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An attempt to prove the Strong Goldbach Conjecture  

          by the Principle of Mathematical Induction 

     

        Gregory M. Sobko 

 

                                            Abstract 
                                                 

A Recursive Algorithm described here generates consecutive sequences of Goldbach  

sets toward the proof of the Strong Goldbach Conjecture.  

Approach suggested here is based on the fundamental principle of mathematical induction  

and uses rather elementary set-theoretical technique. It does not involve any sophisticated  

powerful tools and results of contemporary Number Theory , Algebraic Geometry,  

or Theory of Dynamical Systems with applications to measure preserving  

groups of transformations on the appropriate  topological spaces [7 ].  

This work might cause beforehand certain suspicions among specialists in this area  

regarding the validity of the proof (perhaps inspired by the notorious ‘Uncle Petros’  

phenomenon [8]) . The main idea of this work is to develop a recursive algorithm  

toward building the sequence of consecutive Goldbach sets  

that  represent  solutions to the system of Goldbach equations   

in the intervals .  Validity of the algorithm is based on the proved here  

recurrent formula 

                                    ,  

given the inductive assumption that for all , where ,   

and  is a set of all odd prime numbers. 

 

GkP | 3≤ k ≤ m{ }

GkP | 3≤ k ≤ m{ }
x + y = 2 ⋅ k | 3≤ k ≤ m{ }

Ik = [3,2 ⋅ k − 3]

GkP + 2 ⋅(m+1− k( )∩ Sm⎡⎣ ⎤⎦
k=3

m

∪ = Gm+1P ≠ ∅

GkP ≠ ∅ k :3≤ k ≤ m Sm = Im∩P

P
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“The most interesting facts are those which can be used several   
times, those  which have a chance of recurring ...”  

                                    (Henry Poincaré, The Value of Science) 

  

We approach here one of old classical problems in Number Theory known as the strong  

form of Goldbach Conjecture(SGC) [ 1, 5 ]. According to the conjecture stated by Goldbach  

in his letter to Euler in 1742, “every even number  is the sum of two odd primes” [1].  

Regardless numerous attempts to prove the statement, supported in our days by computer 
calculations up to ,  it remains unproven till now.   

Let  be a set of natural numbers, and  a set of odd primes (all prime numbers excluding ).  

The Goldbach’s Conjecture (GC), as one of the oldest and notoriously known unsolved problems 
in Number theory, raises a question why it seems so difficult to decide whether the equation 

                                                                                         (*) 

, has at least one solution for each even number . Indeed, 
occurrences of primes look very sporadic, so that it is hard to predict, that there exists a pair of 
primes  related by the equation  (*), especially for ‘big’ values of .  Notice that every 

solution   in primes to the equation , must satisfy the condition: 

 . We call a prime number  a - prime (a Goldbach prime) if  

is also a prime number.  Then, denote  as set of all - primes, and call a Goldbach set. 

 Obviously, for all  we have .   A set   is empty if   

for some  - primes do not exist. Goldbach function  counts the number  

of solutions to the equation      

     ,          (1) 

where  are prime numbers,  is any integer  .  

Obviously, any pair of primes greater then 2 solves (1) for  . 

2m ≥ 6

4×1018

! P 2

p + ′p = 2m,

where pand ′p are prime numbers 2m ≥ 6

p, ′p( ) m

(n, ′n ) = ( p, ′p ) p + ′p = 2m

(n, ′n )∈[3,2m− 3]2 p Gm ′p = 2m− p

GmP Gm GmP

m ≥ 3 GmP ⊂ Im = [3,2 ⋅m− 3] GmP

m ≥ 3 Gm G(2m)

n+ ′n = 2m n, ′n( )∈P2

n  and  ′n m m ≥ 3

p, ′p( ) 2m = p + ′p
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Due to infinity of , this implies that the Goldbach function has . 

The Strong Goldbach Conjecture states that , so that every set  

is a  nonempty set for all . Calculations show that  increases with , 

though  is not a monotonically increasing function.   

We observe that each pair  which solves (1) must belong to a set ,  

where =  .  Since  is prime,  if  , 

the pair  solves (1), so that the prime , and we need to consider  

the case . In general, if is a prime number such that ,  

then . 

Consider a map  given by the formula .  

Denote  an algebra of all subsets of the interval . 

Obviously, is one-to-one and has an inverse  , so that for all   

we have .  Denote . 

Obviously,  is idempotent:  (an identical map), that is . 

Let  denote a set of prime numbers in the interval of integers ,  

that is ,  and its complement in  so that 

 .  While  stands for the set of primes in  ,  

  is  the set of composite numbers in .   

We denote . 

The Strong Goldbach Conjecture asserts that for any  the set  is not empty: 

P limsupG(2m) = ∞

minG(2m) = 1 GmP

m ≥ 3 max
m≤M

G(2m) M

G(2m)

n, ′n( ) [3,2m− 3]2 = Im
2

Im = [3,2m− 3] {3,4,…,2m− 3} 3 ′n = 2 ⋅m− 3( )∈P

3,2 ⋅n− 3( ) 2 ⋅m− 3( )∈GmP

2 ⋅m− 3( )∉P p 2 ⋅m− p( )∈P

2 ⋅m− p( )∈GmP

θm : Im → Im θm(n) = 2m− n

Fm Im = [3,2m− 3]

θm θm
−1 A∈Fm

θm(A)∈F ,θm
−1(A)∈F Im

− = [3,m−1], Im
0 = m{ }, Im+ = [m+1,2m− 3]

θm θm
2 = id θm

−1 = θm

Sm Im = [3,2m− 3]

Sm = Im∩P Sm
c = Im! Sm Im

Im = Sm∪ Sm
c , Sm∩ Sm

c =∅ Sm Im

Sm
c Im

θm(Sm ) = 2 ⋅m− Sm = ′n | ′n = 2 ⋅m− n,n∈Sm{ }
m ≥ 3 GmP
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       . 

Lemma 1.  

-invariance of Goldbach sets:  . 

Proof. 

Notice that the sets  are invariant sets of the map  

 since for all  we have  , 

due to . -invariance of  also follows directly from the equalities 

               . 

Q.E.D. 

 

In what follows we need several recursively derived formulas. 

Lemma 2. 

(1) , where      (2) 

(2)      (3) 

(3)        (4) 

 (4)                  (5) 

Proof.  

(1)  We observe that   

       so that .   

GmP = n, ′n | n∈P, ′n = (2m− n)∈P{ } = (2m− Sm )∩ Sm = θm(Sm )∩ Sm ≠ ∅

θm θm(GmP) = GmP

Im , m{ }, 3,2 ⋅m− 3{ }  and θm(Sm )∩ Sm

θm : Im → Im n∈Im θm n,θm(n){ }( ) = θm(n),θn
2(n){ } = θm(n),n{ }

θm
2 = id θm GmP

θm(GmP) = θm Sm∩θm(Sm )( ) = θm(Sm )∩θm
2Sm = θm(Sm )∩ Sm = GmP

Im = Im−1∪ 2m− 4,2m− 3{ } Im = [3,2m− 3]

Sm = Sm−1 ∪ P∩ 2m− 3{ }( ) = Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪

θm(Sm ) =
θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

GmP =
θm(Sm )∩ Sm = θm Sm−1( )∪ 3{ }   if  (2m - 3)∈P
θm(Sm )∩ Sm = θm Sm−1( )∩ Sm−1  if  (2m−1)∉P

⎧
⎨
⎪

⎩⎪

Im−1 = [3,2 ⋅(m−1)− 3]= [3,2 ⋅m−5]

Im = [3,2m− 3]= Im−1∪ 2m− 4,2m− 3{ }
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       , 

      Thus,  . 

  , 

       . 

  (4)   

           ,   and  , that is 

           

Q.E.D. 

Notice that (4) implies that if , then  and .  

In the case when , we have   

since .  

Thus, we need to concentrate on the case . We observe that , 

 due to Lemma 2 below. This implies . If , then  

and  . Assuming now that  is a twin prime, that is  , 

we have that   implies .  

See in what follows the more detailed discussion and definitions of sets of twin primes  and 

 related to the Goldbach Conjecture. 

 

(2) 2m− 4,2m− 3{ }∩P( ) = 2m− 3{ }∩P( ) implies

Sm = Im∩P = Im−1∩P( )∪ 2m− 4,2m− 3{ }∩P( ) = Sm−1∪ P∩ 2m− 3{ }( )
Sm = Im∩P = Sm−1 ∪ 2m− 3{ }  if  (2m− 3)∈P  and Sm = Sm−1  otherwise

(3)  θm(Sm ) = θm Sm−1( )∪θm 2m− 3{ }∩P( ) = θm Sm−1( )∪ 3{ }  if  2m− 3{ }∈P
θm Sm−1( )  if  2m− 3{ }∉P
⎧
⎨
⎪

⎩⎪

since θm(2m− 3) = 2 ⋅m− (2m− 3) = 3

GmP = θm(Sm )∩ Sm = θm(Sm−1)∪ 3{ }( )∩ Sm−1 = θm(Sm−1)∩ Sm−1( )∪ 3{ }  

 if  (2m - 3)∈P GmP = θm(Sm−1)∩ Sm−1   if  (2m− 3)∉P

GmP =
θm Sm−1( )∩ Sm−1   if  (2m - 3)∉P

θm Sm−1( )∩ Sm−1( )∪ 3{ }  if  (2m− 3)∈P

⎧
⎨
⎪

⎩⎪

(2m− 3)∉P Sm = Sm−1 GmP=θm(Sm−1)∩ Sm−1

(2 ⋅m− 3)∈P GmP ≠ ∅

3∈GmP , (2m− 3)∈Pand 3+ (2m− 3) = 2m

(2m− 3)∉P θm(Sm−1) = θm−1(Sm−1)+ 2

GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 p∈Gm−1P ≠ ∅

p∈Sm−1 p∈θm−1(Sm−1) p ( p + 2)∈Sm = Sm−1

Gm−1P ≠ ∅ GmP= θm−1(Sm−1)+ 2( )∩ Sm−1 ≠∅

T1P

t-primes TtP
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Example 1. 

               

The next Lemma concerns some properties of the shift transformation  

Lemma 3. 

Define a transformation . 

Then, for any subset  and integer the following properties of  hold true:  

                                   (6)   

Proof. 

           

Q.E.D.      

Let  stand for a set of all twin primes and consider   

for each .  Thus, if for some  , then  . 

Lemma 3 implies, in particular,  that if a prime  has a twin prime ,  

then .  This shows some connection between the Twin Prime Conjecture  

              Values of  Im ,Sm ,θm Sm( ),GmP,G(2m) for m =  19 :

I19 =
3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

⎧
⎨
⎩

⎫
⎬
⎭

  

S19 = 3  5  7 11 13 17 19 23 29 31{ },   θ19 S19( ) = 7  9 15 19 21 25 27 31 33 35{ }  

G19P = 7 19 31{ }, G(38) = 3

              Values of  Im ,Sm ,θm Sm( ),GmP,G(2m) for m =  20 :

I20 =
3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

⎧
⎨
⎩

⎫
⎬
⎭

S20 = 3  5  7 11 13 17 19 23 29 31 37{ }, θ20 S20( ) = 3  9 11 17 21 23 27 29 33 35 37{ }
G20P = 3 11 17 23 29 37{ }, G(40) = 6

θm   (m ≥ 3)

θm :  Z→ Z such that θm(n) = 2 ⋅m− n,   where n∈N,  m∈! (m ≥ 3)

A⊆ Z t ∈! θm

     θm+t (A) = θm(A)+ 2 ⋅ t
     θm(A) = θm−t (A)+ 2 ⋅ t

θm+t (A) = 2 ⋅(m+ t)− A = 2 ⋅m− A+ 2 ⋅ t = θm(A)+ 2 ⋅ t
θm(A) = 2 ⋅m− A = 2 ⋅(m− t)− A+ 2 ⋅ t = θm−t (A)+ 2 ⋅ t

T1P = p | p∈P and (p + 2)∈P{ } GkP∩T1P

k (3≤ k ≤ m) k (3≤ k ≤ m) GkP∩T1P ≠ ∅ Gk+1P ≠ ∅

p∈GkP ( p + 2)∈P

p + 2( )∈Gk+1P
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and the Strong Goldbach Conjecture (SGC), and, moreover, between the Prime Conjecture 

(de Polignac Conjecture (1849)) and SGC as we see below. This also shows how nonempty 

Goldbach sets can propagate further with increasing values of . 

Definition. 

Denote, in general, by a set of -primes for some , that is   

. Notice that ,     (7) 

where  stands for the set of all odd prime numbers.                                           

Consider examples below: 

,  ,  , and so on. 

Propagation of nonempty  for all   is based on very simple observations.   

Lemma 4. 

Let  and . There exist   and  (  )  

such that , and . This implies that there exists  (  )  

such that  and . 

Proof. 

Let , . Thanks to the Bertrand’s postulate [4], there exists a prime  between 

integers . This implies that there exists  such that this prime  

can be expressed in the form , where .  

Indeed, we can take . Then,  implies 

 that  and . 

Since  and  ,  we have   

t-

GkP k

TtP (t ∈!) t t ∈N

TtP = p | p∈P and (p + 2 ⋅ t)∈P{ } TiP = T0P = P
t=0

∞

∪

P

3,5,11,17,29,41{ }⊂ T1P 3,7,13,19,37,43{ }⊂ T2P 5,7,11,17,23,31,37,41{ }⊂ T3P

GkP k ≥ 3

p∈GkP ≠ ∅ p ≤ k q∈P (q > p) t ∈! 1≤ t < k −1

q = p + 2 ⋅ t ∈P p∈TtP t ∈! 1≤ t < k −1

p∈GkP∩TtP ≠ ∅ q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

p∈GkP p ≤ k q

k  and 2 ⋅ k (k > 3) t ∈! q

q = ( p + 2 ⋅ t)∈P 1≤ t < k −1

t = q − p
2

,  so that q = p + 2 ⋅ t ∈P p∈GkP

p +θk ( p) = 2 ⋅ k ( p + 2 ⋅ t)+θk ( p) = 2 ⋅ k + 2 ⋅ t = 2 ⋅(k + t)

q = p + 2 ⋅ p∈P θk ( p)∈GkP p∈GkP∩TtP ≠ ∅
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and .                      

Q.E.D.  

 

Lemma 5. 

1. For  and  each is a for an appropriate value of . 

2. For any  there exist  , ,  , and ,  

such that ,  and both and belong to . 

3. Let   were  

for all . Denote . 

Then,   and  for all . 

 

4. Let for each  ( ) there exist  such that . 

Then  for all   ( ) .    

      5.  Let   ( ) and there exists  such that . Then  

      6.    If for  there exist  and  such that ,  

                 then . 

Proof. 

1. Indeed, for  we have  and ,  

where , so that . 

2. In general, for any  there exist ,  , and , so that  

and  , which means that  

and .  
 

3. This statement follows directly from the above statement 2. 
 

q = ( p + 2 ⋅ t)∈Gk+tP ≠ ∅

k > 3 p < k p∈GkP t-prime t > 0

p∈GkP ′p = θk ( p)∈GkP q∈P q > p t ≥1

q = p + 2 ⋅ t ′p q Gk+tP ≠ ∅

GkP = pk ,1, pk ,2 ,…, pk ,n(k )−1, pk ,n(k ){ } pk ,i < pk ,i+1

i = 1,2,…,n(k)−1= G(2k)−1 tki =
pk ,i+1 − pk ,i

2
GkP∩TtkiP≠ ∅ Gk+tkiP ≠ ∅ i = 1,2,…,n(k)−1= G(2k)−1

j 3< j ≤ k t ≥1 Gj−tP∩TtP≠ ∅

GjP ≠ ∅ j 3< j ≤ k

GjP ≠ ∅ j ≥ 3 k > j GjP∩Tk− jP≠ ∅ GkP ≠ ∅

m > 3 k (3≤ k < m) t = m− k GkP∩TtP≠ ∅

GmP ≠ ∅

p∈GkP ′p = θk ( p) = 2 ⋅ k − p∈GkP ′p = p + 2t

t = ′p − p
2

p∈TtP

p∈GkP q∈P q > p t = q − p
2

≥1

q = p + 2 ⋅ t p +θ j ( p)+ 2 ⋅ t = ′p + q = 2 ⋅ k + 2 ⋅ t = 2 ⋅(k + t)

′p ∈Gk+tP q∈Gk+tP
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4. Due to Lemma 4, since  for an appropriate , we have   

 
for each . 

      5.    implies that there exists and   

                 such that . 

 Then,  and both  

 are primes that belong to . 

     6.   Due to Lemma 4, and  imply . 

Q.E.D. 

This shows how nonempty Goldbach  sets ,     

have been generated: 
, 

 

 

Let ,  ,  where . Let  be prime and  

such that .  

This implies that . 

Since both are primes and , we have   

belong to . For instance, if for some  we have , 

then, due to Lemma 3,  . 

Consider   , that is we start from .  

Then,  and . Thus, we have  where 

Gj−tP∩TtP≠ ∅ t ≥1 GjP≠ ∅

j ≤ k

GjP∩Tk− jP≠ ∅ p∈GjP t = k − j

q = p + 2 ⋅(k − j)( )∈P

p +θ j ( p)+ 2 ⋅(k − j) = θ j ( p)+ q = 2 ⋅ j + 2 ⋅(k − j) = 2 ⋅ k θ j ( p) and q

GkP ≠ ∅

GkP∩TtP≠ ∅ t = m− k Gk+tP = Gk+(m−k )P = GmP ≠ ∅

G3P,G4P,G5P,… G12P …

G3P = 3{ },G4P = 3,3+ 2{ },G5P = 3,5,5+ 2{ },G6P = 5,5+ 2{ }
G7P = 3,7,7 + 4{ }, G8P = 3,5,11,11+ 2{ },G9P = 5,7,11,11+ 2{ },
G10P = 3,7,13,13+ 4{ },G11P = 3,11,17,17 + 2{ },G12P = 5,7,11,13,17 + 2{ }…

p∈GkP ′p = θk ( p)∈GkP ′p = θk ( p) = 2 ⋅ k − p q q > p

q = p + 2 ⋅ t, where t = q − p
2

GkP ≠ ∅

q +θk ( p) = p + 2 ⋅ t( )+θk ( p) = p +θk ( p)( )+ 2 ⋅ t = 2 ⋅(k + t)

q and θk ( p) q +θk ( p) = 2 ⋅(k + t) q and θk ( p)

Gk+tP ≠ ∅ k (3≤ k ≤ m) Gk−1P∩T2P ≠ ∅

Gk+1P ≠ ∅

p = 3 and q = 5 G3P = 3{ }

t = 5− 3
2

= 1 θ3(3) = 3 q +θk ( p) = 5+ 3= 2 ⋅(3+1) = 8
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.  

Then, due to Lemma 4, for each  there exists such that ,  

which implies . This means that the occurrence of a -prime in a non-empty  

set  implies that  is necessarily non-empty. This provides proliferation  

of  a non-empty sets   steps forward, so that  is not empty for any .  

Starting from   the ‘wave’ of  propagates forward  

recursively as  without gaps, supported by the existence of  ,  

as we demonstrate below. 

Observe that each pair of  primes   such that ,  and , 

generates a nonempty set ,  where  and  is  a -prime in . 

Notice that there are infinitely many -prime numbers in   and at least  

 -primes in each  for .  The goal of Lemma 5 is to demonstrate that we can  

build a nonempty Goldbach set  for each ,  given a sequence of nonempty Goldbach  

sets , due to the  assumption of mathematical induction.  

We need the following simple Lemmas. 

Lemma 6. 

Let , where .  

For every prime there is  such that .  

Proof.  

Indeed, we can take . Then, since .  

3 and 5 both belong to G3+1P = G4 = 3,5{ }
GkP ≠ ∅ t ∈! GkP∩TtP ≠ ∅

Gk+tP ≠ ∅ t

GkP Gk+tP

GkP t Gk+tP k

k = 3 and t = 1 Gk -primes

k→∞ t-primes

( p,q) p∈GkP q > p q∈Sm = Im∩P

Gk+tP t = q − p
2

p t GkP

t ! G(2m)−1

t GmP m ≥ 3

GmP m ≥ 3

GkP{ }3≤k≤m−1

Sm = Im∩P Im = [3,2 ⋅m− 3]

p∈Sm k ≤ m p∈GkP

k = p p∈GpP p + p = 2 ⋅ p ≤ 2 ⋅m
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Another possibility is to consider ,  since . 

 Q.E.D. 

Lemma 7.  

For all  we have  

.      (8) 

Proof. 

For any , due to Lemma 1, there exists  such that .  

And vice versa, if , that is for some , then . 

Q.E.D. 

Lemma 8. 

Let   for all .  Assuming that , we have . 

Otherwise, if , we have .  Then,  for any  the equality 

        (9) 

holds true. 

Proof. 

Denote .  

Then,   . 

Consider  . 

Due to Lemma 1, we have .  

k = 3+ p
2

3+ p ≤ 2 ⋅m

m ≥ 3

Sm = GkP =
k=3

m

∪ G (m)P

p∈Sm k ≤ m p∈GkP

p∈G (m)P Sm−1 = GkP
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
p∈GkP k ≤ m p∈Sm

GkP ≠ ∅ k :3≤ k ≤ m−1 2 ⋅m− 3∈P 2 ⋅m− 3∈GmP ≠ ∅

2 ⋅m− 3≠GmP Sm = Sm−1 m ≥ 3

GkP + 2 ⋅(m− k( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = GmP =∅

Ak ,m = GkP + 2 ⋅(m− k)( )

GkP + 2 ⋅(m− k( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪ = Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

θm(Ak ,m ) = 2 ⋅m− Ak ,m = 2 ⋅m−GkP − 2 ⋅(m− k) = 2 ⋅ k −GkP = θk (GkP)

θk (GkP) = GkP
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This implies that . 

According to Lemma 7,  . Since  if , 

we have , since , 

due to the assumption of mathematical induction. 

Q.E.D. 

The proof of Lemmas 5 and 8 show a definite connecion between the number of solutions 

to the Goldbach equation in the intervals  and the number  

of  in sets . 

          Recursive Algorithm generating the infinite sequence  

          of nonempty Goldbach sets   for all natural . 

Given integer , this algorithm will find all pairs of prime numbers  

such that . The algorithm works recursively and generates ,  

starting from  , by using the sequence up to . 

1. Since  belongs to the interval of integers , we verify first  

whether . 

If  , then  and  we set . Otherwise, . 

2. Then we assign ,  and calculate the subsets of primes  

 (all in ) to form the set , by   

repeating these  calculations in the cycle for . 

θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= θm(Ak ,m )

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm ) = GkP

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩θm(Sm )

Sm−1 = GkP
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟

Sm = Sm−1 2 ⋅m− 3≠GmP

θm Ak ,m
k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm

⎛

⎝⎜
⎞

⎠⎟
= Sm∩θm(Sm ) = GmP ≠ ∅ Ak ,m

k=3

m−1

∪
⎛
⎝⎜

⎞
⎠⎟
∩ Sm ≠ ∅

p + ′p = 2 ⋅m Im = [3,2 ⋅m− 3]

t-primes GkP for k :3≤ k < m

GmP ≠ ∅ m ≥ 3

m ≥ 3 ( p, ′p )

p + ′p = 2 ⋅m GmP

G3P = 3{ } G3P,G4P,G5P…,GkP k = m−1

GmP Im = [3,2 ⋅m− 3]

(2 ⋅m− 3)∈P

(2 ⋅m− 3)∈P 3,2 ⋅m− 3{ }⊆ GmP G3 = 3{ } G3P =∅

t = m− k tGk = Gk + 2 ⋅ t

pr_tGk = tGk ∩P t-primes tGk Gk+1 = Gk ∪ pr_tGk

k = 3,4,…,m−1
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3. Finally, we obtain  as a union .  

See in APPENDIX the text of R-script  and data lists of the calculated  for . 

A seqience of Goldbach sets   represents  solutions to the system  

of Goldbach equations  in the intervals   .  

This system  is an algebraic variety  given by  linear equations  ,  

which  solutions (if exist) are pairs of prime numbers . 

Each Goldbach set  geometrically is a sequence of points with coordinates 

 on the segment of a straight line given by  , , 

symmetrically located on the line with respect to a point , due to invariance 

 , where . See below Fig. 1 and 2 representing  

Diophantine geometry of  Goldbach sets, where dots are  points with coordinates 

 on the corresponding lines.  

These dots are solutions to the Goldbach equations  .  

The theorem below answers the question how many solutions are in each Golbach set. 

Theorem 1. 

A set  of solutions to the Goldbach equation  in primes  

in each inerval  includes a prime  such that both  

are co-primes with , that is , . 

The number of solutions to the Goldbach equation  in primes  

 in each inerval  is equal to the number of  in the set  

Gm = GmP GkP + 2 ⋅(m− k( )∩ Sm⎡⎣ ⎤⎦
k=3

m−1

∪

GkP k :3≤ k ≤ m

GkP | 3≤ k ≤ m{ }

x + y = 2 ⋅ k | 3≤ k ≤ m{ } Ik = [3,2 ⋅ k − 3]

x + y = 2 ⋅ k 3≤ k ≤ m( )

p, ′p( )∈P2

GkP

p, ′p( )∈P2 x + y = 2 ⋅ k (x, y)∈[0,2 ⋅ k]

(k,k)

θk GkP( ) = GkP θk (x) = 2k − x = y

p, ′p( )∈P2

x + y = 2 ⋅ k 3≤ k ≤ m( )

GmP p + ′p = 2 ⋅m ( p, ′p )∈P2

Im = [3,2 ⋅m− 3] p < m p and  ′p = θm( p)

m gcd(m, p) = (m, p) = 1 gcd(m,θm( p)) = (m,θm( p)) = 1

p + ′p = 2 ⋅m ( p, ′p )∈P2

Im = [3,2 ⋅m− 3] t-primes GmP
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such that . 

Proof. 

Consider a quadratic polynomial  for integer valued  and . 

Let a pair of primes  be a solution to the Goldbach equation  in the  

interval .   Obviously, for  , the pair of prime numbers  

are roots of the polynomial . 

Discriminant of  is , where  is a nonnegative integer. 

Observe  that   follows .   

Since are not equal prime numbers, the equation  

for an integer  and  implies: ,  

so that . This means that  is a ,  

where . Therefore, we have as many solutions to the  

equation  as there are ,  , in the set .  

Assume now that  , , where  and  is an unknown integer.  

Then the polynomial takes a form: . 

Its discrimimant is . 

The solutions to the equation  are , where . 

For instance, let . Then,  has 2 roots: 

, and they are not included in . Meanwhile, for   

t = ′p − p
2

Pm(x) = x
2 + 2 ⋅m ⋅ x + c m, c x ∈Z

( p, ′p ) p + ′p = 2 ⋅m

Im = [3,2 ⋅m− 3] c = p ⋅ ′p

p, ′p( )∈P2 Pm(x) = x
2 − 2 ⋅m ⋅ x + p ⋅ ′p = x − p( ) ⋅ x − ′p( )

Pm(x) D = 4 ⋅(m2 − p ⋅ ′p ) = 4 ⋅ t2 t

m2 − p ⋅ ′p( ) = t2 (m− t) ⋅(m+ t) = p ⋅ ′p

p and ′p (m− t) ⋅(m+ t) = p ⋅ ′p

t p ≤ ′p m− t = p and m+ t = ′p

t = ′p − p
2

and  ′p = p + 2 ⋅ t p∈GmP t-prime inGmP

t = ′p − p
2

Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅ ′p t-primes t = ′p − p

2
GmP

2 ⋅m = p + q c = p ⋅q p∈P q = 2 ⋅m− p

Pm(x) Pm(x) = x
2 + 2 ⋅m ⋅ x + p ⋅(2 ⋅m− p)

Dm = 4 ⋅ m
2 − p ⋅(2 ⋅m− p)( ) = 4 ⋅ m2 − 2 ⋅m ⋅ p + p2( ) = 4 ⋅ m− p( )2

Pm(x) = 0 x1,2 = m± (m− p) x1 = p, x2 = 2 ⋅m− p

m = 9, c = 45 P9(x) = x
2 −18x + 45

x1 = 3∈P, x2 = 2 ⋅9− 3= 15∉P G9P m = 9
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and   we have  with roots , 

so that  and .  Notice that are not coprime numbers,  

while  are coprime.  Denote .  

Then, . 

The equation   

has the following different sets of  solutions:  and .  

Since we are solving equation in primes within an interval ,  

the solutions are: , assuming  that the numbers 

 are coprime in each pair, that is,  

and .     

Q.E.D. 

 

Diophantine Geometry of Goldbach Sets        

      (Fig.1) 

                      

c = 65 P9(x) = x
2 −18x + 65 x1 = 5∈P, x2 = 2 ⋅9−5= 13∈P

5∈G9P  13∈G9P 3,θ9(3) = 15 and 2 ⋅9 = 18

5, θ9(5) = 13 and 2 ⋅9 = 18 [x]p = mod(x, p)

[Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p

[Pm(x)]p = [x]p
2 − [2 ⋅m]p ⋅[x]p = [x]p ⋅ [x]p − [2 ⋅m]p( ) = 0

[x]p = 0 [x]p − [2 ⋅m− p]p( ) = 0
Pm(x) = 0 Im = [3,2 ⋅m− 3]

x1 = p∈Sm = Im∩P,  x2 = θm( p) = 2 ⋅m− p∈Sm

m, p( )  and m,θm( p( ) gcd(m, p) = (m, p) = 1

gcd(m,θm( p)) = (m,θm( p)) = 1

GkP  (k = 3,4,…,50)
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     (Fig.2) 

    

Every dot in the above figure denotes a point with coordinates  such that 

  on the line , where . 

We  apply now one of the most fundamental and simple proof techniques in mathematics 

known as mathematical induction [ 3 ]. Let  denote a statement about a natural  

number , and  let be a fixed number.  A proof that is true for all  by  

induction requires two steps: 

Basis step: Verify that is true. 

Induction step: Assuming that is true for all  , 
verify that is true. 

Theorem 2. 

: For all integer , the set  of solutions to the equation ,   

 ,  in prime numbers is not empty.  

GkP (k = 3,4,…,40)

p, ′p( )
p + ′p = 2 ⋅ k x + y = 2 ⋅ k 3≤ k ≤ m

Prop(m)

m m0 Prop(m) m ≥ m0

Prop(m0 )

Prop(k) k such that m0 ≤ k ≤ m
Prop(m+1)

Prop(m) m ≥ 3 GmP n+ ′n = 2m

n, ′n( )∈P2
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The can be equivalently stated as:   for all integers . 

Proof. 

(1) Basic step.  

As we know, [2] , is true for all   up to .  

Let  Then . 

(2) Induction step. 

Assume that  for all integer . 

Let .  In Lemma 2 we proved (3) that .    

Then, we have: 



In thе case  , the formula (5) implies . 

We can also confirm the last equality directly, because   

implies that  , so that . 

Consider now a general situation which includes the case .  If ,  

 then we have , and due to Lemma 8, ,  

and we have . This means that there exists  such that .  

Therefore, .Thus, assuming by the induction assumption, that   

for all ,  we have .  Moreover, due to Lemma , we have a recursive 

formula (9) for Goldbach sets, which implies 

Prop(m) GmP = θm(Sm )∩ Sm ≠ ∅ m ≥ 3

Prop(m) m M = 4 ⋅1018

m0 = 3. 2 ⋅3= 6 = 3+ 3

GkP = θk (Sk )∩ Sk ≠ ∅ k :m0 ≤ k ≤ m

k = m+1 Sm =
Sm−1 ∪ 2m− 3{ } if  (2m - 3)∈P
Sm−1  if  (2m - 3)∉P

⎧
⎨
⎪

⎩⎪

Im+1 = [3,2 ⋅(m+1)− 3]= [3,2 ⋅m−1] and  Sm+1 =
Sm∪ 2m−1{ } if  (2m -1)∈P
Sm  if  (2m -1)∉P

⎧
⎨
⎪

⎩⎪

(2m -1)∈P Gm+1P = θm+1 Sm( )∩ Sm( )∪ 3{ } ≠ ∅

3+ (2m−1) = 2(m+1)

3∈Gm+1  and  (2 ⋅m−1)∈Gm+1  if  (2 ⋅m−1)∈P Gm+1P ≠ ∅

(2 ⋅m−1)∉P (2 ⋅m−1) ≠ P

Sm+1 = Sm Gm+1P ⊆ Sm+1 = Sm = GkP = G
(m)P

k=3

m

∪

Gm+1P∩G
(m)P ≠ ∅ k ≤ m Gm+1P∩GkP ≠ ∅

Gm+1P ≠ ∅ GkP ≠ ∅

k (3≤ k < m) Gm+1P ≠ ∅
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.     (10) 

Q.E.D. 

 

An example  below illustrates the above statement with some computer calculations.  

In this example we consider sets .   

Notice that many of those sets can be calculated based on  the rule that if a prime   

has a twin prime , that is  and , then . 

For example, terms in  are calculated by this rule by using terms in . 

Meanwhile, terms in  are calculated by using terms in  for  based on the general 

rule: if , then  implies   

(Lemma 3):  . 

The calculations below illustrate thе conclusion of the Theorem  

(see the data referred in Example 2). We would like to verify that , by using that 

. Consider . If we choose  it would not 

work with , because . We try then .  

We have  and . Then,   

should belong (due to Lemma 3) to . Therefore,  .  

Thus, we have  , which means that . Notice that in this instance  

 and we established that 

by using the fact that . 

 

 

GkP + 2 ⋅(m+1− k( )∩ Sm⎡⎣ ⎤⎦
k=3

m

∪ = Gm+1P ≠ ∅

GmP = θm(Sm )∩ Sm  for m  from 105  to 110

p∈GkP

( p + 2)∈P t = 1 p∈T1P p + 2( )∈Gk+1P

G106P G105P

G110P G108P t = 2

p < k   and  p∈GkP∩TtP p∈P and p + 2 ⋅ t ∈P ( p + 2 ⋅ t)∈Gk+tP

23+197 = (19+ 2 ⋅2)+197 = 220 = 2 ⋅110,  since 19+197 = 216 = 2 ⋅108

G110P ≠ ∅

GkP ≠ ∅ for all k ≤110 G110P (m = 110, 2 ⋅m = 220) t = 1

G109P G109P∩T1S109 =∅ G108P and t = 2

G108P∩T2S108 ≠ ∅ p = 19∈G108P∩T2S108 p + 2 ⋅ t = 19+ 2 ⋅2 = 23

G110P 2 ⋅110− 23= 197∈G110P

23+197 = 2 ⋅110 G110P ≠ ∅

k = 109, k +1− t = 109+1− 2 = 108 and  (k +1− t)+ t = 108+ 2 = 110

G(k+1−t )+t = G110P ≠ ∅ G108P∩T2S108 ≠ ∅
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Example 2. 

   

Thus, we can predict that without explicit calculation of this set, just by using the 
previously calculated sets  By using the algorithm described in Lemma 5, we 
find that , but , since, for instance, , 
and . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  Sets GmP = θm(Sm )∩ Sm  for  m from 105 to 110

 G105P =
11  13  17  19  29  31  37  43  47  53  59  61  71  73  
79  83  97 101103107 109 113 127 131 137 139149 
151 157 163 167 173 179 181 191 193 197 199

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  G106P = 13  19  31  61  73 103 109 139 151 181 193 199{ }   

  G107P = 3  17  23  41  47  83 101 107 113 131 167 173 191 197 211{ }   

 G108P =
 5  17  19  23  37  43  53  59  67  79  89 103 107 109
 113 127 137 149 157 163 173 179 193 197 199 211 

⎧
⎨
⎩

⎫
⎬
⎭

 

 G109P = 7  19  37  61  67  79 109 139 151 157 181 199 211{ }
 G110P =

23  29  41  47  53  71  83  89 107 113
131 137 149 167 173 179 191 197
⎧
⎨
⎩

⎫
⎬
⎭

 

G110P ≠ ∅
G109P,G108P,G107P,…

G109P∩T1P =∅ G108P∩T2P ≠ ∅ 19∈G108P∩T2P
19+ 2 ⋅2 = 23∈G110P
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 Conclusion 

I tried to follow the ‘natural logic’ of the problem, by being more exploratory rather than  

artificially creative and used a computer as my permanent companion and an advisor.  

As to simplicity of the used methods, I recall to the point  the well-known Poincaré  

Recurrence Theorem [7], which proof takes only a few lines of the text and is based mainly  

on elementary set-theoretical operations. Meanwhile the significance of the Poincaré  

Recurrence Theorem can be hardly overestimated.  

Notice that the proof in Lemma 5 that there exists  such that , 

which immediately implies that for all is not constructive,  

since it does not provide a formula but outlines an algorithm for finding the number .  

This is a typical “existence” theorem. Notice, by the way, that the proof of the famous  

Poincaré recurrence theorem is not constructive as well, since it does not provide a  number  

 of iterations, after which the recurrence occurs. The Poincaré theorem states only  

that such number  exists. Meanwhile the proof in Lemma 8 is quite constructive since 

it is based on the recursive formula (10) given above (see the calculated examples of 

Goldbach set sequences in the Appendix).  

I would like to express here my acknowledgement to the peer-reviewer  
 
Dr. Dmitry Kleinbock for his  critical  and thoughtful  reading of many versions  
 
of this  paper, valuable advice and support. The spirit of friendly interaction  
 
in our numerous discussions was very crucial for me. 

 
 
 
 
 
 
 
 

t ≥1 Gk+1−tP∩TtP ≠ ∅

Gk+1P≠ ∅ k (3≤ k ≤ m)

t

n

n
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                                         APPENDIX 

 
                 The text of R-script for computer realization of Recursive Algorithm 

                       generating sequences of Goldbach sets for  

 

                              

GkP k = 3,4,5,…,m

# Function GenG(m) generates sets G(m) of Goldbach primes such that p + p' =
2m (3 <= m <= 2m-3)
# for each natural m (3 <= m <= 2m-3). This function is based on Lemma3
algorithm: 
# G(m) includes each p + 2t if p is a t-prime in the Goldbach set G(k) (3 <= k
<= m-1) for t = m-k.  
# Thus, G(m) is a inion of subsets tG(k) of t-primes in G(K) such that 
# tG(k) = {p + 2t| p is in G(k), p + 2t is prime for each t = m - k}. 
# Notice that G(m) is recurrently generated from the Godbach sets G(k), where
3 <= k <= m-1,
# starting from G(3) = {3} (3+3=6). This confirms by the principle of
mathematical induction
# non-emptiness of Goldbach sets G(m) for all natural m = 3,4,5,... (the
Goldbach Conjucture).

# Needed packages: 'numbers' and 'sets'. Needed function: GmR.
# Created by GMS
# Date: 06.30.21.
#
GenG <- function(m) {
 if (isPrime(2*m-3)){
   Gm <- 3
 }
  else {
    Gm <- NULL
  }
  for (k in (3: m-1)) {
    Gk <- Gm(k)
    t <- m - k
    tGk <- Gk + 2*t
    pr_tGk <- tGk[isPrime(tGk)]
    Gm <- union(Gm, pr_tGk)
  }
  return(sort(Gm))
}
  
#source('~/Documents/R/Number Theory/GenG.R')   
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                       Data lists of  calculated  for  

  
3 3 
4 3 5 
5 3 5 7 
6 5 7 
7 3  7 11 
8 3  5 11 13 
9 5  7  11 13 
10 3  7 13 17 
11 3  5 11 17 19 
12 5 7 11 13 17 19 
13 3 7 13 19 23 
14 5 11 17 23 
15 7 11 13 17 19 23 
16 3 13 19 29 
17 3 5 11 17 23 29 31 
18 5 7 13 19 23 29 31 
19 7 19 31 
20 3 11 17 23 29 37 
21 5 11 13 19 23 29 31 37 
22 3 7 13 31 37 41 
23 3 5 17 23 29 41 43 
24 5 7 11 17 19 29 31 37 41 43 
25 3 7 13 19 31 37 43 47 
26 5 11 23 29 41 47 
27 7 11 13 17 23 31 37 41 43 47 
28 3 13 19 37 43 53 
29 5 11 17 29 41 47 53 
30 7 13 17 19 23 29 31 37 41 43 47 53 
31 3 19 31 43 59 
32 3 5 11 17 23 41 47 53 59 61 
33 5 7 13 19 23 29 37 43 47 53 59 61 
34 7 31 37 61 
35 3 11 17 23 29 41 47 53 59 67 
36 5 11 13 19 29 31 41 43 53 59 61 67 
37 3 7 13 31 37 43 61 67 71 
38 3 5 17 23 29 47 53 59 71 73  
39 5 7 11 17 19 31 37 41 47 59 61 71 73 
40 7 13 19 37 43 61 67 73 
41 3 11 23 29 41 53 59 71 79 
42 5 11 13 17 23 31 37 41 43 47 53 61 67 71 73 79 
43 3 7 13 19 43 67 73 79 83 

GkP k = 3,4,5,…,m

m Goldbach sets GmP (m = 3,4,5,…,43)
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100 3 7 19 37 43 61 73 97 103 127 139 157 163 181 193 197 
101 3 5 11 23 29 53 71 87 101 113 149 173 179 191 197 199 
102 5 7 11 13 23 31 37 41 47 53 67 73 97 101 103 107 131 137 151 157 163 167 173 191 

193 197 199 
103 7 13 43 67 79 97 103 109 127 139 163 193 199 
104 11 17 29 41 59 71 101 107 137 149 167 179 191 197 
105 11  13  17  19  29  31  37  43  47  53  59  61  71  73  79  83  97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 
106 13 19 31 61 73 103 109 139 151 181 193 199 
107 3 17 23 41 47 83 101 107 113 131 167 173 191 197 211 
108 5 17 19 23 37 43 53 59 67 79 103 107 109 113 127 137 149 157 163 173 179 193 

197 199 211 
109 7 19 37 61 67 79 109 139 151 157 181 199 211 
110 23 29 41 53 71 83 89 107 113 131 137 149 167 173 179 191 197 
111 11  23  29  31  41  43  59  71  73  83 109 113 139 149 151 163 179 181 191 

193 199 211 
112 13  31  43  61  67  73  97 127 151 157 163 181 193 211 
113 3  29  47  53  59  89 113 137 167 173 179 197 223 
114    5  17  29  31  37  47  61  71  79  89  97 101 127 131 139 149 157 167 181 191 197 

199 211 223 
115 3   7  19  31  37  67  73  79 103 127 151 157 163 193 199 211 223 227 
116 3  5  41  53  59  83 101 131 149 173 179 191 227 229 
117 5   7  11  23  37  41  43  53  61  67  71  83  97 103 107 127 131 137 151 163 167 173 

181 191193 197 211 223 227 229 
118 3   7  13  37  43  73  79  97 109 127 139 157 163 193 199 223 229 233 
119 5  11  41  47  59  71  89 101 107 131 137 149 167 179 191 197 227 233 
120 7  11  13  17  29  41  43  47  59  61  67  73  83  89 101 103 109 113 127 131 137 139 

151 157 167 173 179 181 193 197 199 211 223 227 229 233 
121 3  13  19  31  43  61  79 103 139 163 181 199 211 223 229 239 
122 3   5  11  17  47  53  71 107 113 131 137 173 191 197 227 233 239 241 
123 5   7  13  17  19  23  47  53  67  73  79  83  89  97 107 109 137 139 149 157 163 167 

173 179193 199 223 227 229 233 239 241 
124 7  19  37  67  97 109 139 151 181 211 229 241 
125 11  17  23  53  59  71  83 101 113 137 149 167 179 191 197 227 233 239 
126 11  13  19  23  29  41  53  59  61  71  73  79  89 101 103 113 139 149 151 163 173 179 

181 191193 199 211 223 229 233 239 241 
127 3  13  31  43  61  73  97 103 127 151 157 181 193 211 223 241 251 
128 5  17  23  29  59  83  89 107 149 167 173 197 227 233 239 251 

m Goldbach sets GmP (m = 100,101,…,128)
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