=3\left(T_{n}^{2}+T_{n+1}^{2}+T_{n+2}^{2}+T_{n+3}^{2}\right)^{2} \tag{2.1}
\end{equation*}
$$

To prove (2.1), we need to show that if a, b, and c are real numbers, then

$$
\begin{equation*}
2\left((a+c)^{4}+(b+c)^{4}+(a+b)^{4}\right)+4\left(a^{4}+b^{4}+c^{4}+(a+b+c)^{4}\right)=3\left((a+c)^{2}+(b+c)^{2}+(a+b)^{2}\right)^{2} \tag{2.2}
\end{equation*}
$$

Setting $c=0$ in (2.2) gives

$$
\begin{gather*}
2\left((a+0)^{4}+(b+0)^{4}+(a+b)^{4}\right)+4\left(a^{4}+b^{4}+0^{4}+(a+b+0)^{4}\right)=3\left((a+0)^{2}+(b+0)^{2}+(a+b)^{2}\right)^{2} \\
2\left(a^{4}+b^{4}+(a+b)^{4}\right)+4\left(a^{4}+b^{4}+(a+b)^{4}\right)=3\left(a^{2}+b^{2}+(a+b)^{2}\right)^{2} \\
6\left(a^{4}+b^{4}+(a+b)^{4}\right)=3\left(a^{2}+b^{2}+(a+b)^{2}\right)^{2} \\
2\left(a^{4}+b^{4}+(a+b)^{4}\right)=\left(a^{2}+b^{2}+(a+b)^{2}\right)^{2} \tag{2.3}
\end{gather*}
$$

We can see that (2.2) is equal to (1.2)

3 The Proof

Let

$$
\begin{equation*}
m=a+b \tag{3.1}
\end{equation*}
$$

Now, from (2.2), let

$$
\begin{gather*}
X_{1}=(a+c)^{4}+(b+c)^{4}+(a+b)^{4} \\
X_{1}=(a+c)^{4}+(b+c)^{4}+m^{4} \tag{3.2}\\
X_{2}=a^{4}+b^{4}+c^{4}+(a+b+c)^{4} \\
X_{2}=a^{4}+b^{4}+c^{4}+(m+c)^{4} \tag{3.3}\\
X_{3}=(a+c)^{2}+(b+c)^{2}+(a+b)^{2} \\
X_{3}=(a+c)^{2}+(b+c)^{2}+m^{2} \tag{3.4}
\end{gather*}
$$

So, we have from (2.2) that

$$
\begin{equation*}
2 X_{1}+4 X_{2}=3 X_{3}^{2} \tag{3.5}
\end{equation*}
$$

We can see that to prove (2.2), it suffices to show that (3.5) is true.
We know from Binomial expansion that

$$
\begin{gather*}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
a^{2}+b^{2}=(a+b)^{2}-2 a b \\
a^{2}+b^{2}=m^{2}-2 a b \tag{3.6}
\end{gather*}
$$

Also, we know that

$$
\begin{gather*}
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) \\
(a+b)^{3}=(a+b)^{3}-3 a b(a+b) \\
a^{3}+b^{3}=m^{3}-3 a b m \tag{3.7}
\end{gather*}
$$

Also, we know that

$$
\begin{gather*}
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
m^{4}=a^{4}+b^{4}+4 a b\left(a^{2}+b^{2}\right)+6 a^{2} b^{2} \tag{3.8}
\end{gather*}
$$

Putting (3.6) in (3.8) gives

$$
\begin{gather*}
m^{4}=a^{4}+b^{4}+4 a b\left(m^{2}-2 a b\right)+6 a^{2} b^{2} \\
m^{4}=a^{4}+b^{4}+4 a b m^{2}-8 a^{2} b^{2}+6 a^{2} b^{2} \\
m^{4}=a^{4}+b^{4}+4 a b m^{2}-2 a^{2} b^{2} \\
a^{4}+b^{4}=m^{4}-4 a b m^{2}+2 a^{2} b^{2} \tag{3.9}
\end{gather*}
$$

Now, from (3.2), we see that

$$
\begin{gather*}
X_{1}=(a+c)^{4}+(b+c)^{4}+m^{4} \\
X_{1}=a^{4}+4 a^{3} c+6 a^{2} c^{2}+4 a c^{3}+c^{4}+b^{4}+4 b^{3} c+6 b^{2} c^{2}+4 b c^{3}+c^{4}+m^{4} \\
X_{1}=a^{4}+b^{4}+2 c^{4}+4 a^{3} c+4 b^{3} c+4 a c^{3}+4 b c^{3}+6 a^{2} c^{2}+6 b^{2} c^{2}+m^{4} \\
X_{1}=m^{4}+\left(a^{4}+b^{4}\right)+2 c^{4}+4 c\left(a^{3}+b^{3}\right)+4 c^{3}(a+b)+6 c^{2}\left(a^{2}+b^{2}\right) \tag{3.10}
\end{gather*}
$$

Putting (3.1), (3.6), (3.7), and (3.9) in (3.10), we have

$$
\begin{gather*}
X_{1}=m^{4}+\left(m^{4}-4 a b m^{2}+2 a^{2} b^{2}\right)+2 c^{4}+4 c\left(m^{3}-3 a b m\right)+4 c^{3} m+6 c^{2}\left(m^{2}-2 a b\right) \\
X_{1}=2 m^{4}+2 c^{4}-4 a b m^{2}+2 a^{2} b^{2}-12 a b m c+4 c^{3} m+6 m^{2} c^{2}-12 a b c^{2} \tag{3.11}
\end{gather*}
$$

Multiplying both sides of (3.11) by 2 gives

$$
\begin{equation*}
2 X_{1}=4 m^{4}+4 c^{4}-8 a b m^{2}+4 a^{2} b^{2}-24 a b m c+8 m^{3} c+12 c^{2} m^{2}-24 a b c^{2} \tag{3.12}
\end{equation*}
$$

From (3.3), we see that

$$
\begin{gather*}
X_{2}=a^{4}+b^{4}+c^{4}+(m+c)^{4} \\
X_{2}=\left(a^{4}+b^{4}\right)+c^{4}+m^{4}+4 m^{3} c+6 m^{2} c^{2}+4 m c^{3}+c^{4} \tag{3.13}
\end{gather*}
$$

Putting (3.9) in (3.13), we have

$$
\begin{gather*}
X_{2}=\left(m^{4}-4 a b m^{2}+2 a^{2} b^{2}\right)+c^{4}+m^{4}+4 m^{3} c+6 m^{2} c^{2}+4 m c^{3}+c^{4} \\
X_{2}=2 m^{4}+2 c^{4}-4 a b m^{2}+2 a^{2} b^{2}+4 m^{3} c+6 m^{2} c^{2}+4 m c^{3} \tag{3.14}
\end{gather*}
$$

Multiplying both sides of (3.14) by 4 gives

$$
\begin{align*}
& 4 X_{2}=8 m^{4}+8 c^{4}-16 a b m^{2}+8 a^{2} b^{2}+16 m^{3} c+24 m^{2} c^{2}+16 m c^{3} \\
& 4 X_{2}=8 m^{4}+8 c^{4}-16 a b m^{2}+8 a^{2} b^{2}+16 m c^{3}+16 m^{3} c+24 m^{2} c^{2} \tag{3.15}
\end{align*}
$$

Adding (3.12) and (3.15) gives

$$
\begin{gather*}
2 X_{1}+4 X_{2}=12 m^{4}+12 c^{4}-24 a b m^{2}+12 a^{2} b^{2}+24 m c^{3}+24 m^{3} c+36 m^{2} c^{2}-24 a b m c-24 a b c^{2} \\
2 X_{1}+4 X_{2}=12\left(m^{4}+c^{4}-2 a b m^{2}+a^{2} b^{2}+2 m c^{3}+2 m^{3} c+3 m^{2} c^{2}-2 a b m c-2 a b c^{2}\right) \tag{3.16}
\end{gather*}
$$

From (3.4), we see that

$$
\begin{gather*}
X_{3}=m^{2}+(a+c)^{2}+(b+c)^{2} \\
X_{3}=m^{2}+a^{2}+2 a c+c^{2}+b^{2}+2 b c+c^{2} \\
X_{3}=m^{2}+\left(a^{2}+b^{2}\right)+2 c^{2}+2 c(a+b) \tag{3.17}
\end{gather*}
$$

Putting (3.1) and (3.6) in (3.17) gives

$$
\begin{gather*}
X_{3}=m^{2}+\left(m^{2}-2 a b\right)+2 c^{2}+2 m c \\
X_{3}=2 m^{2}+2 c^{2}+2 m c-2 a b \\
X_{3}=2\left(m^{2}+c^{2}+m c-a b\right) \tag{3.18}
\end{gather*}
$$

Squaring both sides of (3.18) gives

$$
\begin{gather*}
X_{3}{ }^{2}=4\left(m^{2}+c^{2}+m c-a b\right)^{2} \\
X_{3}{ }^{2}=4\left(m^{4}+c^{4}+m^{2} c^{2}+a^{2} b^{2}+2 m^{2} c^{2}+2 m^{3} c-2 a b m^{2}+2 m c^{3}-2 a b c^{2}-2 a b m c\right) \\
X_{3}{ }^{2}=4\left(m^{4}+c^{4}+3 m^{2} c^{2}+a^{2} b^{2}+2 m^{3} c-2 a b m^{2}+2 m c^{3}-2 a b c^{2}-2 a b m c\right) \\
X_{3}{ }^{2}=4\left(m^{4}+c^{4}-2 a b m^{2}+a^{2} b^{2}+2 m c^{3}+2 m^{3} c+3 m^{2} c^{2}-2 a b m c-2 a b c^{2}\right) \tag{3.19}
\end{gather*}
$$

Multiplying both sides of (3.19) by 3 gives

$$
\begin{equation*}
3 X_{3}^{2}=12\left(m^{4}+c^{4}-2 a b m^{2}+a^{2} b^{2}+2 m c^{3}+2 m^{3} c+3 m^{2} c^{2}-2 a b m c-2 a b c^{2}\right) \tag{3.20}
\end{equation*}
$$

Since (3.16) equals (3.20), then (2.2) is true.
We know that if T_{k} is the kth Tribonacci number, then

$$
T_{k}=T_{k-1}+T_{k-2}+T_{k-3}
$$

Now, if we let

$$
\begin{align*}
a & =T_{k-1}, \tag{3.21}\\
b & =T_{k-2}, \tag{3.22}\\
c & =T_{k-3}, \tag{3.23}
\end{align*}
$$

we see that

$$
\begin{equation*}
a+b+c=T_{k} \tag{3.24}
\end{equation*}
$$

From (2.2), we see that

$$
\begin{gathered}
(a+c)^{2}+(b+c)^{2}+(a+b)^{2}=a^{2}+2 a c+c^{2}+b^{2}+2 b c+c^{2}+a^{2}+2 a b+b^{2} \\
(a+c)^{2}+(b+c)^{2}+(a+b)^{2}=2 a^{2}+2 b^{2}+2 c^{2}+2 a b+2 a c+2 b c \\
(a+c)^{2}+(b+c)^{2}+(a+b)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+\left(a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c\right) \\
(a+c)^{2}+(b+c)^{2}+(a+b)^{2}=\left(a^{2}+b^{2}+c^{2}+(a+b+c)^{2}\right)
\end{gathered}
$$

So, (2.2) becomes

$$
\begin{equation*}
2\left((a+c)^{4}+(b+c)^{4}+(a+b)^{4}\right)+4\left(a^{4}+b^{4}+c^{4}+(a+b+c)^{4}\right)=3\left(\left(a^{2}+b^{2}+c^{2}+(a+b+c)^{2}\right)^{2}\right. \tag{3.25}
\end{equation*}
$$

Putting (3.21), (3.22), (3.23) and (3.24) in (3.25) gives

$$
\begin{equation*}
2\left(\left(T_{k-1}+T_{k-3}\right)^{4}+\left(T_{k-2}+T_{k-3}\right)^{4}+\left(T_{k-1}+T_{k-2}\right)^{4}\right)+4\left(T_{k-1}^{4}+T_{k-2}^{4}+T_{k-3}^{4}+T_{k}^{4}\right)=3\left(T_{k-1}^{2}+T_{k-2}^{2}+T_{k-3}^{2}+T_{k}^{2}\right)^{2} \tag{3.26}
\end{equation*}
$$

Letting $k=n+3$ in (3.26), we have

$$
\begin{align*}
& 2\left(\left(T_{n+2}+T_{n}\right)^{4}\left(T_{n+1}+T_{n}\right)^{4}+\left(T_{n+2}+T_{n+1}\right)^{4}\right)+4\left(T_{n+2}^{4}+T_{n+1}^{4}+T_{n}^{4}+T_{n+3}^{4}\right)=3\left(T_{n+2}^{2}+T_{n+1}^{2}+T_{n}^{2}+T_{n+3}^{2}\right)^{2} \\
& 2\left(\left(T_{n}+T_{n+1}\right)^{4}+\left(T_{n}+T_{n+2}\right)^{4}+\left(T_{n+1}+T_{n+2}\right)^{4}\right)+4\left(T_{n}^{4}+T_{n+1}^{4}+T_{n+2}^{4}+T_{n+3}^{4}\right)=3\left(T_{n}^{2}+T_{n+1}^{2}+T_{n+2}^{2}+T_{n+3}^{2}\right)^{2} \tag{3.27}
\end{align*}
$$

We can see that (3.27) equals (2.1), which completes the proof.

4 Conclusion

In this paper, we have proved an identity involving Tribonacci numbers by extending the number of variables of Candido's identity to three.

References

[1] G. Candido, A Relationahip Between the fourth powers of the Terms of the Fibonacci Series, Scripta Mathematica, 17 (1951), 230.
[2] Darko Veljan, A note on Candido's identity and Heron's formula, https://doi.org/10.5592/C0/CCD. 2016.08.
[3] R. B. Nelsen, Proof without words:Candido's Identity, Mathematics Magazine, 78 (2005), 131.

AMS Mathematical Number: 11B39

