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Abstract

This paper generalizes problem 3 of the 2019 PROMYS exam,
which asks to show that the last 10 digits (in base 10) of the n-th
tetration of 3 are independent of n if n > 10. The generalization shows
that given any positive integers a and b satisfying certain conditions,
the last n digits (in base b) of the m-th tetration of a are independent
of m if m > n.

We use numerical patterns as a guide towards the solution and ex-
plore an additional numerical pattern which shows a relation between
decimal expansions and multiplicative inverses of powers of 3 modulo
powers of 10.
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Introduction

Definition 1. N = {1, 2, . . .} , N0 = N ∪ {0}

Definition 2. Define modx(y) ∈ N (for integers x and y, with x 6= 0)
to be the smallest positive integer s.t. (such that)

modx(y) ≡ y (mod x)

Definition 3. For x, y, n ∈ N with y > 1 and x, y co-prime, define
αx,y(n) to be the smallest positive integer s.t.

aαx,y(n) ≡ 1 (mod yn)
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Remark. The proof of existence of αx,y(n) follows from the fact that
the sequence

{
modyn(xi)

}
i∈N is periodic and x and y are co-prime.

Definition 4. Given any x ∈ N, let f(x) ∈ N0 be the largest integer
s.t. 2f(x) is a factor of x.

Problem definition
Let a, b ∈ N satisfying the following conditions

� a and b are co-prime.

� 0 < f(b) < f(a2 − 1).

� αa,b(1) is a power of 2.

� a ≡ 1 (mod αa,αa,b(1)(1)).

Remark. A few examples of cases which satisfies all these criteria :

� a > 1 is any odd integer and b = a2 + 1.

� a > 1 is any odd integer and b = a2−1
2k

for 0 < k < f(a2 − 1).

� a > 1 is co-prime with b, b
2f(b)

> 1 is square-free and has only
Fermat Primes as prime factors, and a ≡ 1 (mod αa,α(1)(1)).
The last condition can be framed in a simpler way with some
loss of generality by saying a ≡ 1 (mod φ(φ(b))), where φ is the
Euler Totient Function.

Define the sequence {tk}k∈N0 as

t0 = a, tk+1 = atk ∀ k ∈ N0

We shall show that given any n,m ∈ N, with m ≥ n,

tm ≡ tn (mod bn)

The original question from PROMYS 2019 only considered special
case of a = 3 and b = n = 10.

In §1 we show several numerical patterns for the case a = 3, b = 10 in
quantities which are closely related to the set-up. These patterns are
then explained and generalised in the theorems proved in §2 and §3,
some of which help us generalise the PROMYS question.

§2 builds up to prove the generalisation of the PROMYS question, and
§3 proves a result explaining numerical patterns which does not help in
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the proof but is interesting on its own. This result gives a connection
of the base-b expansion of 1− 1

ak
and the modular multiplicative inverse

of ak modulo bn.

1 Some Curious Patterns in the

Numbers

First, let us explore what values we obtain for αa,b(n) for some trial
values of a, b and n, since αa,b(n) will play a pivotal role in proving the
result we’re after. For this section we will let α(n) be the short-hand
for α3,10(n).

n α(n)

1 4

2 20

3 100

4 500

So far, the pattern seems like a geometric progression with common
ratio 5 (for general values of b, this would suggest that the common
ratio is b

2). However, this pattern doesn’t last beyond this point.
Following are some more values to demonstrate this.

n α(n)

5 5× 103

6 5× 104

7 5× 105

8 5× 106

9 5× 107

The most conservative conjecture regarding this pattern would be say-
ing that α(n + 1) is a multiple of α(n). We prove this in Lemma 2,

and then strengthen this result by proving in Theorem 1 that α(n+1)
α(n)
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is also a factor of b.

A slightly bolder conjecture would be that for large n we must have
α(n+1)
α(n) = b. Although we do not prove that here, a trivial consequence

of Theorems 2 and 3 that there is some N s.t. α(n+1)
α(n) is odd for all

n < N , and is an odd multiple of 2f(b) for all n > N .

One might also notice a connection between the powers of b and the
values of α(n), namely that for n < 3, α(n) is ‘pretty close’ to being a
factor of 10n−1 and for n ≥ 3, it is a factor of 10n−1. This holds in gen-
eral and is pivotal in proving the generalised version of the PROMYS
question; we frame and prove it formally as Theorem 4.

Now, we will explore what happens just before the sequence
{
modbn(ai)

}
i∈N

falls to 1 and starts repeating, i.e. we look at numbers of the form
modbn

(
aαa,b(n)−k

)
, with n, k ∈ N and k ≤ αa,b(n). Below are some

values for the case a = 3, b = 10.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1 7 67 667 6667 66667 666667

k = 2 9 89 889 8889 88889 888889

k = 3 3 63 963 2963 62963 962963

k = 4 1 21 321 4321 54321 654321

k = 5 — 7 107 8107 18107 218107

The values for k = 1, 2 most certainly look suggestive, if not familiar!
One might notice a connection with the decimal expansions of 2

3 and
8
9 . In fact, all of these values are related to the decimal expansion of
1− 1

3k
for the respective values of k.

As we can see, the pattern seems to be that modbn
(
aα(n)−k

)
is given

by the last n digits in the recurring part of the base b expansion of
1− 1

ak
, with the last digit being increased by 1. If the recurring part

is too short (for example, consider n = 5, k = 3), we simply extend it
by adding as many repetitions as necessary. This pattern turns out to
hold in general, and is proved as Theorem 5. This pattern also gives
an interesting way of finding modular multiplicative inverses.
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k 1− 1
3k

1 0.666666

2 0.888888

3 0.962962

4 0.987654321

5 0.99 . . . 218106

Another thing one may wonder about is that what if the last digit
of the recurring part is 9? Do we convert it to 0 or do we consider
carry-overs? Theorem 5 saves us the trouble and shows that the last
digit can never be 9 in the first place!

2 Solving the Generalised Problem

For this section, we will assume the following.

� a, b ∈ N are co-prime integers. n ∈ N.

� b = 2p r where p ∈ N and r is odd. Hence, f(b) = p.

� αa,b(n) = α(n).

� α(1) = 2q and a ≡ 1 (mod αa,α(1)(1)).

� f(a2 − 1) = t for some t ∈ N with t > p.

� jn =
aα(n) − 1

bn
.

Lemma 1. Given any c, d ∈ N0, ac ≡ ad (mod bn) iff c ≡ d (mod α(n)).

Lemma 2. α(n+ 1) is a multiple of α(n).

Proof.
aα(n+1) ≡ 1 (mod bn+1)

=⇒ aα(n+1) ≡ 1 (mod bn)

=⇒ α(n+ 1) ≡ 0 (mod α(n)) (using Lemma 1 )
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Theorem 1. α(n+ 1) = kα(n) where k ∈ N is the smallest factor of
b s.t. jnk ≡ 0 (mod b).

Proof. By Lemma 2, there is some k ∈ N s.t. α(n + 1) = kα(n).
Hence, we have

aα(n) − 1

bn
= jn ∈ N

akα(n+1) − 1

bn+1
∈ N

⇐⇒ aα(n) − 1

bn
× 1 + aα(n) + a2α(n) + . . .+ a(k−1)α(n)

b
∈ N

⇐⇒ jn

(
1 + aα(n) + a2α(n) + . . .+ a(k−1)α(n)

)
≡ 0 (mod b)

We know that amα(n) ≡ 1 (mod b) ∀ m ∈ N0 and n ∈ N. Hence,

jnk ≡ 0 (mod b)

Since k is the smallest positive integer satisfying this relation (by
definition of α(n+ 1)), the proof is complete.

Identity 1.

x2
k − 1 = (x− 1)

k−1∏
i=0

(x2
i

+ 1) ∀ k ∈ N

Proof. The identity is clearly true for k = 1. Since x2
k − 1 = (x2

k−1 −
1)(x2

k−1
+ 1) ∀ k ∈ N, induction proves it for all k ∈ N.

Corollary 1 (Identity 1). If x, k ∈ N, x > 1, then f(x2
k − 1) =

f(x2 − 1) + k − 1.

Proof. The statement is clearly true if x is even or k = 1. For x odd
and k > 1, notice that x2 ≡ 1 (mod 4) and so x2

i ≡ 1 (mod 4) ∀ i ∈
N. Hence, x2

i
+ 1 is an odd multiple of 2 for all i ∈ N. By Identity 1,

we have

x2
k − 1 = (x2 − 1)

k−1∏
i=1

(x2
i

+ 1)

Hence, the result follows.
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Lemma 3. Let x, y ∈ N be odd integers.Then, f(x2y−1) = f(x2−1).

Proof.

(x2y − 1) = (xy + 1)(xy − 1)

= (x2 − 1)(1− x+ x2 − ...+ xy−1)(1 + x+ x2 + ..+ xy−1)

To justify the last line, recall that y is odd. Now, we have

1− x+ x2 − ...+ xy−1 ≡ 1 + x+ x2 + ..+ xy−1 ≡ 1 (mod 2)

Hence, the desired result follows.

Corollary 2. (Corollary 1, Lemma 3)

f(jn) = f(α(n)) + t− 1− np

Theorem 2. For all n ≤
⌊
q+t−1
p

⌋
, we have that f(α(n)) = q and α(n)

2q

is a factor of rn−1.

Proof. Define the statement s(n)=“n >
⌊
q+t−1
p

⌋
or α(n)

2q is a factor of

rn−1 ”. We will show by induction that s(n) is true for all n ∈ N.

Clearly, s(1) is true. We will now show that s(n) =⇒ s(n + 1).If

n ≥
⌊
q+t−1
p

⌋
, the proof is complete. Hence, assume 0 < n <

⌊
q+t−1
p

⌋
.

Now, we know from Theorem 1 that α(n+1)
α(n) = k is the smallest possi-

ble integer s.t. jnk ≡ 0 (mod b). Hence, showing that there is some
odd k satisfying jnk ≡ 0 (mod b) will complete the proof.

By the induction hypothesis and using Corollary 2, f(jn) = q + t −
1 − pn. Since n <

⌊
q+t−1
p

⌋
, we have (q + t − 1) − pn ≥ p. Hence, it

suffices for k to be odd and the proof is complete.
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Theorem 3. For all n >
⌊
q+t−1
p

⌋
, f(α(n)) = np−(t−1) and α(n)

2np−(t−1)

is a factor of rn−1.

Proof. Let m =
⌊
q+t−1
p

⌋
. We know that f(jm) = (q+ t− 1)−mp < p

and f(α(m)) = q (by Corollary 2 ). Hence, Theorem 1 yields

f

(
α(m+ 1)

α(m)

)
= p− f(jm)

f(α(m+ 1)) = f(α(m)) + f

(
α(m+ 1)

α(m)

)
= (m+ 1)p− (t− 1)

By Theorem 2, α(m)
2q is a factor of rm−1. Hence, by Theorem 1 and

the equation above, we must have that α(m+1)

2(m+1)p−(t−1) is a factor of rm.
Hence, the claim holds for n = m+1. By Theorem 1, induction proves
the claim for all n > m+ 1 as well.

Corollary 3 (Theorem 3). For all n >
⌊
q+t−1
p

⌋
, α(n) is a factor of

bn−1.

Proof. By Theorem 3, we know that for all n ≤
⌊
q+t−1
p

⌋
, we have

f(α(n)) = np − (t − 1) ≤ (n − 1)p (since t > p). Hence, the fact

that α(n)

2f(α(n))
is a factor of rn−1 (by Theorem 3 ) proves the desired

result.

Theorem 4. tn ≡ tm (mod α(n+ 1)) ∀ m,n ∈ N0 with m ≥ n.

Proof. We will prove the claim by induction on n. Let s(n) be the
induction hypothesis “tn ≡ tm (mod α(n+ 1)) ∀ m ≥ n”.

(I) For n = 0
We will use induction on m. The claim is clearly true for m = 0. For
m = 1, we have

a ≡ 1 (mod αa,α(1)(1))

=⇒ t1 = aa ≡ a = t0 (mod α(1))

Hence, the claim is true for m = 1. For induction, assume that it is
true for some m ≥ 1 and we will now prove it for m+ 1.

tm ≡ t0 (mod α(1)) (induction hypothesis)
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=⇒ tm ≡ t0 (mod 2q)

=⇒ tm ≡ t0 (mod 2q−1)

=⇒ atm ≡ at0 (mod 2q)

The last line uses the fact that φ(2q) = 2q−1, where φ is the Euler
Totient Function. Hence,

tm+1 ≡ t1 ≡ t0 (mod 2q)

This completes the proof.

(II) For n ≥ 1 assuming true for n− 1

Case 1 : n ≤
⌊
q+t−1
p

⌋
tm ≡ tn−1 (mod α(n)) ∀ m ≥ n− 1 (by s(n− 1))

=⇒ tm+1 ≡ tn (mod bn) ∀ m ≥ n− 1

=⇒ tm ≡ tn (mod bn) ∀ m ≥ n (1)

tm ≡ tn−1 ≡ tn (mod α(n)) ∀ m ≥ n (by s(n− 1)) (2)

By (1) and (2), we see that for all m ≥ n, tm−tn must be a multiple of

the least common multiple of α(n) and bn = 2np× rn. If n =
⌊
q+t−1
p

⌋
,

then by Corollary 3 α(n+ 1) is a factor of bn, proving the desired re-

sult. If n <
⌊
q+t−1
p

⌋
, f(α(n+ 1)) = q = f(α(n)). Hence, by Theorem

2 the desired result follows.

Case 2 : n >
⌊
q+t−1
p

⌋
Clearly, (1) holds in this case as well (since it only uses the definition
of α(n)). Hence, by Corollary 3 the result follows.

Now, the solution to the generalisation of the PROMYS problem fol-
lows as a corollary to Theorem 4.
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Corollary 4 (Theorem 4).

tm ≡ tn (mod bn) ∀ m,n ∈ N with m ≥ n

Proof. Theorem 4 grants us

tm−1 ≡ tn−1 (mod α(n)) ∀ m ≥ n ≥ 1

=⇒ tm ≡ tn (mod bn) ∀ m ≥ n ≥ 1

3 Decimal Expansions and Modular

Multiplicative Inverses

The theorems of §2 were proved in order to build up to the general-
isation of the PROMYS question. Although they explained most of
the numerical patterns observed in §1, one remains unexplained. In
this section, we explain and generalise the pattern related to the base
b expansion of 1 − 1

ak
. We will be only assume a and b > 1 to be

co-prime henceforth.

Definition 5. Given any x ∈ R, let [x] denote the base b expansion
of x. Given any k ∈ Z, let [x]k denote the coefficient of bk in [x]. Let
[x]−k = [x]−k.

Definition 6. Given any x ∈ Q, let P (x) be the length of the recurring
part of the base b expansion of the fractional part of x. For example,
if b = 10 then we have P (1) = P (13) = 1 and P (87) = 6.

Theorem 5. For all a, b, n, k ∈ N with a, b co-prime, b > 1 and k ≤
αa,b(n), the last n digits (in base b) of aαa,b(n)−k are given (from left
to right) by [x]−c−n+1 , [x]−c−n+2 , . . . [x]−c−1 , [x]−c + 1, where x = 1− 1

ak

and c = P (x)
⌈

n
P (x)

⌉
. Formally,

aαa,b(n)−k ≡
n−1∑
i=0

[x]−c−i b
i + 1 (mod bn) , [x]−c < b− 1
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Proof. To find the base b expansion of 1
ak

, we will show that there are
s, t ∈ N0 with s < bt which satisfy

1

ak
=
∞∑
i=1

s

bit
(3)

Note that the use of t here is not the same as in §2. Hence, we have

1− 1

ak
=
∞∑
i=1

bt − 1

bit
−
∞∑
i=1

s

bit
=
∞∑
i=1

bt − 1− s
bit

Hence, the base b expansion of x = 1− 1
ak

will be given by

1− 1

ak
=

∞∑
i=0

t∑
j=1

[bt − 1− s]t−j
bit+j

=

∞∑
i=0

t∑
j=1

b− 1− [s]t−j
bit+j

[x]−m = b− 1− [s]t−modt(m) (4)

To find s and t, (3) yields

1

ak
=

s

bt − 1

=⇒ sak = bt − 1

=⇒ bt ≡ 1 (mod ak)

By Euler’s Totient Theorem, we know that t = rφ(ak) (where φ is the
totient function) satisfies the last congruence for every r ∈ N. Hence,
we may assume r = n+ 1 to get

t = (n+ 1)φ
(
ak
)
, s =

bt − 1

ak

We also have that t > n is a period (not necessarily the fundamental
period) of the fractional part of the base b expansions of 1

ak
and x, so

our problem reduces to proving that

aαa,b(n)−k ≡
n−1∑
i=0

[x]t−i b
i + 1 (mod bn) , [x]t < b− 1
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Using (4), we see that we need to prove

aαa,b(n)−k ≡
n−1∑
i=0

(
b− 1− [s]t−modt(t−i)

)
bi + 1 (mod bn) , [s]0 > 0

Since n < t, this reduces to showing

aαa,b(n)−k ≡
n−1∑
i=0

(b− 1− [s]i) b
i + 1 (mod bn) , [s]0 > 0

We can see that [s]0 > 0 by simply noticing that s is not a multiple of
b. We will now show that the congruence holds.

n−1∑
i=0

(b− 1− [s]i) b
i + 1 ≡ bn − s (mod bn)

bn − s ≡ −s (mod bn)

−s = −b
t − 1

ak

=⇒ ak ×

(
n−1∑
i=0

(b− 1− [s]i) b
i + 1

)
≡ 1 (mod bn)

=⇒ ak ×

(
n−1∑
i=0

(b− 1− [s]i) b
i + 1

)
≡ aαa,b(n) (mod bn)

=⇒
n−1∑
i=0

(b− 1− [s]i) b
i + 1 ≡ aαa,b(n)−k (mod bn)
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