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Abstract. Let R ⊂ Rn be an infinite set of collinear points and S ⊂ R be

an arbitrary and finite set with S ⊂ Nn. Then the number of points in S with
mutual integer distance satisfies the lower bound

� |S|
√
nmin~x∈S Inf(xj)nj=1

∑
k≤max~x∈SG◦V1[~x]

k∈N

1

k
,

where G ◦V1[~x] is the compression gap of the compression induced on ~x. This

proves that there are infinitely many collinear points with mutual integer dis-
tances on any line in Rn and generalizes the well-known Erdős-Anning Theo-

rem in the plane R2.

1. Introduction

The well-known Erdős-Anning Theorem is the assertion that infinite number of
points in the plane R2 have can mutual integer distances only if all the points lie
on the straight line. The theorem was first proved by Paul Erdős and Norman H.
Anning [1]. In this paper we obtain a quantitative lower bound for the number of
points with mutual integer distances in any finite subset of an infinite set of points
on the same line in the space Rn. In particular for any finite subset S ⊂ N2 of an
infinite set of points on the same line in the plane R2 the number of points with
mutual integer distances must satisfy the lower bound

� |S|
√

2min~x∈SInf(xj)
2
j=1

∑
k≤max~x∈SG◦V1[~x]

k∈N

1

k

where G ◦ V1[~x] is the compression gap of the compression induced on ~x ∈ N2. As
it is being hinted at the notion of compression developed and the tools developed
therein (see [2]) plays an instrumental role. By applying the notion of the mass of
compression, the compression gap and associated estimates with the notion of the
lines induced by compression on points in space, we can get a handle on a lower
bound for any such points on the line. The immediate consequence of this is the
assertion that there are infinitely many points with mutual distances on a line in a
plane. So our result in a way supplies an estimate to the Erdős-Anning Theorem
in the plane and more generally in the space Rn for n ≥ 2.
The notations we have adopted in this paper are quite cumbersome so we will feel
the need to clarify them at appropriate places in the paper were it is used.
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2. Preliminary results

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m > 0 with Vm : Rn −→ Rn is a bijective
map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.
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Lemma 2.4. The estimate remain valid∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.
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Lemma 2.7 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we
have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

3. Compression lines

In this section we study the notion of lines induced under compression of a given
scale and the associated geometry. We first launch the following language.

Definition 3.1. Let ~x = (x1, x2, . . . , xn) ∈ Rn with x1 6= 0 for 1 ≤ i ≤ n. Then
by the line L~x,Vm[~x] produced under compression Vm : Rn −→ Rn we mean the line
joining the points ~x and Vm[~x] given by

~r = ~x+ λ(~x− Vm[~x])

where λ ∈ R.

Remark 3.2. In striving for the simplest possible notation and to save enough work
space, we will choose instead to write the line produced under compression Vm :
Rn −→ Rn by LVm[~x]. Next we show that the lines produced under compression
of two distinct points not on the same line of compression cannot intersect at the
corresponding points and their images under compression.

Lemma 3.3. Let ~a = (a1, a2, . . . , an) ∈ Rn with ~a 6= ~x and ai, xj 6= 0 for 1 ≤ i, j ≤
n. If the point ~a lies on the corresponding line LVm[~x], then Vm[~a] also lies on the
same line.

Proof. Pick arbitrarily a point ~a on the line LVm[~x] produced under compression for
any ~x ∈ Rn. Suppose on the contrary that Vm[~a] cannot live on the same line as
~a. Then Vm[~a] must be away from the line LVm[~x]. Produce the compression line
LVm[~a] by joining the point ~a to the point Vm[~a] by a straight line. Then It follows
from Proposition 2.3

G ◦ Vm[~x] > G ◦ Vm[~a].

Again pick a point ~c on the line LVm[~a], then under the assumption it follows that
the point Vm[~c] must be away from the line. Produce the compression line LVm[~c]

by joining the points ~c to Vm[~c]. Then by Proposition 2.3 we obtain the following
decreasing sequence of lengths of distinct lines

G ◦ Vm[~x] > G ◦ Vm[~a] > G ◦ Vm[~c].

By repeating this argument, we obtain an infinite descending sequence of lengths
of distinct lines

G ◦ Vm[~x] > G ◦ Vm[ ~a1] > · · · > G ◦ Vm[ ~an] > · · · .

This proves the Lemma. �
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Proposition 3.1. Let ~a = (a1, a2, . . . , an) ∈ Rn with ~a 6= ~x and ai, xj 6= 0 for 1 ≤
i, j ≤ n. Also let G ◦Vm[~x],G ◦Vm[~a] ∈ N. If the point ~a lies on the corresponding
line LVm[~x] then the mutual distances between the points ~x,~a,Vm[~x],Vm[~a] are also
integers.

Proof. Under the main assumption with G ◦ Vm[~x],G ◦ Vm[~a] ∈ N then appealing
to Lemma 3.3, we have the inequality

G ◦ Vm[~x] > G ◦ Vm[~a]

and the line LVm[~a] is only a segment of the line LVm[~x] by virtue of the estimate
in Proposition 2.3 so that ||~x− ~a||, ||Vm[~x]− Vm[~a], ||~x− Vm[~a], ||~a− Vm[~x]|| ∈ N.
This completes the proof of the proposition. �

4. Main result

In this section we prove the main result of this paper.

Theorem 4.1. Let R ⊂ Rn be an infinite set of collinear points and S ⊂ R be an
arbitrary and finite set with S ⊂ Nn. Then the number of points in S with mutual
integer distance satisfies the lower bound

� |S|
√
nmin~x∈SInf(xj)

n
j=1

∑
k≤max~x∈SG◦V1[~x]

k∈N

1

k
.

Proof. The number of collinear points in S ⊂ R with mutual integer distances is
the sum ∑

~x∈S
G◦V1[~x]=k

k∈N
k≤max~x∈SG◦V1[~x]

1 =
∑
~x∈S

k≤max~x∈SG◦V1[~x]
k∈N

G ◦ V1[~x]

k

�
√
n

∑
~x∈S

~x=(x1,x2,...,xn)
k≤max~x∈SG◦V1[~x]

k∈N

Inf(xj)
n
j=1

k

≥
√
nmin~x∈SInf(xj)

n
j=1|S|

∑
k≤max~x∈SG◦V1[~x]

k∈N

1

k

thereby establishing the lower bound. �

Corollary 4.1. There are infinitely many collinear points with mutual integer
distances on any line in Rn for all n ≥ 2.

1.

1

.



6 T. AGAMA

References

1. Anning, Norman H and Erdös, Paul and others Integral distances, Bulletin of the American
Mathematical Society, vol. 51:8, American Mathematical Society, 1945, 598–600.

2. T. AgamaThe Compression method and applications, arXiv preprint arXiv:1912.08075, 2019.

Department of Mathematics, African Institute for Mathematical science, Ghana

E-mail address: theophilus@aims.edu.gh/emperordagama@yahoo.com


