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Diffusers are the integral parts of many engineering applications and flow systems. An improperly 

designed diffuser may cause flow separation and low efficiency. The following study presents an 

approach of a single-point aerodynamic shape optimization of diffusers in turbulent flow. The 

objective in this study is to maximize the pressure recovery by shaping the diffuser's geometry, 

taking into account geometrical and aerodynamic constraints. Mesh warping and geometry 

parametrization is accomplished by fitting the multi-block structured grid to a B-spline volumes 

and performing the mesh movements by using surface control points embedded with free-form 

deformation (FFD) volumes. The aerodynamic model solves the RANS equations with Spallart-

Almaras turbulence model. A gradient based optimization algorithm is used with an adjoint 

method in order to compute the objectives and constraints derivatives with respect to the design 

variables. The single-point optimization simulation increased the pressure recovery coefficient by 

12% using 46 design variables. The effect of varying the number of shape design variables is 

examined. Also, nearly identical configuration is obtained while starting the simulation with a 

deformed geometry, and the final optimized pressure recovery values differ by 0.8% only. The 

accuracy and scalability of the presented method make it possible perform shape design 

optimization for diffusers characterized with complicated geometries under various flow 

conditions.  

 

  

Nomenclature 

𝜌  = density, kg/m3 

u, v, w  = velocity components, m/s 

p  = static pressure, Pa ; order of convergence 

R  = residual 

Rey = Reynolds number 

FFD = free form deformation 

y+ = yplus 

Cp = pressure recovery coefficient 

ncp = number of control points 

ndv = number of design variables 

GCI = grid convergence index 

N = mesh size 

H =  inlet reference length, m 

AR = outlet to inlet area ratio (length in 2D) 

L = grid level 

 

Subscripts 

baseline = initial configuration 

ref  = reference value 
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I. Introduction 

The function of a diffuser is to convert translational kinetic energy into thermal energy as 

efficiently as possible. For example, the inlet to a jet engine is a diffuser regardless of the flight 

speed. Good engine performance requires a high pressure inside the combustor. For supersonic 

flight the inlet diffuser significantly slows the flow and raises the static pressure. In this case 

the diffuser is an essential integrated part since loss on stagnation pressure across a normal 

shock can be quite large. Such loss results in a reduced engine efficiency. The fact that the 

viscous boundary layer experiences an adverse pressure gradient in any diffuser represents a 

major difficulty. This adverse pressure gradient increases with the inlet Mach number, and 

finally can cause boundary layer separation from the wall. The separated flow acts as an 

effective wall which is "seen" by the external flow as a ramp. If the external flow is supersonic 

then the ramp causes a shock wave that further alters the overall flow field.  

In well-designed diffusers the total pressure loss is minimal and the flow at the exit plane is 

uniform. There are engineering applications that short straight diffusers are demanded because 

of weight or limited volume considerations. The result may be large area ratio that may cause 

boundary layer separation and excessive total pressure loss. There are sophisticated techniques 

for reducing (or even avoiding) flow separation phenomenon, for example: guide vanes, 

boundary layer suction or blowing, and wall shaping. In this study we focus on the last 

technique since it directly manages with the flow separation problem and no special equipment 

is required.  

The aerodynamic shape optimization, even for only a wing design, more than ten years ago has 

been a very difficult task. A typical aerodynamic optimization process requires a robust mesh 

warping method, grid parametrization, CFD solver, and optimization algorithm. The 

tremendous improvements in each of these fields in the last few years, and the fact that 

researches made them available as an open source tools, allow aerodynamicists in academy as 

well as in industry, actually perform an aerodynamic shape optimization and robustly explore 

a design space that perfectly fits the engineering requirements. These useful tools allow not 

only for improving existing designs, but also reach unconventional configurations with much 

improved performances.    

Numerical optimization approaches are usually categorized to gradient-based method and 

gradient-free methods.  The adjoint method for computing the gradients along with an optimizer 

that is the gradient-based is proven to be the most efficient method for large scale problems 

with hundreds of design variables [1] [2] [3]. Pironneau [4] first introduced the adjoint method 

for drag minimization problems, and then Jameson [5] extended to the aerodynamic 

optimization of the Euler flow in the late 1980's. Since then various researchers have applied 

this method within complex implementations for aerodynamic problems [6] [7] [8] [9] [10] 

[11].    

Aerodynamic design optimization process is very sensitive to the starting design sometimes 

and requires trial and error to get a converged optimal design. Xialong et al. [12] addresses this 

need by developing ways to overcome robustness issues arising from mesh warping, shape 

parametrization and CFD solver. They demonstrated the NACA0012 and RAE-2822 airfoil 

benchmarks to show the dominant factors influence the convergence efficiency. In addition 

they solved a challenging aerodynamic shape optimization case that starts from a circle in order 

to test the framework robustness.  

In recent years, aerodynamic shape optimization based on flow analysis is becoming popular 

among researchers. Most remarkable numerical studies on the optimization of 2D and conical 

diffusers for incompressible flow were published during the early 90th. Svenning et al. [13] 

presented a quasi-analytical sensitivity analysis as an optimization tool for CFD problems. They 



 

applied their method on a two-dimensional laminar flow diffuser by shaping the wall aiming to 

improve the pressure recovery (𝐶𝑝). Only a minor 𝐶𝑝 improvement was obtained (3%) 

compared to straight wall configuration. 

Results derivative-based design optimization of turbulent subsonic diffusers was presented by 

Madsen et al. [14]. They considered the two mentioned approaches shaping the diffuser wall 

and using guide vanes. A marginal improvement was obtained for diffusers with small area 

ratio, and the pressure recovery of wide-angled diffusers substantially improved. Madsen et al. 

[15] also used the response function method to optimize a 2D diffuser. Their goal was to 

improve the pressure recovery by using two different wall profiles. A small gain in 𝐶𝑝 values 

was obtained (around 1% only).  

A variation formulation was derived by Cabuk and Modi [16] to determine the diffuser wall 

profile (with constant width and length) in order to get the maximum static pressure rise. Their 

method was applied on a 2D laminar diffuser for maximizing 𝐶𝑝. The performance of the 

optimized configuration improved dramatically compared to straight line diffuser with the same 

area ratio at several Reynolds numbers.  

Wall shaping of a 2D diffuser for maximum 𝐶𝑝 was studied by Lund et al. [17]. They used B-

spline method to control the wall shape by using 5 control points moving vertically. Only a 

small improvement of 𝐶𝑝 was obtained.  

Dehghani et al. [18] studied the optimization of laminar flow diffusers by wall contouring with 

a given length ratio. The developed algorithm uses the commercial CFD software Fluent for 

the hydrodynamic analysis and employs surrogate modeling for the optimization process. The 

non-uniform rational basin splines (NURBES) are used to represent the diffuser's wall with 

three to nine design variables. The CFD analysis and the surrogate model have been combined 

for a fully automated operation using Matlab. The optimal design exhibits a reasonable 

performance improvement compared with the reference design. Another experience with the 

same diffuser baseline geometry is demonstrated in the present paper, inspired by Deghani et 

al [18]. 

The present paper demonstrates a modest experience and first steps done towards the 

construction of an aerodynamic shape optimization capability while applying the Adflow 

algorithm which is part of the MDO lab framework that made available as an open-source in 

the last year (2019-2020). A set of results are presented for a 2D diffuser. This is a Reynolds 

number constrained pressure recovery maximization problem. The tools used for this study are 

a subset of the multidisciplinary design optimization (MDO) framework of aerodynamic 

configurations (MACH) [19]. In the present study only the MACH's components relevant for 

aerodynamic shape optimization are used: CFD solver, mesh warping, geometric 

parametrization and optimization algorithm.  The availability of these open-source tools and 

benchmarks enabled further studies in CFD-based aerodynamic design optimization.  This 

paper is organized as follows. The introduction of the optimization tools are briefly described 

in Section 2. Sections 3 and 4 describe the optimization results of a 2D diffuser.   

 

 

 

   

 

II. Methodology 

The drag minimization of the problems presented in this work is obtained by using a CFD solver 

coupled with and adjoint solver to compute the objectives and constraints sensitivities, a robust 



 

mesh warping routine and a gradient based optimizer. The pyGeo routine used for geometric 

manipulation, iDWarp for mesh deformation, Adflow as the flow solver and SLSQP as the 

numerical optimization algorithm.   

A. CFD solver 

The CFD solver used in this research is three dimensional multi-block structured finite volume 

solver (SUmb). The parallel implicit solver is capable of solving the Euler and Reynolds 

averaged Navier-Stokes (RANS) equations (steady and unsteady) [20]. The discretization of 

the governing equations is done by a finite volume approach with a central formulation over 

structured meshes. The convective terms are computed by the Jameson-Schmidt-Turkel [21] 

scheme using flux splitting upwind scheme with Van-Albeda limiter. Viscous fluxes are 

computed to second order accuracy using a central difference approach. The residual smoothing 

is made by employing an explicit 5th order Runge-Kutta algorithm employing well known 

steady-state acceleration techniques including local time stepping and implicit residual 

smoothing. For RANS analysis the turbulent equations are solved in coupled fashion using 

diagonally-dominant alternating direction implicit (DD-ADI) scheme. In order to improve 

convergence, the solver is also equipped with a diagonallized ADI method for the mean flow 

equations and Newton-Krylov (NK) solver. The computational coordinates is x, y and z axes, 

while x in the stream-wise direction, y vertical, and z span-wise. The origin is located at the 

inlet bottom corner. 

The steady state mean flow equations discretized using a finite volume cell centered 

formulation , yielding  a set of ordinary differential equations that can be written as follows: 

𝑅(𝑤𝑖𝑗𝑘) = 0, where 𝑤 is  a vector of the mean flow varibales: 𝑤 = {𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸}𝑇, and 

𝑅  is the residual obtained by evaluating the sum of integral fluxes of the governing equations, 

to the second order of accuracy.  

B. Free Form Deformation (FFD) and mesh warping 

The geometry parametrization is done by the FFD approach [22]. In this approach the geometry 

is located inside a B-Spline control volume while the coordinates are mapped to the external 

surface of the volume by Newton search algorithm. All the geometric modifications are made 

on the external surfaces of the FFD volume. Any modification of the FFD boundaries indirectly 

modifies the internal geometry. The main assumption of this approach is a constant topology 

throughout the optimization process.   

After the FFD volumes modify the geometry during the optimization process, the mesh must 

be warped in order to solve the flow field for the modified geometry. In this work the algebraic 

mesh perturbation scheme is used, which is developed by Kenway et al. [22].  

C. Optimization algorithm 

In this research work the SLSQP (sequential least square programming) optimization algorithm 

is applied. It is part of the pyOpt framework Perez [23] which is an open source software. The 

algorithm SLSQP [24] is evolved from the least squares solver [8]. It uses a quasi-Newton 

Hessian approximation and an L1-test function in the line search algorithm.   

 

 

III. Problem formulation 

The optimization problem presented here is the pressure recovery maximization of a generic 

plane symmetric diffuser in viscous flow. The aim is to determine the optimum shape of the 

diffuser's upper wall in a way that increases the pressure recovery and decrease the pressure 

loss. 



 

The diffuser inlet width is H, the length is 3H, and constant size of inlet and outlet section as 

0.75H and 6H, respectively. These geometry parameters are constant and serves as part of the 

problem constraints. The inlet boundary condition is BCInflowSubsonic (according to CGNS 

format), namely, constant values of total pressure and temperature, and axial velocity direction. 

The Outflow boundary condition is a constant static pressure. The pressure rise depends upon 

the flow rate through the diffuser, which is characterized by the Reynolds number. So, 

theoretically we would like to define an axial flow direction through the inlet, characterized by 

a constant Reynolds number, which means – a constant mass flow rate. However, since such a 

boundary condition is not available in the current CGNS framework, the inlet constant mass 

flow rate is achieved by using the inlet Reynolds number as a constraint and the outlet static 

pressure as a design variable. By varying the outlet static pressure conditions, the desired 

Reynolds number is obtained. In this way the outlet static pressure has two functions – one as 

a boundary condition (outlet condition) and second as a design variable. The upper wall is a no-

slip wall, and the centerline (bottom line) has a symmetry boundary condition.  

 

A uniform compressible flow with a density of 1.225Kg/m3 and Reynolds number of 𝑅𝑒𝑦 =

105 enters the domain (from left to right). The Reynolds number is based on the diffuser inlet 

length, H, as the reference length. A non-dimensional pressure recovery is defined by a pressure 

coefficient 𝐶𝑝 as,  

𝐶𝑝 =
𝑝𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑝𝑖𝑛𝑙𝑒𝑡

1
2⁄ 𝜌𝑢𝑖𝑛𝑙𝑒𝑡

2
 

 

The aerodynamic optimization problem formulation is summarized in Table 2. In order to 

increase the flexibility of the optimization problem, the diffuser outlet section is not fixed, and 

the aspect ratio (𝐴𝑅-outlet length divided by the inlet length H) is allowed to vary in the range 

of 1.8 < 𝐴𝑅 < 4. Namely, the upper wall of the 6H outlet section (FFD-3) is allowed to move 

as a solid body in the y-direction only. The design space includes control points along the upper 

wall, which successively doubled beginning with 3 points up to maximum of 24 control points. 

The first control point (common to FFD-1 and FFD-2) is fixed at the inlet and the last control 

point (the first point in FFD-3) can move only in y-direction, the total number of the design 

variables involved are: 8, 20, 44, 92. In order to control the upper wall shape, the coordinates 

of each control point are constrained by the upper and lower bounds (see Table 2). The bounds 

values are FFD-mesh dependent, and are predefined according to the interval between the FFD-

2 control points. The lower and upper bounds for the different cases are summarized in Table 

2.  



 

 
Figure 1: A symmetric diffuser model, including the FFD blocks. 

 

Table 1: Control points and design variables 

Control points 3 6 12 24 

Design variables 8 20 44 92 

 

 

Table 2: The diffuser problem statement 

 Name Quantity Lower value Upper value 

Objective Minimum (1-Cp) 1 - - 

Design variables Ptot(inlet) 1 95000 105000 

 x,y directions 46 - - 

Constraint 𝑅𝑒𝑦 1 100000 100000 

 

IV. Grid convergence study 

The grid topology includes 4160 (level L1) cells. The minimum cell size close to the boundary 

is 3 ∗ 10−6 𝑚, reaching 𝑦+ ≈ 1. Grid convergence study was conducted while refining the grid 

in x, y directions. The aerodynamic coefficients results of three different grid refinement levels 

are collected in  
Table 3.  

Grid convergence study has been made based on the Grid Convergence Index (GCI) method, 

for examining the spatial convergence of CFD simulations presented in the book by Roache 

[25]. Roache suggests a GCI to provide a consistent manner in reporting the results of grid 
convergence studies and also an error band on the grid convergence of the solution. This 

approach is also based upon a grid refinement estimator derived from the theory of Richardson 

Extrapolation [7]. The GCI on the fine grid is defined as: 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠

𝑟𝑝−1
 where  𝐹𝑠 is a factor 

of safety (recommended to be 𝐹𝑠 = 1.25 for comparisons over three or more grids). The GCI 

for coarser grid is defined as 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠𝑟𝑝

𝑟𝑝−1
, while each grid level yield solutions that are in 

the asymptotic range of convergence for the computed solution. The parameter p is the order 

of convergence (here a second order accuracy is involved, so theoretically the maximum value 

is p=2), and r is the effective grid ratio: 𝑟 = (
𝑁1

𝑁2
)

1
𝑑⁄

where N is the total number of grid points 

in executive grid levels, and d is the flow dimension. Since the grid was adapted only in two 

directions (chordwise and normal directions) and in spite of the fact that we actually solve 3D 



 

problem, a d=2 is defined. The asymptotic range of convergence can be checked by observing 

the two GCI values as computed over three grids, 𝐺𝐶𝐼23 = 𝑟𝑝𝐺𝐶𝐼12, while values 
approximately unity indicates that the solutions are within the asymptotic range of convergence.  

For this purpose three levels of grid refinement have been checked to assess the effect on the 

numerical accuracy, while the total grid cells number: 𝐿0 = 5440 cells, 𝐿1 = 4160 cells and 

𝐿2 = 1536 cells. The grids generated with clustering cells near the walls results in 𝑦+ ≈ 1. 

The GCI values including the asymptotic range of convergence and an estimation of the 

pressure recovery coefficient values at zero grid spacing are detailed in Table 4. Based on this 

study we can say, for example, that 𝐶𝑝 is estimated to be 𝐶𝑝 = 0.6238 with an error band of  

1.66%. The grid resolution studies confirmed that the computed pressure recovery coefficient 

is grid converged. 

 

 

Table 3: Grid convergence study  

Grid level (cells number) 𝐶𝑝 Y+ 

L0-5440   0.6156 1 

L1-4160  0.6046 6 

L2-1536  0.5787 10 

 

 

 

Table 4: Pressure recovery coefficient in the grid convergence study  

 Grid level Grid ratio, r GCI [%] Richardson 

 extrapolation 

 

𝑪𝒑 

L0 1 - 0.6238 

L1 1.15 1.660 - 

L2 1.53 0.294 - 

  

 

V. Optimization results 

Three aerodynamic optimization cases are involved here, and the details are presented in Table 

5. Before optimizing the upper wall shape and in order to find the best straight wall diffuser, a 

preliminary run is performed (case1). For this purpose, the design variables are the FFD-3 upper 

control points which allowed to move in the y-direction only, and in range of 1.8 < 𝐴𝑅 < 4. 

By varying the inlet total pressure, the desired 𝑅𝑒𝑦 = 105 at the inlet is reached. In the second 

case the upper wall optimization shape is performed while varying the FFD-2 control points in 

x and y directions. The outlet area is also changeable according to the AR bounds. In order to 

verify that the optimized diffuser shape obtained in case 2 is the global maximum (in terms of 

𝐶𝑝), and in order to explore the multi-modality of the single-point aerodynamic shape 

optimization, the optimization process is started from a different geometry. In the third case the 

starting point for the optimization process is a deformed geometry, characterized by a perturbed 

upper wall, resulting in completely different shape.      

 

Table 5: List of the optimization cases 

Mesh level Constraints Design variables Description Case 

L1 

Inlet Rey. number,  

1.8<AR<4 

 

y Coordinates FFD(3), 

Inlet total pressure  

Keeping the upper wall 

straight 1 



 

L1 

Inlet Rey. number,  

1.8<AR<4 

 

x,y Coordinates FFD(2), 

y Coordinates FFD(3), 

Inlet total pressure 

Optimization of the upper 

wall 2 

L1 

Inlet Rey. number,  

1.8<AR<4 

 

x,y Coordinates FFD(2), 

y Coordinates FFD(3), 

Inlet total pressure 

Starting from a deformed 

geometry 3 

 

D. Shape optimization to find the best straight wall diffuser 

Before varying the upper wall profile in order to obtain a diffuser with an improved pressure 

recovery performance, it is interesting to know (and also compare to other …) what is the best 

straight wall diffuser? For this purpose, only the outlet area section (length in 2D) is changeable, 

and it is done by moving the FFD-3 top control points in y-direction only, and in range of 1.8 <

𝐴𝑅 < 4, while the baseline configuration has AR=1.8. The recovery pressure coefficient, inlet 

Reynolds number and outlet static pressure are plotted (see Figure 2) against the optimization 

design iterations number. In this case 𝐶𝑝 = 0.636 was obtained, which is an improvement of 

23% compared to the baseline configuration. The optimized straight wall diffuser is 

characterized by 𝐴𝑅 = 2.03, and the upper wall profiles are shown in Figure 4. The optimized 

results were obtained after 20 design iterations. 

The streamlines Mach number distribution for the baseline configuration (left figure) and the 

optimized straight-wall diffuser (right) is presented in Figure 3. The flow converges to a density 

residual of  10−10 and the adjoint equation convergence was set also to   10−10. The optimality 

convergence tolerance of SLSQP optimization algorithm is typically 10−6 or less. The values 

of 𝐶𝑝 and 𝐴𝑅 for the optimized straight-wall diffuser compares well with those reported by 

other published results [26].  

 

 

 
Figure 2: Convergence history of the pressure recovery coefficient, inlet Reynolds number and 

outlet static pressure for the straight wall configuration. The mesh level is L1.  



 

 

 

 
Figure 3: Mach number distribution while chnaging the outlet section area. Left: baseline 

configuration, right: optimized straight-wall diffuser with L/H=3, Rey=100K. 

 

 

 
Figure 4: : Comparison of the diffuser upper wall profile of the base line geometry (blue) and the 

optimized configuration while starting from baseline (gray) and keeping the upper wall straight. 

 

 

E. Diffuser's upper wall aerodynamic shape optimization 

 

In the previous study only the area ratio was changed and the upper wall shape was kept fixed.  
This section presents a challenging aerodynamic optimization process by optimizing the upper 

wall shape, including the area ratio which is changeable in the range 1.8 < 𝐴𝑅 < 4. This is 

done by using the outlet static pressure as a design variable in order to indirectly control the 
inlet Rey number, which is a constraint.  So, the current study offers two important insights into 

the diffuser optimization methodology. First, it describes an alternative approach applying a 

constant mass flow rate boundary condition, if this kind of BC condition is not exist in the CFD 
software framework. Secondly, it offers some important insights into the effect of the area ratio 

on the performance of diffuser.  

This optimization process repeated four times with different number of control points, in order 

to examine various design options.  Table 6 summarizes the 𝐶𝑝 values obtained with different 
control points.  It is interesting to see that increasing the number of control points result in an 

improved pressure recovery coefficient. The optimum diffuser profile has a higher area ratio 

than the best straight walled diffuser and also produced a larger pressure rise. The Mach number 
streamline distribution is presented in Figure 5 for the optimized configuration. One can 



 

observe the increased separation extent due to the sharp ending profile, compared to the baseline 

configuration. It is interesting to see that in the baseline configuration as well as the optimized 
one, the flow stays tight at the initial part of the diffuser but separates downstream forming a 

recirculation region.   

Convergence is reached within 1189 seconds using 4 processors (for mesh level L0, and 24 

control points), with 23 calls to the objective function and 19 calls to the sensitivity analysis 

function. Figure 6-Figure 7 presents the convergence history of (1 − 𝐶𝑝), outlet static pressure 

and inlet Rey number for four simulations characterized with different number of control points. 

It takes more than 30 design iterations to reach convergence for the optimal diffuser. Again, the 
main computational effort here is for satisfying the required inlet Rey number constraint. A 

comparison of the upper wall profile between the optimized configuration and the baseline 

straight wall is presented in Figure 8, computed with 24 control points. The area ratio of the 
optimized diffuser is increased from 1.8 to 2.45 and it results in a lower static pressure which 

is the main driver for the mass flow rate through the diffuser. 

 
 

 

Table 6: Values of pressure recovery with different number of control points (ncp) 

𝑨𝑹 𝑪𝒑 ndv ncp 

2.30 0.675 8  3 

2.41 0.688 20 6 

2.53 0.696 44 12 

2.45 0.699 92 24 

 

 
Figure 5: Mach number distribution while changing the upper wall and outlet section area. 

 

   
Figure 6: Convergence history of the recovery pressure coefficient, inlet Reynolds number and 

outlet static pressure for case 2 configuration. Results with mesh level L1, using 24 control points 

(left figure) and 12 control points (right figure). 

 



 

 

  
Figure 7: Convergence history of the recovery pressure coefficient, inlet Reynolds number and 

outlet static pressure for case 2 configuration. Results with mesh level L1, using 6 control points 

(left figure) and 3 control points (right figure). 

 

 

 
Figure 8: Comparison of the diffuser upper wall profile of the base line geometry (blue) and the 

optimized configuration (while starting from baseline (gray). 

 

 

F. Optimizing the upper wall shape while starting from a deformed geometry 

In this section the multi-modality of the diffuser shape optimization described in the previous 

section is explored by repeating the same optimization process (as the previous case) while 

starting from a deformed geometry. It is impossible to prove that the global optimum diffuser 

is found, but in order to verify that the problem is not multimodal a reasonable effort must be 

made to look for another optimal designs by starting from different (perturbed or deformed) 

geometry. 

The baseline geometry is deformed by using Sculptor commercial software, by perturbing the 

diffuser upper wall in x and y directions. In order to avoid any uncertainties relating to the grid 

convergence issue the same mesh topology is projected (mesh level L0) for the deformed 
geometry (see Figure 9). The initial deformed design is well reflected by the optimizer 

convergence behavior, although the RANS solution converged well to the tolerance defined, 

within 70 design iterations. As expected, the deformed diffuser initial design performed 

poorly(𝐶𝑝 = 0.568).   

This solution attempt includes 24 control points and after 40 design iterations 𝐶𝑝 is increased 

to 0.6940, 18.1% higher than the initial deformed geometry. Compared to the optimized 

diffuser while starting from the baseline geometry, the pressure recovery is lower in 0.8% only.  



 

Despite the rather poor initial design, and the anomalous shapes encountered during the 

optimization process, the gradients point in the right direction, and the upper wall is smoothed 
out and finally similar geometry is obtained (see Figure 11). It is clearly seen that there are still 

some small visible differences between the wall shapes. The increased number of design 

variables caused the optimizer to explore shapes with more curvature variation. This minor 

difference in the final optimized upper wall profiles, including the pressure recovery values, 
may also be an indication that the global optimum diffuser is obtained. 

 

 
Figure 9: Initial deformed diffuser upper wall 

 

 
Figure 10: Convergence history of the recovery pressure coefficient, inlet Reynolds number and 

outlet static pressure for case 3 configuration. The mesh level is L0, using 24 control points. 

 



 

 
Figure 11: Comparison of the diffuser upper wall profile between the optimized configuration 

while starting from the base line geometry (blue) and the optimized configuration while starting 

from a deformed geometry (gray). 

   

VI. Conclusions 

This paper presents a modest experience to construct an aerodynamic optimization capabilities 

based on the gradient based algorithms together with an adjoint method that computes the 

required gradients efficiently. The main motivation for this research is analyzing the sensitivity 

and robustness of the flow solver, mesh warping method and the optimization algorithm to 

reduced sized problems, in a way that would fit the time and resources limitations exist in 

industrial applications. The effectiveness of the optimization process is demonstrated by 

benchmarking a 2D diffuser in a turbulent flow and constant inlet Reynolds number. Well 

converged results were obtained which are comparable to the results from previous work. 

Reasonably high pressure recovery are confirmed by comparing the optimized configurations 

with those of the straight wall diffuser design.   

Also in this case, the robustness of the flow solver and mesh warping algorithm is demonstrated 

by starting the optimization process from a deformed geometry. In spite of the fact that this 

preferred starting condition might not be of interest for industrial applications, it definitely 

examines the robustness of the numerical method as well as the FFD parametrization method. 

The optimized shapes starting from straight wall and deformed wall are similar to each other 

except for minor differences, and the pressure recovery value is differ by 0.8% only.  
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