On prime numbers in linear form

Alexey Ponomarenko
E-mail: alexey.ponomarenko.25.12.1993@yandex.ru

Abstract

A lower bound is given for the number of primes in a special linear form less than N, under the assumption of the weakened ElliottHalberstam conjecture.

1 Introduction

Using the weight function of the form (q, p_{t} - prime numbers)

$$
\begin{equation*}
v(2 n)=1-\frac{1}{2} \sum_{\substack{z \leq q<y \\ q^{k} \| 2 n}} k-\frac{1}{2} \sum_{\substack{2 p_{1} p_{2} p_{3}=2 n \\ z \leq p_{1}<y \leq p_{2} \leq p_{3}}} 1-\frac{1}{2} \sum_{\substack{2 p_{1} p_{2}=2 n \\ z \leq p_{1}<y \leq p_{2}}} 1-\sum_{\substack{2 p_{1} p_{2}=2 n \\ y \leq p_{1} \leq f \leq p_{2}}} 1, \tag{1.1}
\end{equation*}
$$

(such a weight function $v(2 n)$ leaves only prime numbers when sifting (i.e. $v(2 n)=1$ with $n=p \geq z$ and $v(2 n) \leq 0$ for other values of $n)$ for

$$
\sum_{\substack{2 n \in A \\(2 n, P(z))=1}} v(2 n)
$$

), where

$$
z \asymp N^{0.25001} ; y \asymp N^{\frac{1}{3}} ; f \asymp N^{\frac{1}{2}} ;(2 n, N)=1 ; 2 n<N .
$$

And the weakened conjecture of the Elliott-Halberstam

$$
\begin{equation*}
\sum_{d \leq D} \max _{(a, d)=1}\left|\psi(y ; q, a)-\frac{y}{\phi(q)}\right| \ll \frac{x}{(\log x)^{B}} \tag{1.2}
\end{equation*}
$$

where

$$
|a| \leq(\log N)^{B} ; D=N^{1-C} ; C \approx 0.002 ; B \geq 3
$$

Key words and phrases: Sophie Germain prime, safe prime, strong prime, parity problem
it can be proved that there are infinitely many prime numbers in linear form

$$
p_{r}=2 p_{u}+a
$$

The main role is played by the upper bound for the sum for numbers of the form
$2 p_{1} p_{2} \in A=\left\{p-a ; p \leq N, p \in \mathbb{P}, z \leq p_{1}<y \leq p_{2},|a| \leq(\log N)^{B}, B \geq 3\right\}$.

2 Main results

Theorem 2.1. Assuming (1.2) there are infinitely many primes of the form

$$
p_{r}=2 p_{u}+a,
$$

where a is an arbitrary fixed odd integer.
The proof of Theorem 2.1 is given at the end of the paper. We now give several intermediate theorems and lemmas.

Theorem 2.2. (See Theorem 9.7 (Jurkat-Richert) [1])
Let $J=\{a(n)\}_{n=1}^{\infty}$ be an arithmetic function such that

$$
a(n) \geq 0 \quad \text { for all } n
$$

and

$$
|J|=\sum_{n=1}^{\infty} a(n)<\infty
$$

Let \mathbb{P} be a set of prime numbers $(2 \notin \mathbb{P})$ and, for $z \geq 2$, let

$$
P(z)=\prod_{\substack{p \in \mathbb{P} \\ p<z}} p
$$

Let

$$
S(J, \mathbb{P}, z)=\sum_{\substack{n=1 \\(n, P(z))=1}}^{\infty} a(n)
$$

For every $n \geq 1$, let $g_{n}(d)$ be a multiplicative function such that

$$
0 \leq g_{n}(p)<1 \quad \text { for all } p \in \mathbb{P}
$$

Define $r(d)$ by

$$
\left|J_{d}\right|=\sum_{\substack{n=1 \\ d \mid n}}^{\infty} a(n)=\sum_{n=1}^{\infty} a(n) g_{n}(d)+r(d)
$$

Let \mathbb{Q} be a finite subset of \mathbb{P}, and let Q be the product of the primes in \mathbb{Q}. Suppose that, for some ϵ satisfying $0<\epsilon<\frac{1}{200}$, the inequality

$$
\prod_{\substack{p \in \mathbb{P} \backslash \mathbb{Q} \\ u \leq p<z}}\left(1-g_{n}(p)\right)^{-1}<(1+\epsilon) \frac{\log z}{\log u}
$$

holds for all n and $1<u<z$. Then for any $D \geq z$ there is the upper bound

$$
\begin{equation*}
S(J, \mathbb{P}, z)<\left(F(s)+\epsilon e^{14-s}\right) X+R \tag{2.1}
\end{equation*}
$$

and for any $D \geq z^{2}$ there is the lower bound

$$
\begin{equation*}
S(J, \mathbb{P}, z)>\left(f(s)-\epsilon e^{14-s}\right) X-R, \tag{2.2}
\end{equation*}
$$

where

$$
s=\frac{\log D}{\log z}
$$

$F(s)$ and $f(s)$ are the continuous functions defined as

$$
\begin{gathered}
F(s)=1+\sum_{\substack{n=1 \\
n \equiv 1(\bmod 2)}}^{\infty} f_{n}(s) \text { for } s \geq 1 ; \quad f(s)=1-\sum_{\substack{n=2 \\
n \equiv 0(\bmod 2)}}^{\infty} f_{n}(s) \text { for } s \geq 2 \\
X=\sum_{n=1}^{\infty} a(n) \prod_{p \mid P(z)}\left(1-g_{n}(p)\right)
\end{gathered}
$$

and the remainder term is

$$
R=\sum_{\substack{d \mid P(z) \\ d<D Q}}|r(d)|
$$

If there is a multiplicative function $g(d)$ such that $g_{n}(d)=g(d)$ for all n, then

$$
X=V(z)|J|
$$

where

$$
V(z)=\prod_{p \mid P(z)}(1-g(p))
$$

Lemma 2.3. (See Theorem 4, Theorem 1 [3] and Lemma 2 [1])
An arithmetic function $\lambda(d)$ is said to be well-factorable of level $D \geq 1$ if for any $R, S \geq 1$ with $R S=D$ there are functions δ_{r}, η_{s} with $\left|\delta_{r}\right|,\left|\eta_{s}\right| \leq 1$ supported on $r<R, s<S$, such that

$$
\lambda(d)=\sum_{r s=d} \delta_{r} \eta_{s}
$$

Let $0<\epsilon<\frac{1}{8}, 2 \leq z \leq D$. Then from Theorem 4 [3] it follows

$$
\begin{equation*}
S(J, \mathbb{P}, z) \leq X\left(F\left(\frac{\log D}{\log z}\right)+E\right)+\sum_{l<L} \sum_{d \mid P(z)} \lambda_{l}^{+}(d) r(J, d) \tag{2.3}
\end{equation*}
$$

J, \mathbb{P}, z, X are defined as in Theorem 2.2. In this formula, L depends only on ϵ and λ_{l}^{+}- is well factorable coefficient of order 1 and of level D, and the constant E satisfies

$$
E=O\left(\epsilon+\epsilon^{-8} e^{K}(\log D)^{-\frac{1}{3}}\right)
$$

where K is some constant >1. Using the definition given in Theorem 2.2

$$
F(s)=\frac{2 e^{\gamma}}{s} \text { for } 0<s \leq 2
$$

with γ - EulerâĂŞMascheroni constant.
Lemma 2.4. (See Lemma 6 [1])
We denote by $\left|\alpha_{h}\right|,\left|\beta_{m}\right| \leq 1$ two sequences with $h \in[H, 2 H)$ and $m \in$ $[M, 2 M)$, also define $\nu=\frac{\log H}{\log N}, N=2 H M$ and the following equality

$$
\begin{equation*}
\sum_{(d, a)=1} \lambda(d)\left(\sum_{h m \equiv a[d]} \alpha_{h} \beta_{m}-\frac{1}{\varphi(d)} \sum_{(h m, d)=1} \alpha_{h} \beta_{m}\right)=O_{B}\left(\frac{N}{(\log N)^{B}}\right) \tag{2.4}
\end{equation*}
$$

is true for $B \geq 3$, uniformly for $|a| \leq(\log N)^{B}$, for any positive ϵ, for any ν $(\epsilon \leq \nu \leq 1-\epsilon)$, with $D=N^{\theta(\nu)-\epsilon}$, where the function $\theta(\nu)$ has the following value:

$$
\left\{\begin{array}{lll}
\frac{2}{3}-\frac{\nu}{3} & \text { for } & \frac{1}{4}<\nu \leq \frac{2}{7} \\
\frac{1}{2}+\frac{\nu}{4} & \text { for } & \frac{2}{7} \leq \nu \leq \frac{2}{5}, \\
1-\nu & \text { for } & \frac{2}{5} \leq \nu \leq \frac{1}{2}
\end{array}\right.
$$

Lemma 2.5. To estimate the sum

$$
\frac{1}{2} \sum_{2 n \in A} \sum_{\substack{2 n=2 p_{1} p_{2} \\ z \leq p_{1}<y \leq p_{2}}} 1
$$

we pass from one set A to another F (switching principle), we obtain

$$
\begin{equation*}
\frac{1}{2} S(F, \mathbb{P}, f) \leq 0.1773748 \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z)+O\left(\frac{N}{(\log N)^{B}}\right) \tag{2.5}
\end{equation*}
$$

where
$F=\left\{2 p_{1} p_{2}+a: z \leq p_{1}<y \leq p_{2}, 2 p_{1} p_{2}<N,\left(2 p_{1} p_{2}, N\right)=1,|a| \leq(\log N)^{B}, B \geq 3\right\}$.

Proof. The remainder term of the sieving function $S(F, \mathbb{P}, f)$ by Lemma 2.3 will be equal to

$$
\sum_{d} \lambda(d)\left(\left|F_{d}\right|-\frac{|F|}{\phi(d)}\right)=O\left(\frac{N}{(\log N)^{B}}\right)
$$

with $(2, d)=1$ and $D=N^{\theta(\nu)-\epsilon}$. The minimum value for $\theta(\nu)$ is defined in Lemma 2.4, i.e

$$
\theta\left(\frac{\log p_{1}}{\log N}\right) \geq \frac{4}{7} \quad \text { for } z \leq p_{1} \leq y
$$

Since $\frac{V(f)}{V(z)}=\frac{\log z}{\log f}\left(1+O\left(\frac{1}{\log N}\right)\right)=0.50002+O\left(\frac{1}{\log N}\right)$ (using the definition for $V(z)$ in Theorem 2.2) we have

$$
\frac{1}{2} S(F, \mathbb{P}, f) \leq 0.50002 \frac{7}{8} \frac{e^{\gamma}}{2} \int_{0.25001}^{1 / 3} \frac{d t}{t(1-t))} \frac{N}{\log N} V(z)+O\left(\frac{N}{(\log N)^{B}}\right)
$$

3 Proof of Theorem 2.1

Let $z(2 p+a, N)$ be the number of primes of the form $p_{r}=2 p_{u}+a \leq N$, where a is an arbitrary fixed odd integer and $N>e^{|a|^{\frac{1}{B}}} ; B=3$. We also denote $A=\left\{p-a ; p \leq N, p \in \mathbb{P},|a| \leq(\log N)^{B}, B \geq 3\right\}$ and $P(z)=\prod_{\substack{p \in \mathbb{P} \\ p<z}} p$.
We give a lower bound for $z(2 p+a, N)$ using the weight function (1.1).

$$
z(2 p+a, N) \geq \sum_{\substack{2 n \in A \\ n \in\{1, p \geq z\}}} 1 \geq \sum_{\substack{2 n \in A \\(2 n, P(z))=1 \\ n \in\{1, p \geq z\}}} 1 \geq \sum_{\substack{2 n \in A \\(2 n, P(z))=1}} v(2 n)
$$

Now open the last sum and applying the switching principle for the set A we obtain
$z^{\prime}(2 p+a, N)=S(A, \mathbb{P}, z)-\frac{1}{2} \sum_{z \leq q<y} S\left(A_{q}, \mathbb{P}, z\right)-\frac{1}{2} S(B, \mathbb{P}, f)-\frac{1}{2} S(F, \mathbb{P}, f)-S(E, \mathbb{P}, f)+O\left(N^{\frac{3}{4}}\right)$,
where $z(2 p+a, N) \geq z^{\prime}(2 p+a, N)$,
$B=\left\{2 p_{1} p_{2} p_{3}+a: z \leq p_{1}<y \leq p_{2} \leq p_{3}, 2 p_{1} p_{2} p_{3}<N,\left(2 p_{1} p_{2} p_{3}, N\right)=1,|a| \leq(\log N)^{B}, B \geq 3\right\}$
and
$E=\left\{2 p_{1} p_{2}+a: y \leq p_{1}<f \leq p_{2}, 2 p_{1} p_{2}<N,\left(2 p_{1} p_{2}, N\right)=1,|a| \leq(\log N)^{B}, B \geq 3\right\}$.

A. Ponomarenko

The first two sums in $z^{\prime}(2 p+a, N)$ are estimated using the Theorem 2.2 and the weakened Elliott-Halberstam conjecture (1.2) with
$f(s)=\frac{2 e^{\gamma} \log (s-1)}{s}$ for $s=\frac{\log D}{\log z} \in[3,4] ; \quad F\left(s_{q}\right)=\frac{2 e^{\gamma}}{s_{q}}$ for $s_{q}=\frac{\log \frac{D}{q}}{\log z} \in(0,3]$.
Acting as in Theorem 10.4 [2] and Theorem 10.5 [2], only with the value $|a| \leq(\log N)^{B}, \quad B \geq 3, \quad z=N^{0.25001}$ and $D=N^{1-C}, C \approx 0.002$ we obtain $S(A, \mathbb{P}, z) \geq\left(f(s)-\epsilon e^{14-s}\right) V(z) \sum_{n=1}^{\infty} a(2 n)+O\left(\frac{N}{(\log N)^{B}}\right) \geq 1.0981287 \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z)$,
respectively

$$
\begin{gathered}
\frac{1}{2} \sum_{z \leq q<y} S\left(A_{q}, \mathbb{P}, z\right) \leq 0.50002 * e^{\gamma} N \sum_{z \leq q<y} \frac{1}{\phi(q) \log \left(\frac{D}{q}\right)}+O\left(\frac{N}{(\log N)^{B}}\right) \leq \\
\leq 0.50002 * e^{\gamma} \int_{0.25001}^{1 / 3} \frac{d t}{t(0.998-t))} \frac{N}{\log N} V(z)
\end{gathered}
$$

The third sum in $z^{\prime}(2 p+a, N)$ is estimated as for Theorem 10.6 [2], only with the value $|a| \leq(\log N)^{B}, B \geq 3$ and $z=N^{0.25001}$ and since

$$
\frac{V(f)}{V(z)}=\frac{\log z}{\log f}\left(1+O\left(\frac{1}{\log N}\right)\right)=0.50002+O\left(\frac{1}{\log N}\right)
$$

(using the definition for $V(z)$ in Theorem 2.2) we obtain

$$
\begin{aligned}
& \frac{1}{2} S(B, \mathbb{P}, f) \leq 0.50002 * e^{\gamma} V(z) \sum_{\substack{z \leq p_{1}<y \leq p_{2} \leq p_{3} \\
2 p_{1} p_{2} p_{3} \leq N}} 1+O\left(\frac{N}{(\log N)^{B}}\right) \leq \\
& \quad \leq 0.50002 \frac{e^{\gamma}}{2} \int_{0.25001}^{1 / 3} \int_{1 / 3}^{(1-\beta) / 2} \frac{d t d \beta}{t \beta(1-t-\beta)} \frac{N}{\log N} V(z)
\end{aligned}
$$

An estimate for the fourth sum is given in Lemma 2.5.

$$
\frac{1}{2} S(F, \mathbb{P}, f) \leq 0.1773748 \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z)
$$

It remains to estimate the last sum in $z^{\prime}(2 p+a, N)$. Acting as in Lemma 2.5 , we choose the minimum value of the function

$$
\theta\left(\frac{\log p_{1}}{\log N}\right) \geq \frac{1}{2} \quad \text { for } y \leq p_{1} \leq f
$$

so we have

$$
S(E, \mathbb{P}, f) \leq 0.50002 * e^{\gamma} \int_{1 / 3}^{1 / 2} \frac{d t}{t(1-t))} \frac{N}{\log N} V(z)+O\left(\frac{N}{(\log N)^{B}}\right) \leq
$$

$$
\leq 0.693175 \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z) .
$$

Putting together estimates for the sums in $z^{\prime}(2 p+a, N)$, we obtain
$z(2 p+a, N) \geq(1.0981287-0.2032878-0.0240915-0.1773748-0.693175) \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z) \geq$

$$
\begin{equation*}
\geq 0.00019 \frac{e^{\gamma}}{2} \frac{N}{\log N} V(z) \tag{3.1}
\end{equation*}
$$

with
$V(z)=\prod_{\substack{p<z \\(p, N)=1}}\left(1-\frac{1}{p-1}\right)=\prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{\substack{p \mid N \\ p>2}} \frac{p-1}{p-2} * \frac{e^{-\gamma}}{\log z}\left(1+O\left(\frac{1}{\log N}\right)\right)$
for sufficiently large N, this proves Theorem 2.1.

Acknowledgements

None.

References

[1] E. Fouvry and F. Grupp, On the switching principle in sieve theory, Journal fÃijr die reine und angewandte Mathematik, 370 (1986).
[2] M. Nathanson, Additive Number Theory: The Classical Bases, 231298 (1996).
[3] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980).

