SELF-CONSISTENT EM FIELD

WU SHENG-PING

Abstract

This article try to unified the four basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation with the e-current coming from matter current is proposed, and is solved to electrons and the structures of particles and atomic nucleus. The static properties and decay are reasoned, all meet experimental data. The equation of general relativity sheerly with electromagnetic field is discussed as the base of this theory. In the end the conformation elementarily between this theory and QED and weak theory is discussed.

Contents

1. Bound Dimension 1
2. Inner Field of Electron 3
3. General Electromagnetic Field 3
4. Solution of Electron 3
5. Electrons 5
6. System of Electrons 6
7. Muon 7
8. Pion 8
9. Pion Neutral 8
10. Tauon 8
11. Proton 9
12. Neutron 9
13. Atomic Nucleus 9
14. Basic Results for Interaction 10
15. Grand Unification 11
16. Conclusion 11
References 11

1. Bound Dimension

A rebuilding of units and physical dimensions is needed. Time s is fundamental. We can define:
The unit of time: s (second)
The unit of length: $c s$ (c is the velocity of light)
The unit of energy: \hbar / s (h is Plank constant)

[^0]The unit dielectric constant ϵ is

$$
[\epsilon]=\frac{[Q]^{2}}{[E][L]}=\frac{[Q]^{2}}{\hbar c}
$$

The unit of magnetic permeability μ is

$$
[\mu]=\frac{[E][T]^{2}}{[Q]^{2}[L]}=\frac{\hbar}{c[Q]^{2}}
$$

The unit of Q (charge) is defined as

$$
c[\epsilon]=c[\mu]=1
$$

then

$$
\begin{gathered}
{[Q]=\sqrt{\hbar}} \\
\sqrt{\hbar}=\left(1.0546 \times 10^{-34}\right)^{1 / 2} C
\end{gathered}
$$

C is charge's SI unit Coulomb.
For convenience, new base units by unit-free constants are defined,

$$
c=1, \hbar=1,[Q]=\sqrt{\hbar}=[1]
$$

then the units are reduced.
Define

$$
\begin{gathered}
\text { UnitiveElectricalCharge }: \sigma=\sqrt{\hbar} \\
\sigma=1.03 \times 10^{-17} C \approx 64 e \\
e_{/ \sigma}=e / \sigma=1.57 \times 10^{-2} \approx 1 / 64
\end{gathered}
$$

The system is redefined and rebuilt as:

$$
s \rightarrow C^{\prime} s: 1=m / e=: \beta, \quad m:=m_{e}
$$

$s \rightarrow C s$ means the value of the redefined second as becomes C seconds.
We always use these units system unless further indication and all formula mean with

$$
\beta=1, \sigma=1
$$

Then all physical units are power of σ or $[L]$ or $[k]$. This unit system is called bound dimension or bound unit.

Define

$$
[C k]_{k=1}:=C
$$

C is without unit. For the physicals

$$
V=[k]^{n}, W=[k]^{m}, \quad \sigma=1, \beta=1
$$

can be taken as the same physically, that's to say the unit disappears. Such are valid:

$$
\begin{gathered}
V=\sigma^{n-m} W, \quad \sigma^{l}=1 \\
V=W
\end{gathered}
$$

To replace $\sigma=1$, such is defined

$$
k=1, k^{l}=1
$$

which means

$$
\left[\sigma^{n}\right]_{\sigma=1}=\frac{k^{n}}{\sigma^{n}}\left[\sigma^{n}\right]_{k=1}
$$

but sometimes there is

$$
[|k|]_{k=1}=[|k|]_{k=-1}
$$

2. Inner Field of Electron

Try the self-consistent Maxwell equation for the inner electromagnetic (EM) field of electrons

$$
\begin{gather*}
\partial^{\prime} \cdot \partial A_{\nu}=i A_{\mu}^{*} \partial_{\nu} A^{\mu} / 2+c c .=J_{\nu} \tag{2.1}\\
\partial^{\nu} \cdot A_{\nu}=0,[A]=[Q / L]
\end{gather*}
$$

with definition

$$
\begin{gathered}
\left(A^{i}\right):=(V, \mathbf{A}),\left(A_{i}\right):=(V,-\mathbf{A}) \\
\left(J^{i}\right)=(\rho, \mathbf{J}),\left(J_{i}\right)=(\rho,-\mathbf{J}) \\
\partial:=\left(\partial_{i}\right):=\left(\partial_{t}, \partial_{x_{1}}, \partial_{x_{2}}, \partial_{x_{3}}\right) \\
\partial^{\prime}:=\left(\partial^{i}\right):=\left(\partial_{t},-\partial_{x_{1}},-\partial_{x_{2}},-\partial_{x_{3}}\right) \\
g_{i j}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
\end{gathered}
$$

We deduce by devising momentum to express e-current in a electron: the mass and charge have the same movement in electron. The equation 2.1 has symmetry:

$$
c c . P T
$$

3. General Electromagnetic Field

We find

$$
\begin{aligned}
\left(x^{\prime}, t^{\prime}\right) & :=(x, t-r) \\
\partial_{x}^{2}-\partial_{t}^{2} & =\partial_{x^{\prime}}^{2}=: \nabla^{\prime 2}
\end{aligned}
$$

The following is the energy of a piece of field A :

$$
\begin{equation*}
\varepsilon:=\frac{1}{2}(\langle E, D\rangle+\langle H, B\rangle) \tag{3.1}
\end{equation*}
$$

The time-variant part is neglected, as a convention for energy calculation. If the field has Fourier transformation then the field energy becomes

$$
\begin{equation*}
\left.\varepsilon=\frac{1}{2}<A_{\nu}\left|\partial_{t}^{2}-\nabla^{2}\right| A^{\nu}\right\rangle \tag{3.2}
\end{equation*}
$$

4. Solution of Electron

The solution by recursive re-substitution (RRS) for the two sides of the equation is proposed. For the equation

$$
\hat{P}^{\prime} B=\hat{P} B
$$

Its algorithm is that (It's approximate, the exact solution needs a rate on the start state in the re-substitution for the normalization condition)

$$
\hat{P}^{\prime}\left(\sum_{k \leq n} B_{k}+B_{n+1}\right)=\hat{P} \sum_{k \leq n} B_{k}
$$

A function is initially set and is corrected by RRS of the equation 2.1. Here is the start state

$$
A_{i}=A_{r} e^{-i k t}, \partial_{\mu} \partial^{\mu} A_{i}=0
$$

The fields' correction A_{n} with n degrees of A_{i} is called the n degrees correction.
Firstly

$$
\nabla^{2} \phi=-k^{2} \phi
$$

Figure 1. The function of j_{1}
is solved. Exactly, it's solved in spherical coordinate

$$
-k^{2}=\nabla^{2}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r}\right)+\frac{1}{r^{2} \sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\partial_{\varphi}\right)^{2}
$$

Its solution is

$$
\begin{aligned}
\Omega(x) & =\phi=v j_{l}(r) Y_{l m}(\theta, \varphi), \quad k=1, \\
j_{1}(r) & =\frac{\sin (r)}{r^{2}}-\frac{\cos (r)}{r}, \quad v=\frac{\sqrt{2}}{1+i}
\end{aligned}
$$

In fact, it has to be re-defined in truncated form (T-form) and in process of limit

$$
\Omega^{\beta}(x)=\Omega(x)\left(h(r)-h\left(r-\beta^{-1}\right)\right), \quad \beta \rightarrow 0
$$

We use the following definition

$$
\begin{gathered}
\varrho:=N \Omega e^{-i k t} \\
\varrho(k x, k t):=\sum_{\widehat{k}} \mathrm{~F}(\widehat{k}) e^{-i k \widehat{k} x-i k t}, \quad \widehat{k}:=\frac{\mathbf{k}}{|\mathbf{k}|} \\
\sigma<k \Omega(k x)|k \Omega(k x)>=1, \quad \sigma<k \varrho(k x)| k \varrho(k x)>=e^{2} \delta(0)
\end{gathered}
$$

It's found that

$$
\begin{gathered}
\mathrm{F}^{*}(\widehat{k})=\mathrm{F}(-\widehat{k})=-\mathrm{F}(\widehat{k}) \\
\varrho^{*}=\varrho \quad \varrho(-x)=-\varrho
\end{gathered}
$$

There are calculations:

$$
\begin{gathered}
\left(\partial_{t}^{2}-\nabla^{2}\right) u=-\nabla^{\prime 2} u=\delta\left(x^{\prime}\right) \delta\left(t^{\prime}\right)=\delta(x) \delta(t), \\
u:=\frac{\delta(t-r)}{4 \pi r}=\frac{\delta\left(t^{\prime}\right)}{4 \pi r^{\prime}} \\
f g * u \cdot \delta(x, t)=\mathcal{F}(f)(-) * \mathcal{F}(g)(-) * \mathcal{F}(u))\left.\right|_{w=0}=f(-) \cdot u * g \cdot \delta(x, t) \\
f * g \cdot \delta\left(t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \int_{I} d \tau \cdot f(t / 2-\tau) g(t / 2+\tau) \\
\Omega(x) e^{i t} * u=\Omega(x) e^{i t^{\prime}} \\
<\Omega(x) e^{i t}\left|*\left(\partial_{t}^{2}-\nabla^{2}\right)\right| \Omega(-x) e^{-i t}>+c c
\end{gathered}
$$

$$
\begin{gathered}
=<\Omega(x) e^{-i t^{\prime}}\left|*\left(\partial_{t}^{2}-\nabla^{2}\right)\right| \Omega(-x) e^{-i t^{\prime}}>-3<\Omega^{*}(x)|*| \Omega(-x)>+c c \\
=-2<\Omega(x) \Omega(-x)>+c c \\
\sigma \cdot k \Omega^{*}(-k x) * k \Omega(k x)=\sigma k^{2} \cdot \frac{\delta^{3}(k x)}{\sigma^{3} \cdot \delta^{3}(0)} \\
\sigma k \varrho^{*}(k x) * k \varrho(-k x)>=e^{2} \delta(\sigma x) \\
\int_{I} d x(\Omega(x))^{2 n}=\left(\int_{I} d x \Omega^{2}(x)\right)^{n}
\end{gathered}
$$

In the frequencies of $\Omega(x) \cdot \Omega(x)$ the zero frequency is with the highest degrees of infinity.

For the objected function $\Omega(k x) * \Omega(x)$:

$$
\nabla^{2}=-\sum_{\mathbf{k}}\left(k^{2} e^{-i \mathbf{k} x} *+e^{-i \widehat{\mathbf{k}} x} *\right)
$$

5. Electrons

It's the start electron function for the RRS of the equation 2.1:

$$
A_{i}^{\nu}:= \pm i \lambda \partial^{\nu} \varrho\left(k_{e} x, k_{e} t\right) / \sqrt{2}, \quad k_{e}>0, \lambda \approx 1
$$

which meet the covariant condition

$$
\begin{equation*}
\partial_{\nu} A_{i}^{\nu}=0 \tag{5.1}
\end{equation*}
$$

Some states are defined as the core of the electron, which's the start function $A_{i}(x, t)$ for the RRS of the equation 2.1 to get the whole electron function of field $A: e$ or e_{c} :

$$
\begin{array}{cr}
e_{r}^{+}: \varrho(x, t), & e_{l}^{-}:-\varrho(x,-t) \\
e_{l}^{+}:-\varrho(x, t), & e_{r}^{-}: \varrho(x,-t)
\end{array}
$$

Using the equation 2.1, the electron function is normalized with charge as

$$
\begin{aligned}
Q=<A^{\mu}(-x)\left|*_{3} i \partial_{t}\right| A_{\mu} & >/ 2+c c .=\widehat{k_{e}} e, \quad k_{e}=1 \\
|k| & \approx m
\end{aligned}
$$

The Magnetic Dipole Moment (MDM) of electron is calculated as the second degree proximation

$$
\begin{gathered}
\mu_{z}=\mathbf{r} \times<A_{i \nu}(-x)|* i \nabla| A_{i}^{\nu}>\cdot \hat{z} / 4+c c ., \quad k_{e}=1 \\
=\frac{Q_{e}}{2 m}
\end{gathered}
$$

The spin is

$$
S_{z}=\mu_{z} k_{e} / e=1 / 2
$$

The correction in RRS of the equation 2.1 is calculated as

$$
\begin{gathered}
A-A_{i}=\frac{\left(A_{i}^{*} \cdot i \partial A_{i} / 2+c c .\right) *_{4} u}{1-\cdot i \partial\left(A_{i}-A_{i}^{*}\right) / 2 *_{4} u}, \quad k_{e}=1 \\
A=A \cdot h(t)
\end{gathered}
$$

We find the Lorentz gauge:

$$
\partial_{\nu} e^{\nu}=0
$$

It's valid that the interaction potential between electrons:

$$
\begin{equation*}
\varepsilon / 2=\sigma^{3}<e^{\prime}(-x)\left|* \partial^{\nu} \partial_{\nu} / 2, * i m \partial_{t}, * m^{2}\right| e>=C_{e^{\prime} e}(1,1,1) \tag{5.2}
\end{equation*}
$$

The function of e_{r}^{+}is decoupled with e_{l}^{+}

$$
<\left(e_{r}^{+}\right)^{\nu}(-x)\left|* m^{2}\right|\left(e_{l}^{+}\right)_{\nu}>=0
$$

The following is the increment of the energy ε on the coupling of e_{r}^{+}, e_{r}^{-}, mainly between A_{2-n} and A_{2+n}

$$
\begin{gathered}
\varepsilon_{e}=\sigma^{3} \frac{1}{2}\left(<e_{r}^{+}(-x)\left|* m^{2}\right| e_{r}^{-}>+<e_{r}^{-}(-x)\left|* m^{2}\right| e_{r}^{+}>\right) \\
\approx-2 e^{4} \beta=-\frac{1}{1.66 \times 10^{-16} s}
\end{gathered}
$$

The calculation is simply unit-dimension analysis.
The following is the increment of the energy ε on the coupling of e_{r}^{+}, e_{l}^{-}, mainly between A_{4-n} and A_{4+n}.

$$
\begin{gathered}
\varepsilon_{x}=\sigma^{3} \frac{1}{2}\left(<e_{r}^{+}(-x)\left|* m^{2}\right| e_{l}^{-}>+<e_{l}^{-}(-x)\left|* m^{2}\right| e_{r}^{+}>\right) \\
\\
\approx-\frac{1}{2} e^{8} \beta=-\frac{1}{1.08 \times 10^{-8} s}
\end{gathered}
$$

The key of its calculations includes the following ways

1) The second multiple has a index down-set-up in the end.
2) In the product the factors of $* u$ can be eliminated safely.
3) Only paired terms in a product has remarkable value, and the sign of $i k t$ in adjacent factor is negatived.

For these reasons the product including the multiple of the initial term manifests differently, and the product with its length of six is zero for indexes contraction.

6. System of Electrons

The movement of a electron to make an EM field (wave-function of A that's verified by interactions):

$$
A:=f *_{3} \sum_{i} e_{i}=\left.N \sum_{X} f(X, T) \delta(x-X, t-T) *_{4} \sum_{i} e_{i}(x, t)\right|_{T=t}
$$

with the particle number normalization:

$$
<f \mid f>=1
$$

The following are naked stable particles:

particle	electron	photon	neutino
notation	e_{r}^{+}	γ_{r}	ν_{r}
structure	e_{r}^{+}	$\left(e_{r}^{+}+e_{r}^{-}\right)$	$\left(e_{r}^{+}+e_{l}^{-}\right)$

The following is the system of particle x with the initial state

$$
\begin{gathered}
A_{0}:=\sum_{v} e_{x}^{v} * E_{v} \\
E_{v}:=\sum_{c} n_{c v} e_{c} \\
e_{x}^{\prime}:=e_{x}(-x, t) \\
e_{x}^{v}:=e_{x}, e_{x}^{\prime} \\
e_{x} *-e:=e_{x}(-x,-t) * e(x, t)
\end{gathered}
$$

The condition for the general EM field (wave-function of charge and quantified mass) is

$$
\begin{gather*}
\frac{1}{2}\left(\partial_{t}^{2}-\nabla^{2}\right) A=i m \partial_{t} A \tag{6.1}\\
\partial^{\nu} A_{\nu}=0, \quad J=<A^{\nu}|i m \partial| A_{\nu}>, \quad \beta=1 \tag{6.2}
\end{gather*}
$$

The inner field of single electron with the second wave-form subjects to this equation in linear-functional meaning. In fact for A_{0}

$$
\left(\partial_{t}^{2}-\nabla^{2}\right) e_{x}=0, \quad k_{e c}=1
$$

Reference to 5.2 (directly to calculate $k \rightarrow-k$). Then

$$
\begin{gathered}
e_{x}:=k_{x} \Omega\left(k_{x} x\right) e^{-i k_{x} t}, \quad k_{x}=1 \\
\quad<e_{x}(-x)|*| e_{x}>=\frac{1}{\left|k_{x}\right| / \sigma}
\end{gathered}
$$

e_{x} is generally spherical Bessel function. With the charge conservation law 6.2

$$
\begin{gather*}
<e_{x} * E_{v}|i m \partial| e_{x} * E_{v}>=\left(Q_{x},-\mathbf{J}\right) \tag{6.3}\\
n e=n \frac{m \sigma}{k_{x}} \approx Q_{x}, \quad n:=\sum_{v c} n_{v c}^{2}, \quad k_{x}=1 \\
k_{x} \approx \frac{n m}{Q_{x} / \sigma}
\end{gather*}
$$

Their initial MDM are

$$
\begin{gathered}
\mu_{z}=<A_{0 \nu}\left|-i \partial_{\varphi}\right| A_{0}^{\nu}>/ 2 \\
=\sum_{v c} n_{c v}^{2}<e_{x}^{v} * e_{c v}\left|-i \partial_{\varphi}\right| e_{x}^{v} * e_{c v}>/ 2 \approx \sum_{v c} \frac{\mu_{z v c} n_{c v}^{2}}{k_{x} / m}
\end{gathered}
$$

Its orbital angular momenta are neglected for their little amplitudes. The spin of the particle (mainly orbital angular momenta) are uncoupling between the electrons of same state.

7. Muon

The initial of muon is

$$
\mu_{r}^{-}: e_{\mu} *\left(e_{r}^{-}-e_{r}^{-}-e_{l}^{+}\right), \quad e_{\mu}=e_{x}\left(k_{x}=-m_{\mu}\right)
$$

μ is approximately with mass $3 m / e_{/ \sigma}=3 \times 64 m$ [3.2][1] (The data in bracket is experimental by the referenced lab), spin S_{e} (electron spin), MDM $\mu_{B} m / k_{\mu}$.

The main channel of decay is

$$
\begin{gathered}
\mu_{r}^{-} \rightarrow e_{r}^{-}-\nu_{l}, \quad e_{r}^{-} \rightarrow-e_{l}^{+}+\nu_{l} \\
e_{\mu} * e_{r}^{-}-e_{\mu} * \nu_{l} \rightarrow e_{\mu} * e_{r}^{-}-L\left(\delta^{1 / 2}(x) \delta(t)\right) *_{4} \nu_{l} \\
L\left(\delta^{1 / 2}(x) * e(x, t)\right)=L\left(\delta^{1 / 2}(x) \delta(t)\right) *_{4} e
\end{gathered}
$$

L is Lorentz transformation. The main life is

$$
\begin{gathered}
\varepsilon_{\mu}=-\frac{1}{2}\left(<e_{\mu}^{*} * e_{\mu}(-x)\left|e_{r}^{-*}(-x) * i m \partial_{t} e_{l}^{+}>+<e_{\mu}^{*} * e_{\mu}(-x)\right| e_{l}^{+*}(-x) * i m \partial_{t} e_{r}^{-}>\right) \\
\varepsilon_{\mu}:=\frac{\varepsilon_{x} m}{k_{\mu}}=-\frac{1}{2.18 \times 10^{-6} s} \quad\left[2.1970 \times 10^{-6} s\right][1]
\end{gathered}
$$

In fact the self-interactions of the two charges of neutrino are counteracted.

Figure 2. neutrino radiation

8. Pion

The initial of pion perhaps is

$$
\pi_{r}^{-}: e_{\pi} *\left(e_{l}^{+}-e_{l}^{+}\right)+e_{\pi}^{\prime} * e_{r}^{-}
$$

It's approximately with mass $3 \times 64 m$ [4.2][1], spin $S_{e}, \operatorname{MDM} \mu_{B} m / k_{\pi^{-}}$.
Decay Channels:

$$
\pi_{r}^{-} \rightarrow-e_{l}^{+}+\nu_{l}, \quad e_{l}^{+} \rightarrow-e_{r}^{-}+\nu_{l}
$$

The mean life approximately is

$$
-\varepsilon_{x} / 2=\frac{1}{2.2 \times 10^{-8} s} \quad\left[\left(2.603 \times 10^{-8} s\right][1]\right.
$$

The precise result is calculated with successive decays.

9. Pion Neutral

The initial of pion neutral is perhaps like

$$
\pi^{0}: e_{\pi^{0}} *\left(e_{r}^{+}+e_{l}^{+}\right)+e_{\pi^{0}}^{\prime} *\left(e_{r}^{-}+e_{l}^{-}\right)
$$

It's with mass approximately $4 \times 64 m$ [4.2][1], zero spin, and zero MDM. It's the main decay mode as

$$
\pi^{0} \rightarrow \gamma_{r}+\gamma_{l}
$$

The loss of interaction is

$$
-2 \varepsilon_{e}=\frac{1}{8.3 \times 10^{-17} s} \quad\left[8.4 \times 10^{-17} s\right][1]
$$

10. TAUON

The initial of tauon maybe

$$
\tau_{r}^{-}: e_{\tau}^{\prime} *\left(n e_{l}^{-}-n e_{l}^{-}\right)+e_{\tau} *\left(e_{r}^{-}-e_{r}^{+}-e_{r}^{-}\right)
$$

Its mass approximately $53 \times 64 m[54][1](n=5)$, MDM $\mu_{B} m / k_{\tau}$, spin S_{e}. It has decay mode with a couple of neutrinos counteracted

$$
e_{\tau} *\left(e_{r}^{-}-e_{r}^{+}-e_{r}^{-}\right) \rightarrow e_{\tau} * e_{r}^{-}-\gamma_{r}
$$

The main life is

$$
\frac{\varepsilon_{e} m}{k_{\tau}}=-\frac{1}{5.5 \times 10^{-13} s} \quad\left[2.91 \times 10^{-13} s ; B . R .: 0.17\right][1]
$$

Perhaps, it's a mixture with distinct coefficients n.

11. Proton

The initial of proton may be like

$$
p_{r}^{+}: e_{p} *\left(-4 e_{r}^{+}-3 e_{r}^{-}\right)+e_{p}^{\prime} *\left(-2 e_{r}^{-}\right), \quad e_{p}=e_{x}\left(k_{x}=m_{p}\right)
$$

The mass is $29 \times 64 m$ [29][1] that's very close to the real mass. The MDM is calculated as $3 \mu_{N}$, spin is S_{e}. The proton thus designed is eternal.

12. Neutron

Neutron is the atom of a proton and a muon

$$
n=\left(p_{r}^{+}, \mu^{-}\right)
$$

The muon take the first track, with the decay process

$$
\Phi * \mu^{-}=\Phi * e_{\mu} *\left(e_{r}^{-}-e_{r}^{-}-e_{l}^{+}\right) \rightarrow \Phi * e_{\mu} * e_{r}^{-}-e_{\mu} * \nu_{l}
$$

By the equation 6.1 and the inner energy of muon is counteracted:

$$
\begin{equation*}
i \partial_{t} \Phi+\frac{1}{2} \nabla^{2} \Phi=-\frac{\alpha^{\prime}}{r} \Phi, \quad m_{\mu}=1 \tag{12.1}
\end{equation*}
$$

It's resolved to

$$
\begin{aligned}
\Phi & =N e^{-r / r_{0}} e^{-i E_{1} t} \\
E_{1}=-\frac{1}{2} c^{2} \alpha^{\prime 2} & =-\frac{1}{2} c^{2} \alpha^{2}\left(\frac{\sigma^{2}}{k_{\mu}^{2}}\right)=-13.6 \mathrm{eV} \cdot 3^{-2} \\
\alpha & =\frac{e^{2}}{4 \pi \epsilon \hbar c} \approx 1 / 137
\end{aligned}
$$

It's approximately the decay life of muon in the track that

$$
\varepsilon_{n}=\frac{-E_{1}}{m_{\mu}} e_{/ \sigma}^{3} \varepsilon_{x}=-\frac{1}{936 s}
$$

13. Atomic Nucleus

We can find the equation for the sum field of Z^{\prime} ones of protons: Φ and the sum field of n ones of muons: ϕ

$$
\begin{aligned}
\frac{1}{2} \partial_{t}^{2} \Phi-i k_{p} \partial_{t} \Phi+\frac{1}{2} \nabla^{2} \Phi & =\left(Z^{\prime}+1\right) \frac{\alpha \sigma^{4}}{r} * \Phi-n \frac{\alpha \sigma^{4}}{r} * \phi \\
\frac{1}{2} \partial_{t}^{2} \phi-i z k_{\mu} \partial_{t} \phi+\frac{1}{2} \nabla^{2} \phi & =-Z^{\prime} \frac{\alpha \sigma^{4}}{r} * \Phi+(n-1) \frac{\alpha \sigma^{4}}{r} * \phi
\end{aligned}
$$

The more numbers on protons' interaction is from

$$
<\Phi * p\left|\Phi * i m \partial_{t} p>, \quad<\Phi * p\right| \Phi * \partial^{\nu} \partial_{\nu} p>/ 2
$$

Make

$$
t^{\prime}=C t:
$$

to fit

$$
\frac{1}{2} \partial_{t^{\prime}}^{2} \phi-i k_{p} \partial_{t^{\prime}} \phi+\frac{1}{2} \nabla^{2} \phi=-Z^{\prime} \frac{\alpha \sigma^{4}}{r} * \Phi+(n-1) \frac{\alpha}{r} * \phi
$$

Define

$$
\begin{gathered}
\Phi^{\prime} e^{-i E t}=\Phi, \quad \phi^{\prime} e^{-i E t}=\phi \\
\zeta=\Phi^{\prime}+\eta \phi^{\prime} \\
\left(Z^{\prime}+1\right)-\eta Z^{\prime}=-n / \eta+n-1=: N \\
\eta=\frac{\left(Z^{\prime}-n+2\right) \pm \sqrt{\left(Z^{\prime}-n+2\right)^{2}+4 Z^{\prime} n}}{2 Z^{\prime}}
\end{gathered}
$$

then

$$
\begin{gathered}
-\left(E^{2} / 2+E k_{p}\right) \nabla^{2} \zeta+\frac{1}{2} \nabla^{4} \zeta+4 \pi \alpha \sigma^{4} N \zeta=0 \\
\nabla^{2}=\left(E^{2} / 2+E\right)-\sqrt{\left(E^{2} / 2+E\right)^{2}-8 \pi \alpha \sigma^{4} N}=-k^{2}, \quad k_{p}=1 \\
\zeta=j_{l}(k r) Y_{l m}(\theta, \varphi)
\end{gathered}
$$

and

$$
k=1
$$

to delete the high-order singularity on O of its derivatives. So that

$$
\begin{gathered}
E=-1+\sqrt{-8 \pi \alpha \sigma^{2} N}, \quad k_{p}=1 \\
N=\frac{1}{2}\left(\left(Z^{\prime}+n\right)-\sqrt{\left(Z^{\prime}+n\right)^{2}+4\left(Z^{\prime}-n\right)+4}\right) \\
\approx-\chi, \quad \chi:=\frac{Z^{\prime}-n}{Z^{\prime}+n}
\end{gathered}
$$

We find

$$
\chi=1 / 3: \quad E+1 \approx 8.0 M e V, \quad k_{p}=1
$$

It's noticed that the gross interaction is least (zero) when

$$
\eta \approx-1 / 2,1
$$

which means most stable nucleus is of the same protons (Z) and neutrons (n) approximately.

14. Basic Results for Interaction

For decay

$$
\begin{gather*}
W(t)=\Gamma e^{-\Gamma t}, \Gamma=1 \tag{14.1}\\
\Gamma=\frac{1}{4}<A_{\nu}\left|\partial^{\mu} \partial_{\mu}\right| A^{\nu}>\left.\right|_{\infty} ^{t=0}
\end{gather*}
$$

This result is deduced form the equation 6.1. It leads to the result between decay life and EM emission or the interactive potential.

The distribution shape of decay can be explain as

$$
e^{-\Gamma t / 2} e_{x} * \sum_{i} e_{i} \approx \Omega_{x} * \sum_{i} e_{i} \cdot e^{-\Gamma t / 2-i k_{x} t}, 0<t<\Delta
$$

It's the real wave of the particle x near the initial time and expanded in that time span

$$
\approx \Omega_{x} * \sum_{i} e_{i} \cdot \int_{-\infty}^{\infty} d k \frac{C e^{-i k t}}{k-k_{x}-i \Gamma / 2}
$$

15. Grand Unification

The General Theory of Relativity is

$$
\begin{equation*}
R_{i j}-\frac{1}{2} R g_{i j}=-8 \pi G T_{i j} / c^{4} \tag{15.1}
\end{equation*}
$$

Firstly the unit second is redefined as S to simplify the equation 15.1

$$
R_{i j}-\frac{1}{2} R g_{i j}=-T_{i j}
$$

Then

$$
R_{i j}-\frac{1}{2} R g_{i j}=F_{i \mu}^{*} F_{j}^{\mu}-g_{i j} F_{\mu \nu}^{*} F^{\mu \nu} / 4
$$

We observe that the co-variant curvature is

$$
R_{i j}=F_{i \mu}^{*} F_{j}^{\mu}+g_{i j} F_{\mu \nu}^{*} F^{\mu \nu} / 8
$$

16. Conclusion

Fortunately, this model explained all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not being to add new ones. In this model the only field is electromagnetic field, and this stands for the philosophical that the unified world is from an unique source, all that depend on a simple hypothesis: the current of matter in a system can be devised to analysis the e-charge current.

My description of particles is compatible with QED elementarily (The expression of current in the equation 2.1 is same to the one of QED), and only contributes to it with theory of consonance state in fact. In some way, the electron function is a good promotion for the experimental models of proton and electron that went up very early.

Underlining my calculations a fact is that the electron has the same phase (electron consonance), which the BIG BANG theory would explain, all electrons are generated in the same time and place, the same source.

References

[1] K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov) E-mail address: hiyaho@126.com

Tianmen, Hubei Province, The People's Republic of China. Postcode: 431700

[^0]: Date: Jun 16, 2021.
 Key words and phrases. Maxwell equations; Decay; Electron function; Recursive resubstitution.

