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In an earlier paper[1], a stochastic model had been presented for the Planck-scale nature of
space-time. From it, many features of quantum mechanics and relativity were derived. But as
mathematical points have no extent, the stochastic manifold cannot be tessellated with points (if
the points are independently mobile) and so a granular model is required. As grains have orientations
as well as positions, spinors (or quaternians) are required to describe them, resulting in phenomena
as described by the Dirac equation. We treat both space and time stochastically and thus require a
new interpretation of time to prevent an object being in multiple places at the same time. As the
grains do have a de�nite volume, a mechanism is required to create and annihilate grains (without
leaving gaps in space-time) as the universe, or parts thereof, expands or contracts. Making the time
coordinate complex provides a mechanism. From geometric considerations alone, both the General
Relativity �eld equations (the master equations of Relativity) and the Schrödinger equation (the
master equation of quantum mechanics) are produced. Finally, to preserve the constancy of the
volume element even internal to a mass, we propose a rolled-up �fth-dimension which is non-zero
only in the presence of mass or energy.

I. INTRODUCTION

Although it is a remarkably reliable schema for describ-
ing phenomena in the small, quantum mechanics has con-
ceptual problems; e.g. How can entanglement transfer in-
formation instantaneously (without violating relativity)?
What is happening in the two-slit experiment? In what
medium does the wave propagate? What is the wave
function? What explains superposition? Can the two-slit
experiment (at least in theory) be performed with macro-
scopic masses? Further problems arise when considering
the instantaneous collapse of the wave function, as in
the Einstein-Podolsky-Rosen paradox[2], or when treat-
ing macroscopic systems, as in the Schrödinger's cat or
Wigner's Friend paradoxes[3]. And �nally, quantum me-
chanics is not overly compatible with general relativity[3].
The aim of 'Stochastic space-time' is to introduce

stochasticity into the structure of space-time itself, rather
than into the properties of the particles in the space-time.
This is a similar, geometrodynamic, approach to Nelson's
groundbreaking model[4] that indeed has matter moving
stochastically in the space-time
Stochasticity decreases as one approaches the mass.

And, insofar as stochasticity correlates to entropy which
establishes the arrow of time, the 'length' of that arrow
is not constant throughout space-time.
Since the �uctuations are not in space-time but of

space-time, and because points have no extent, there
seemed to be no way to prevent events (points) migrat-
ing to the same point. Therefore tessellating space-time
would be problematic. So a granular model of space-
time seemed necessary. Granular space-time models suf-
fer from the problem that if the grains have a speci�c size,
then the model cannot be Lorentz invariant. Accordingly,
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we'll model grains (which we call 'venues' to distinguish
them from point-like 'events'), as having constant vol-
umes (rather than constant dimensions) and volumes are
Lorentz invariant.

Further, whereas the only geometrical property of an
event is its coordinate location, grains, having extent,
can have di�erent values of ∆x, ∆y, ∆z, and ∆t. And
that allows an explanation of curvature within four di-
mensions (as opposed to explaining it by embedding the
four dimensional space-time manifold in a �ve dimen-
sional Euclidean space). And as long as the 4-volume of
the grains (which we call 'venues') is constant, we do not
violate Lorentz invariance.

In order that we treat time in the same way as we
treat space (and not to have particles appear at di�er-
ent places at the same time), we needed a new version of
time, τ-time, where 'τ -Time Leaves No Tracks' (that is
to say, in the sub-quantum domain, there is no 'history').
The model provides a 'meaning' of curvature as well as
a (loose) derivation of the Schwarzschild metric without
need for the General Relativity �eld equations. In order
to tessellate the space-time manifold, it seems necessary
to introduce a complex time with the imaginary com-
ponent 'rolled-up' at the Planck scale. The implication
is that our usual t-time is just a human construct, not
actually intrinsic to space-time.

As we wish to treat time and space similarly, we pro-
pose �uctuations in time. In order that a particle not
appear at di�erent points in space at the same time, we
found it necessary to introduce a new model for time
where time as we know it is emergent from an analogous
coordinate, tau-time, τ,
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II. SUMMARY: �STOCHASTIC SPACE-TIME
AND QUANTUM THEORY�

An (much) earlier paper[1] posited a stochastic space-
time. From the �ve statements (postulates) in that
paper, the uncertainty principle, interference and the
spread of a free particle were derived. The statements
(described in detail in the earlier paper) are as follows:
Statement 1. A Mach-like principle.
1.1. In the absence of mass, space-time becomes not

�at, but stochastic.
1.2. The stochasticity is manifested in a stochastic

metric gµν .
1.3. The mass distribution determines not only the

space-time geometry, but also the space-time stochastic-
ity.
1.4. The more mass in the space-time, the less stochas-

tic the space-time becomes.

Statement 2, the contravariant observable theorem.
All measurements of dynamical variables correspond

to contravariant components of tensors.
Note that when one makes an observation of a dynam-

ical variable (e.g. position, momentum, etc.), the mea-
surement is usually in the form of a reading of a meter (or
meter-stick). It is only through a series of calculations
that one can reduce the datum to, say, a displacement in
a coordinate system. For this reduction to actually repre-
sent a measurement (in the sense of Margenau[5]) it must
satisfy two requirements. It must be instantaneously re-
peatable with the same results, and it must be a quantity
which can be used in expressions to derive physical re-
sults (i.e., it must be a physically �useful� quantity). It
has been shown[1] that for Minkowski space, the derived
�useful� quantity is contravariant.

Statement 3. The metric probability postulate.
P (x, t) = f(−g), where for a one particle system is

the particle probability distribution. f is a real-valued
function and g is the determinant of the metric tensor.
In the earlier paper, P (x, t) = f(−√g),but further

analysis implied the current probability distribution. The
arguments are as follows:
P (x, t) = f(−g) can be justi�ed by the following: Con-

sider that there is given a sandy beach with one black
grain among the white grains on the beach. If a number
of observers on the beach had buckets of various sizes,
and each of the observers �lled one bucket with sand, one
could ask the following: What is the probability that a
particular bucket contained the black grain? The proba-
bility would be proportional to the volume of the bucket.
Consider now the invariant volume element dVI in Rie-

mann geometry. One has that[6]

dVI =
√
−|g|dx1dx2dx3dx4.

It seems reasonable then, to take
√
−|g| as proportional

to the probability density (Ψ∗Ψ) for free space.
Consider again, the sandy beach. Let the black grain

of sand be dropped onto the beach by an aircraft as it
�ies over the center of the beach. Now the location of the

grain is not random. The probability of �nding the grain
increases as one proceeds toward the center, so that in
addition to the volume of the bucket there is also a term
in the probability function which depends on the distance
to the beach center. In general then, we would expect
the probability function P (x, t) to be P (x, t) = A

√
−|g|

where A is a function whose value is proportional to the
distance from the center of the beach.
(From here on, we'll represent the determinant of gµν by
g rather then by |g|.)
The arguments above apply to the three-dimensional

volume element. But we left out the other determinant
of the probability density, the speed of the particle (the
faster the particle moves in a venue, the less likely it is
to be there.) And therefore, the larger the ∆t the more
likely the particle is to be found in the venue. So indeed
(it seems as if ) it is the four-dimensional volume element
that should be used.
The metric probability statement P (x, t) = A

√
−g, as

it stands, has additional problems:
First, if one considers the 'particle in a box' solu-

tion, one has places in the box where the particle has
zero probability of being. And if P (x, t) = A

√
−g= 0,

that means the determinant of the metric tensor is zero
and there is a space-time singularity at that point. We
address this problem by noting that the metric tensor
is composed of the average, non-stochastic, background
(Machian) metric gMµν and the metric due to the Particle

itself gPµν . We say then that the probability density is

actually P (x, t) = A(
√
−gT −

√
−gM ) where gT is the

determinant of the composite metric. In this case, P (x, t)
can be zero without either gTµν or gPµν being singular.
A second and more trenchant problem is that P (x, t) =

A
√
−g describes the probability density for a test parti-

cle placed in a space-time with a given (average) met-
ric due to a mass, with determinant g. What we want,
however, is the probability of the particle (not the test-
particle) due to the metric contribution of the particle
itself. Related to this is that P (x, t) = A

√
−g doesn't

seem to replicate the probability distributions in quan-
tum mechanics in that the probability distribution, Ψ*Ψ,
is the square of a quantity (assuring that the distribu-
tion is always positive). But the di�erential volume el-
ement, dV =

√
−g dxdydzdt is not the square of any

obvious quantity. Further, P (x, t) = k
√
−g is something

of a dead end, as it gives Ψ*Ψ but no hint of what Ψ
itself might represent. It would be nice if the probabil-
ity density were proportional to the square of the vol-
ume element rather than to the volume element itself.
With that in mind we'll again look at the probability
density. (Multiple researchers have agreed with Part A's
P (x, t) = A

√
−g and it is therefore with some trepida-

tion that we consider that the probability density might
be subject to revision.)
The initial idea was that, given a single particle, if

space-time were �lled with 3-dimensional boxes (venues),
then the probability of �nding a particle in a box would
be proportional to the relative volume of the box. That
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was extended to consider the case where the particle
was in motion. The probability density would then also
depend on the relative speed of the particle. We will
however, now argue that P (x, t) 6= A

√
−g, but instead

P (x, t) = −Ag (essentially the square of the previous).
But this will apply only when the quantum particle is
measured (a contravariant measurement) in the labora-
tory frame. If however, one considers the situation co-
temporally (i.e. covariantly) with the quantum particle,
then P (x, t) does equal A

√
−g, which is to say that the

probability density is [co- or contra-variant] frame depen-
dent.

There is another argument, but it assumes the model of
time in Section IV (relating to a time-like �fth dimension
we have called tau).

Consider a quantum particle at a τ-time slice at, say,
τ=now. And also consider a static quantum probability
function (e.g. a particle in a well) at τ=now+1. (That
function is a result of the quantum particle's migrations
in time and space,) Then if we take a negligible mass
test particle at τ=now, it will have a probability of be-
ing found at a particular location at τ=now+1 equal to
that static probability function. And that function is
proportional to the volume element (the square root of
minus the determinant of the metric tensor). But what
we're interested in is general the probability function of
the quantum particle as τ goes from now to now+1. We
are considering the probability function at τ+1 as static.
But it is the result of the migrations of the particle. At
tau=now, it would then be the same probability function.
So, as we go from now to now plus one, we would need
to multiply the two (equal) probability functions. This
results in the function being proportional to the determi-
nant of the metric tensor (not its square root). This is
rather nice as it allows us to suggest that the volume el-
ement is proportional to Ψ while the probability density
is proportional to Ψ*Ψ. Note that this result is due to a
mass interacting with the gravitational �eld it itself has
generated. (This is analogous to the quantum �eld the-
ory case of a charge interacting with the electromagnetic
�eld it itself has created.)

As yet another approach, consider the spread of prob-
ability due to the migration of venues. In the absence
of a potential, the spread (due to Brownian-like motion)
will be a binomial distribution in space (think of it at
the moment, in a single dimension and time). But there
is also the same binomial distribution in time. This, for
example, expresses that the distant wings of the space
distribution require a lot of time to get to them. The
distribution then seems to require that we multiply the
space distribution by the time distribution. The two dis-
tributions are the same so the result is the square of the
binomial distribution. (The argument can be extended to
the three spacial dimensions.) In the laboratory frame,
time advances smoothly, which is to say that the time
probability density distribution is a constant, so we do
not get the square of the binomial distribution..

It seems then that there are both the distribution and

its square in play. It might be that the covariant rep-
resentation, i.e. the distribution 'at' the particle, is the
binomial while a distant observer, where time advances
smoothly (not in the quantum system being observed),
observes (i.e contravariant measurements) the square of
the binomial distribution.
Note: As the probability density is not stochastic while

the metric components are, that puts constraints on the
metric tensor, i.e. the determinant of the metric ten-
sor is constant while the metric components are not. So
(stochastic) changes in one or more components are com-
pensated by opposite changes in the others. This implies
that while a venue is in constant �ux, its dimensions
continuously and unpredictably change while the venue
maintains a constant volume. This also implies that the
metric stochasticity is due to a single (and the same) ran-
dom variable in each non-zero metric component (That
variable will then drop out in the determinant.)
A note on the holometer experiment[7]: The exper-

iment looks for space-time �uctuations at the Planck
scale, and has found no �uctuations. (The experimenters
though, suggested that perhaps some unknown symme-
try masks �uctuations.) The quantum zero point energy
uncertainty however, says that there are energy �uctu-
ations which are equivalent to mass �uctuations which
(from general relativity) generate stochastic metric ten-
sor �uctuations. We (among others) identify the space-
time volume element as proportional to the quantum me-
chanical probability density which is not stochastic. The
volume element is the determinant of the metric tensor.
Again we have then, a stochastic metric tensor and a
non-stochastic determinant of the metric tensor. This
could happen if for any �uctuation of a metric tensor
component, other components reverse the �uctuation. In
the case of a local diagonal metric, the �uctuations of
the space components could be counteracted by the time
component. This could be that aforementioned unknown
symmetry. We suggest then, that the null result of the
holometer experiment supports our granular stochastic
space-time model. (Craig Hogan, who came up with the
Fermilab holometer experiment concurs (personal com-
munication) that the metric model above could indeed
possibly explain the holometer negative results.)

Statement 4. the metric superposition postulate.

If at the position of a particle the metric due to a
speci�c physical situation is gµν(1) and the metric due
to a di�erent physical situation is gµν(2) then the metric
at the position of the particle due to the presence of both
of the physical situations is gµν(3),
gµν(3) = 1

2 [gµν(1) + gµν(2)].
This is the case where the probabilities, P1and P2, of

the two metrics are the same. In general though, State-
ment 4 becomes,
gµν(3) = P1gµν(1) + P2gµν(2).

Statement 5. The metric Ψ postulate.

There exists a local complex diagonal coordinate sys-
tem in which a component of the metric at the location
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of the particle is the wave function Ψ.

III. GRANULAR: SPACE-TIME

Vacuum energy �uctuations are stochastic, and so then
is also the metric tensor, so stochastic space-time is
nowhere integrable nor even continuous. So it is hard
to see how point-like 'events' could tessellate space-time,
since points take up no volume and therefore could mi-
grate over one another. For those reasons, we propose
that space-time time is granular. The grains (which we
call 'venues' to distinguish them from 'events') cannot
have constant dimensions as that would not be Lorentz
invariant. Instead we posit constant volumes (which is
Lorentz invariant). The venue dimensions however are at
the Planck scale. (A previous paper[8] argued that the
Planck length is the smallest possible length, the Planck
time is the shortest possible time increment, and the
Planck mass is the smallest mass not subject to quan-
tum uncertainties so, for example, the two-slit experi-
ment, even in principle, cannot be reproduced with, say,
cannonballs.)

We could visualize a venue as a somewhat amorphous
marshmallow. One can gently squeeze it. The dimen-
sions will change, but the volume will stay more or less
constant.

An event is speci�ed by four parameters; x,y,z,t. But
a venue has an orientation, requiring more parameters.
We can specify the orientation as a rotation described by
a quaternian, q. q = a+ bi+ cj + dk where a,b,c,and d
are real, and i2 = j2 = k2 = ijk = −1.

If we consider a pure imaginary quaternian (a=0), it
can be shown[9] that given a vector v, we can rotate it
around q by eqθve−qθ. This a rotation by 2θ (showing
the 720 degree symmetry displayed by fermions).

Perhaps a more intuitive exposition can be given using
a spinor (spinors are isomorphic to quaternians).

Again consider our marshmallow model of a venue.
Take a pencil and stick it into one side of the marsh-
mallow.

By moving the eraser end of the pencil (acting as a
vector), we can change the orientation of the venue. But
we can't attain every possible orientation. In order to
achieve that, we need to rotate the pencil around its axis.
The pencil is no longer a vector as vectors can't rotate
around their axes. With our pencil, we can indicate that
axis rotation by a�xing a '�ag' to the eraser end.

What we have now is the real representation of a
spinor,

consisting of four parameters as per the diagram[10].
However it does not show the 720 degree symmetry. (Af-
ter a spinor rotates by 360 degrees, a binary variable
switches from zero to one, A further 360 degree rotation
returns the variable to zero.)

To replicate this, we need to consider the full complex
form of a spinor. (We should note that if a venue is not
interacting with any other venue, then the symmetry is
360 degrees.)
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Collecting the four parameters from the diagram
above,
a ≡
√
rcos(θ/2)ei(−α−φ)/2

b ≡
√
rsin(θ/2)ei(−α+φ)/2

If we rotate the spinor around the y axis by θ, for
example, we obtain[10],

(a
′

b′ ) = ( cos(θ/2),−sin(ϑ/2)
sin(θ/2),cos(θ/2) )(ab ) again exhibiting the 720

degree symmetry.
Note that the pencil represents a null vector.
Let us return to our marshmallows and see if we can

provide a graphic justi�cation for the 720 degree symme-
try.
Consider a venue/marshmallow interacting with an-

other via a band of force (analogous to lines of force,
below). If the venue were not interacting, the rotational
symmetry would be 360 degrees.

Now (rather like 'The Dirac Belt Trick'[11], we rotate
a marshmallow �rst 360 degrees, and then a second 360
degrees. (Note: a spinning venue doesn't leave holes in
space-time.)

As per the Dirac belt trick, we can, without any further
rotations, we can undo the rotations (as shown).

If the 'belt' is interpreted as a band of force, we can go
further. In the same way that two orthogonal beams of
light can pass through each other, a section of the belt
overlaying another section, can pass through the belt,
resulting in a zero degree rotation. Imagine the Dirac
Belt trick where one doesn't need to move the buckle
over or under the belt, because the 'force bands' do that
automatically (to go to a state of minimum energy.)
We propose that only venues holding mass can inter-

act. Venues are very small so they can't hold much mass,
certainly much less than any fundamental particle. But
a large cluster of interacting venues can act as a sin-
gle body, and the rotations thereof can be particle spin.
Classically, a particle with spin would need to have a
tangential velocity greater than the speed of light to give
the observed spin angular momentum. But here, venues
inside the cluster can rotate independently of the other
venues, so one could obtain the required angular mo-
mentum without exceeding c. (This is similar to quark
rotations inside a nucleon.)
So 720 degrees is equivalent to 0 degrees in a spinning

venue (or venue cluster).
As pointed out above, the pencil is essentially a null-

vector, so spinors exist on the light cone[10]. But, consid-
ering the stochastic nature of this model, the spinor can
point either forward or backward (and on average move
forward via zittebewegung/jittery-motion). This seems
to require a model for 'time'.

IV. TIME

As we are treating space stochastically, for covariance
we would like to treat both space and time similarly. To
do that, we then let the stochasticity apply to time as
well as space. This leads to an obvious problem: If a
venue contains mass, then migrations can position the
mass so it appears at multiple positions in space at the
same time. E.g. A venue containing mass could migrate
one unit backward in time, then one unit forward in, say,
x, then one unit forward in time, resulting in the mass
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being at both (x,y,z,t) and (x+1,y,z,t). Preventing this
necessitated a change in how we view time.
First, let's consider the idea of the 'world-line'. Moving

forward from the present, we are predicting the future.
And with quantum uncertainties (as well as with the in-
tervention of outside forces) that future cannot be pre-
dicted according to classical determinism. And if there
is no completely deterministic trajectory going forward,
then arguably neither is there one going backward in
time. The world-line then, seems to have limited util-
ity in quantum mechanics. Instead of a world-line, we
consider a 'world-double-cone', with its apex at 'now'
that widens as one moves forward or backward in time.
So while quantum mechanics lets us probabilistically pre-
dict the future it also lets us probabilistically predict the
past.
We suggest that for the quantum world, t is not the

(real component of the) fourth dimension, and that t is
an emergent quantity, if not merely a human construct
based on memory. The time coordinate, t, is a de�ned
quantity in the laboratory frame whereas we suggest (be-
low) another quantity, τ (tau-time) is appropriate in the
quantum domain.
We'd like to treat the time dimension, t, in the same

way as we treat spacial dimensions. But there is a big
di�erence between a space and time coordinate: Consider
the graphic below:

A particle (the black disk) starts at x=0, then moves
to x=1, then 2, then 3. (We are considering space-time
to be granular, hence the coordinate boxes.) There is a
single instance of the particle.
But time is di�erent:

A particle at rest is at t=0, then moves to t=1, etc.
But when it goes from t=0 to t=1, it also remains at
t=0. There are now two instances of the particle, etc. In
other words, a particle at a particular time is still there as
time advances, and the particle is at the advanced time
as well.
We de�ne then, a new quantity, τ (tau-time), that acts

much like the usual time, but in accord with the �rst
graphic, above, i.e. when the particle advances in time,
it erases the previous instance. That is to say, 'τ -Time
Leaves No Tracks'. Aside from �xing the problem of the
same mass appearing at an enormous number of di�erent
locations at the same time, τ will be seen to provide a
solution to the collapse of the wave-function problem.
As per above, we treat time and space similarly. And

so we will consider di�usion in space as well as in time.
Consider the graph (of 10000 points) below. (The ver-

tical and horizontal lines are artifacts of the graphing
software.) The graph represents the path of a a single
venue migrating in x and also in t, both with a measure

of 0.5, where the coordinate axes are laboratory x and
laboratory t.

Graph 'A'

And here is the graph with the same data as above, but
where 'time moves forward' is taken into consideration).

In either graph, there is an immediate problem:

Consider what these graphs signify: At any given
laboratory-time t, the same venue will (simultaneously)
be at a very large number of x coordinates. If there were
mass/energy at the venue, this would be very problematic
as causality and conservation of mass would be violated.

This problem has been addressed by introducing τ
(tau-time), and the 'τ-Time Leaves no Tracks' idea.

We can still consider Graph 'A', but we'll interpret it
di�erently: If we take any (horizontal) time (τ) as a 'now',
A venue (containing a mass) stochastically �its forward
and back in space, and forward and being stationary in
time. So that at 'now' there is one and only one parti-
cle. But where it is cannot be predicted. However, the
likelihood of the particle being at a particular x (+/- dx)
position is determined by the relative number of times
the particle is at that position. In the case of Graph 'A',
if we take as 'now' the τ -time slice at -0.2, for example,
we �nd (by examining the data) the following probability
curve:
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This is analogous to Ψ*
Ψ. But the graph is a construct.

It represents, but is not actually, the particle. When the
particle is measured by, for example, being absorbed in
a detector, it freezes (no longer moves stochastically). It
no longer �its through time and space so the graph 'col-
lapses' to the measured position. (that position is only
determinable by the measurement.) This is analogous to
the collapse of the wave function, but here (as the graph
was merely a mathematical construct) there is no collapse
problem.

There are a few points/speculations to be made about
measurements. First, to be a true measurement, there
must be a latch/�ip-�op/memory so that the '�lm' can-
not be run backwards. As an example, consider the two
slit experiment with electrons. If a measurement device
is placed at a slit, there is no interference pattern. But
when an electron goes through a slit, the orbital elec-
trons in atoms of the wall of the slit will be distorted
by the passage of the electron. This distortion is almost
a measurement. But when the electron passes through
the slit, the orbital electrons become un-distorted. The
interference pattern is still produced because there is no
latching of measurement information. A latch could be
some mechanical contrivance, or even human (or non-
human) memory. A fruit-�y observing at the slit will kill
the interference pattern, but only for the fruit-�y. We
think the process should be transitive; A human observ-
ing the fruit-�y's memory will cause the interference to
be killed for the human as well. A measurement forges
a connection between the thing being measured and the
measurer�forcing them to have the same relative now.
In the macro-world, virtually everything observes (via
photons) everything else, forcing that macro-world (or
a portion thereof) to have the same relative now. And
measurements forces time to have tracks. Not that time
is frozen, but looking back to a particular time will show
uniquely what the world looked like at that time. E.g., if
one were to do high-speed �lming of particle 'tracks' in
a cloud chamber, one would see the time-tracks.

Observation, a crucial part of a measurement, is con-
ducted via photons. We speculate that all measurements
are via photons (or, equivalently, by the electromagnetic
�eld)?

The time leaves no tracks concept implies that
there are multiple futures, and they all 'happen'.
(This is somewhat redolent of the Everett many-world
interpretation[12].) In this model (Granular: Stochastic

Space-time [G:SST]), an observation from the laboratory
will select a particular future (making a track).
In the above, if the particle were in a potential well

with perfectly re�ecting walls, the above graph would
(after a time) represent the probability density of �nding
the particle at a particular position in the well.
Again, the particle has always existed at only a sin-

gle venue, but the venue migrations happen roughly at
the rate of the Planck time, making the particle appear
(in some sense) to be at multiple positions at a particu-
lar time. Further, (because of the properties of Wiener
Processes) the particle appears to spread. If the particle
were not constrained by the well, (because time is moving
forward and back) the graph would evolve (spread) ar-
bitrarily rapidly. In that case the curve would represent
the relative probability density of �nding the particle at
a particular position. The curve then would represent
DeBroglie's 'ghost waves that guide the particle'[13].
(The jagged lines in the graph, as opposed to a smooth

curve, is an artifact of the binning algorithm in the soft-
ware.)
By Statement 1.4, the particle location becomes less

stochastic as mass increases. There is a point where the
stochasticity ceases. At that point, (since it is not mi-
grating back and forth through τ-time), one can use the
usual t-time. So, we consider t-time (and also causality)
to be an emergent quantity. In the rest of this paper,
when we do not reference history, we will simply use t
instead of τ. Also, as a result of measurement, when the
above graph 'collapses', the time is �xed, so measurement
causes time to 'leave tracks' causing τ to become t.

Now we can revisit Statement 3 : The metric probabil-
ity postulate, P (x, t) = −Ag.
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Consider the above diagram. (Note: time increases
downward.)
A particle is placed at the apex (more accurately, we

place a venue at the apex). It migrates stochastically
until it ends up in one of the numbered bins. A typical
migration path is shown in the diagram. If we repeat the
process a large number of times, the number of particles
in each bin (of the x coordinate) can be described by a
binomial distribution centered on bin 5. That binomial
distribution can represent the probability density of �nd-
ing a particle in a particular bin at laboratory time 10
(the bottom of the pegboard). As we increase the num-
ber of time steps, the distribution will �atten, until it is
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essentially �at. At that point the size of the invariant
volume element dVI =

√
−|g|dx1dx2dx3dx4 determines

the probability density. And that is the original version
of Statement 3.
In the diagram above, the bin underlines represent dif-

ferent volume elements at di�erent regions of the space.
A way of determining the probability densities is to count
the number of possible migration paths to a particular re-
gion. (The space-time is discrete so the number is count-
able.) The probability densities are proportional to those
numbers.
Consider the typical path shown above. We can repre-

sent it as follows:

t: +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x: +1 -1 -1 +1 -1 +1 +1 -1 -1 -1

Time increases by one unit at each transition.
At this point, the original version of Statement 3 still

applies.
But now let there also be di�usion in time, as well as in

space. We can repeat the pegboard analogy, but consider
the venue time rather than venue mass. We will of course
obtain the same probability distribution as previously.
The distribution will represent the probability density
of the quantum time having the value of the laboratory
time at laboratory time equal to 10 (the bottom of the
pegboard).
The peak of the distribution curve corresponds to the

peak on the previous curve. Accordingly, the probabil-
ity density for x to be at 5 (the middle of the pegboard)
must be that previous distribution value at x=5 times the
quantum time distribution at x=5. But the two distribu-
tions are the same, so the probability density is the square
of the distribution. The same argument applies for any
point along the base (x coordinate), i.e. the probability
density for x is the square of the binomial distribution.
So, again considering the invariant volume element,

this means that the probability densities are the square
of the values of the original Series 3 values, i,e, P (x, t) =
−A|g|.

Complex Time

'Time' can be considered to have two characteristics:
a coordinate (τ) from minus to plus in�nity (or from the
big bang to some end of time), and a sequencer (υ), an or-
dering schema as described by H. Reichenbach[14]. deter-
mining the direction and 'speed' of time. We'll consider
the sequencer function to be described by the imaginary
(rolled-up) component of time (the phase).
The imaginary component acts much like a separate

(time-like) �fth dimension. This is vaguely similar to
the idea that there is a �fth dimension which is mass,
as proposed by Mashhoon & Wesson[16] and the Space-
Time-Matter consortium[17].
We de�ne Total (complex) time T.
T=τ+iυ.

τ is the 'Time Leaves no Tracks' version of t.
υ is the imaginary component of time. It is rolled-up

at the Planck scale so in the macroworld T is indistin-
guishable from τ .
(Note: 'complex time' is not an entirely new idea, e.g.

S. Hawking[18].)
Letting τ and υ be represented by a real and imaginary

coordinate axis, we de�ne Time-length (duration) , Td=√
τ2 + (iυ)2.
A property of time is that it (usually) advances. As υ

is a component of time, we assume it advances as well.
But υ is rolled-up, so, as it continuously advances, it
continuously reaches a maximum and rolls over to zero.
We represent this as a frequency.
Masreliez[19] and Mukhopadhyay[20] among others

have suggested that a mass oscillates at its Compton
frequency, (and without such oscillation, there would
be no DeBroglie wave, or indeed a Ψ). We accept that
suggestion. The Compton frequency ,fc, is de�ned as

fc = mc2

h Hz.
We �rst convert Hz to cycles/Planck time.
fc√
hG
c5

= mc2

h

Now we'll convert m from kilograms to Planck mass,
mp.

fc√
hG
c5

= mc2

h

√
hc
G

Simplifying, we have fc = mp.
This says that if the mass in a venue is zero, (from the

viewpoint of the laboratory observer) the υ time does not
advance (which allows the creation/annihilation mecha-
nism to work). The more mass in a venue, the more
'rapidly' υ advances until at a maximum venue mass of
one Planck mass, the frequency has increased to one cycle
per Planck time. And in that latter case, every Planck
time advances υ to the same angular point, which is then
indistinguishable from a frequency of zero. In short then,
we associate mass with a frequency (the Compton fre-
quency) of the imaginary time component.

V. THE DIFFUSION AND SCHRÖDINGER
EQUATIONS

Now that we've introduced complex time, we'll use
the non-relativistic di�usion equation to derive the non-
relativistic wave equation (the Schrödinger equation).
The G:SST model is essentially a description of di�u-

sion of space-time. As such, one might think that the

di�usion equation, ∂ϕ∂t = D ∂2ϕ
∂x2 would be part of that de-

scription. This, the one-dimensional di�usion equation,
is easy to derive.
First consider the '�ux' ,j, (in the x direction) of a

quantity through a section perpendicular to x (per unit
area and per unit time). We ignore the bulk motion of the
carrier (assume �uid). And let ϕ be the 'concentration'
of the quantity.
We can see that ∂ϕ

∂t = − ∂j
∂x .
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We can also see (Fick's �rst law [21]) that j = −D ∂ϕ
∂x

where D is the Di�usivity coe�cient.
(D is a proportionality factor between the di�usion �ux

and the gradient in the concentration of the di�using
substance. The higher the levels of di�usivity of a certain
substance to another, the faster the di�usion rate by both
of the substances. It is given the unit of length squared
per unit time.)

So ∂ϕ
∂t = ∂

∂x

(
D ∂ϕ
∂x

)
. And if D is constant, that yields

the above di�usion equation,
∂ϕ
∂t = D ∂2ϕ

∂x2 .
The equation is very similar to the (potential free)

one dimensional Schrödinger equation, but with several
signi�cant di�erences: The 'di�usion constant' in the
Schrödinger equation is complex, and the interpretations
of the solutions di�er. In the Di�usion equation, the solu-
tion, ϕ, (the concentration) can trivially be interpreted as
a probability density (of a test particle having di�used to
another position in space), whereas with the Schrödinger
equation, it is the square of the solution that corresponds
to the probability density. And signi�cantly, the di�usion
equation, while it describes di�usion in space, does not
describe di�usion in time, nor does it consider the e�ect
of the rolled-up imaginary time component.
We'll attempt now to include di�usion in time to see

how that e�ects the solution of the di�usion equation.
We start by observing that the probability of a particle

starting at x0 = t0 = 0 arriving at a point x = x1 is
proportional to the number of ways the particle in a �xed
number of steps, n, (corresponding to n time increments
in the laboratory frame) can arrive at point x1. And we'll
calculate it from the 'laboratory' frame where time is
granular but not stochastic. As an example, consider
the following diagram. The pegboard represents where
a 'particle' will land when 'dropped' from the top of the
pegboard.

First we consider the cases where there is no time dif-
fusion.
The jagged line in the above diagram represents a typ-

ical path of the ball at the top of the diagram dropped
down on the 'pegboard'. If many balls are dropped, the
balls will fall into bins as above, and their numbers in
each bin will result in a binomial distribution. (The Bi-
nomial distribution is equivalent to the Gaussian distri-

bution when the number of axis points is large.)
In the diagram, we can consider the height the time

axis (increasing downward) and the horizontal the x axis.
The top ball then is initially at t=0, x=5. As it falls, at
each time interval (when it encounters one of the pegs),
it can move either one x unit to the left or right.
We can represent the typical path above as follows:

t: +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

x: +1 -1 +1 +1 -1 +1 -1 -1 +1 -1

Again, summing over all possible paths (with time in-
creasing one unit per point of direction determination),
the probability (here, the binomial) distribution results.
Now if we consider also di�usion in time, the top row

of the table will no longer be all +1. The numbers in the
top row will have the same number of variations as in the
second row. And, as before, we us assume isotropy, i.e.,
the distributions are the same for x,y,z, and t. And so
the number of paths will be the square of the number of
paths of the non-time-di�usion paths. And so the proba-
bilities of (the balls being in a particular bin) in the time
di�usion paths will be the square of the number in the
non-time-di�usion paths. In other words, the solution,
ϕ, of the di�usion equation represents the square root of
the probability density. (In our Brownian motion model
where only one direction at a time migrates, the square
property holds over three dimensions and not just over
the one-dimension case above.)
Now, having included time-di�usion in the (interpre-

tation of) the di�usion equation, we turn our attention
to including the possible e�ects of complex time.

First regarding ∂ϕ
∂t = D ∂2ϕ

∂x2 , Nettel in 'Wave
Physics'[22] says: �If we are to have a solution to a �rst
order di�erential equation, that solution will have to be
an exponential function rather than a trigonometric one.
Moreover, to avoid having the solution go to in�nity or
be exponentially damped as t goes to either plus or mi-
nus in�nity but rather to get waves, the exponent in the
solution will have to be imaginary. As the reader can
easily check (if we include i in the equation), we get the
solution ψ(x, t) = ei(kx−ωt).�
The di�usion equation is for di�usion in 3-space (al-

though we've interpreted it as a di�usion also in time).
But how do we include the rolled-up, imaginary time.
Taking guidance from the above, we will again introduce
another coordinate axis, an imaginary-time axis perpen-
dicular to the real-time axis.
Imaginary time is rolled-up. It's coordinate then con-

tinues to increase, rolling around to zero, etc. This gives
a complex frequency eiυ, where we can let υ be kx−ωτ .
So, now having an imaginary axis for υ-time, we'll

again de�ne a 'total time' T which will be the combi-
nation of τ -time and υ-time,
T = τ + iυ.
∂T
∂t = 1 and ∂T

∂υ = i

We have then, ∂ΨdT = ∂Ψ
∂τ ∗

∂τ
∂T ∗

∂Ψ
∂υ ∗

∂υ
∂T .

Substituting gives, ∂Ψ∂T = ∂Ψ
∂τ ∗

∂Ψ
∂υ ∗ (−i).
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What can we say about ∂Ψ
∂υ ?

As υ is periodic, then so to is ∂Ψ
∂υ , and the period is at

the Planck scale.
Now the Di�usion equation, though working in the

macro (and to some extent) quantum domains, might
not be expected to work at the Planck scale. We 'blur'
the time in the Di�usion equation (i.e., take over a short
(but not too short) time, then ∂Ψ

∂υwill average out to a
constant. And as the solution depends on details of the
physical situation, that constant, here called k, is (at
least most all of the time) not zero.
We will use the 'total time' T, rather than τ in the

equation. So now, we have, ∂Ψ∂T = ik ∂Ψ∂τ and the Di�usion

equation becomes, −ik−1 ∂Ψ
∂T = D ∂2ϕ

∂x2

Of course, we could have just used Schrödinger's ar-
gument (about needing i for there to be waves) to arrive

at his equation. but once we have included i, in i∂ϕ∂t the
equation, though very useful, is unphysical. The above
argument is intended to provide a physical (i.e. geomet-
ric) description.

VI. CREATION AND ANNIHILATION OF
VENUES

An issue with a space-time of granules with constant
volumes rather than with points is how to handle an
expanding or contracting space-time or region of space-
time. We need a mechanism to create and annihilate
empty venues (venues not containing mass) without leav-
ing gaps in the space-time manifold. We suggest the fol-
lowing mechanism:
As a part of the universe contracts, a venue's 4-volume

must also contract. Since the contraction is a 'time' pro-
cess, we suggest that the venue contraction is in the (real)
time component. To keep the volume element constant,
as the real time component contracts, the imaginary time
component expands. (We've previously shown that in the
absence of mass υ-time is static.)
The following diagrams show coordinates τ and υ (the

imaginary time component), and a rectangular solid rep-
resenting a venue.

Again, as the τ coordinate of the venue contracts, to
preserve the volume, υ must expand. At some point,
the contraction coordinate, τ, approaches zero while υ,
approaches its circumference.

At the point where the contraction reaches zero, the υ
component 'rolls over' to zero. The volume is then zero
and the venue blinks out of existence.
Creation of venues is similar: When a mass-less venue

expands, it increases the real time coordinate. The imag-
inary time component decreases to compensate. The

imaginary time component rolls over to give a high value
to the component. The venue volume is then is far too
high. The venue then splits, giving each new venue half
the original real time component and half the original
imaginary time component. As the expansion increases,
the imaginary time components decrease as the venues'
real time component increase, moving the two new venues
towards equilibrium.
At no point then, is the space-time manifold not fully

tessellated.

VII. VENUES IN SPACE-TIME

A venue has, as previously postulated, a constant vol-
ume. Far from a mass, the volume is symmetric, its di-
mensions being (arguably) the smallest possible, which
we take to be the Planck length (and time). So a venue
has a volume of a Planck length Planck-length cubed
times a Planck-time. And since the venues migrate across
the space-time, we can ask the distance di�erence be-
tween a venue before and after a migration (resulting
from the exchange of two adjacent venues). We postu-
late that this is the minimal possible distance. If there
were no migrations that distance would be zero. We take
it that the distance is still zero, but in Minkowski space.
In other words, a migration's change of 4-position equals
zero. So, migrations occur on the forward or backward
light cone (as we noted earlier, spinors live on the light
cone).

In di�erential geometry, Loveridge[23] has pointed out
that the Ricci tensor governs the evolution of a small
volume element (i.e.

√
−g) as it travels along a geodesic.

Following Loveridge, assume a very small spherical vol-
ume of dust o centered on point xµ(0) moving along a

direction Tµ. (Tµ ≡ dxµ

dτ ). One has that
D2

dτ2 o−
D2
flat

dτ2 o =
−oRµνTµT ν , where D is the covariant derivative along
the path. The equation applies for both three and four
dimensional volumes. The reason for subtracting the sec-
ond term is that the choice of coordinates could give an
apparent (not intrinsic) change of volume.
In Special Relativity, the Ricci tensor is zero. Which

means that the volume element,
√
−g, is invariant. (For

Special Relativity, this is easy to see: In a Lorentz trans-
form, as the length shrinks, time expands to leave the
volume unchanged.) In General Relativity, in empty
space-time, while the Riemann tensor is not zero, the
Ricci tensor is. So, in empty space (i.e. exterior to a
mass), the volume element is also invariant, i.e. Rµν = 0.
This expression is the Einstein �eld equations where the
stress-energy tensor is identically zero (which was ob-
tained merely by requiring that the volume element is
constant).
In a mass though, the Ricci tensor is not zero so

the volume element is not constant. Furthermore, our
stochastic space-time quantum mechanics model postu-
lates that the volume element (squared) is not constant
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and is proportional to Ψ*Ψ. In order that the volume
element does remain constant, we postulate (a 5-D vol-
ume and) a �fth dimension that is zero except in a mass.
This is a proposal similer to that made by the Space-
time-matter Consortium[17]. (Were the volume element
not constant, it is hard to see how to tessellate space-
time.) So that there is no measurable e�ect on 'dis-
tances', we require that this �fth dimension be rolled-
up at the Planck scale. This seems consistent with the
Kaluza-Klein formalism[24] to bring electromagnetism
into geometry.
We explore now whether the model might possibly re-

produce the Schwarzschild metric (without formally solv-
ing Rµν = 0). [Note that we have already reproduced the
metric by requiring a constant volume element.]
A mass generates 'curvature', that is to say, a deforma-

tion of venues. While to a distant observer the venues are
deformed to be spatially concentrated around the mass,
to the venues near the mass there is no observable ev-
idence of such concentration as the space-time itself is
'deformed' (by way of the venues) so any 'observer' in a
venue would be unaware of the deformation.
We'll introduce another variable: 'Indeterminacy', the

probability that a migration will actually happen.
As with 'Measure', Indeterminacy is implemented with

a 'coin �ip'. And we'll suggest that outside of a mass, the
Indeterminacy decreases with decreasing distance from
the mass/energy (i.e. space becomes more determinate
as one approaches a mass). It will be seen that 'Measure
mainly in�uences quantum e�ects while Indeterminacy
in�uences relativistic e�ects.
The space-time Indeterminacy decreases as one ap-

proaches a mass. But this is under-speci�ed; masses can
have di�erent densities, so we wouldn't expect the Inde-
terminacy to necessarily vanish at the surface of a mass.
We suggest however, that venues can migrate into a mass
until, at some point the Indeterminacy vanishes. Yet we
do not want masses to be pulled apart by the space-time
so we'll posit that migrations of adjacent venues each
containing mass must stay adjacent. And in that case,
one could consider each of those venues having zero In-
determinancy compared to the others.
We'd expect that at some distance, Rs, from the center

of the mass, the venues, would be trapped, i.e. unable
to migrate away. This is highly suggestive of the event
horizon of the Schwarzschild solution. We'll assume Rs
(the Indeterminacy radius) and the Schwarzschild radius
are the same.
Consider space-time with a single spherical mass m

with an Indeterminacy radius Rs. As one increases the
number of coin �ips towards in�nity, the time interval
decreases to an in�nitesimal, dt. For a granular space-
time though, the number of coin �ips isn't in�nite and
the time interval, though small, isn't in�nitesimal. Once
again, Indeterminacy is the probability of, given that the
venue is at a position with that Indeterminacy, the venue
migrates from that position at the next coin �ip.
Since migrations slow as venues approach a mass, in-

determinacy then, expresses the slowdown in time and
the compression of space as the venue approaches Rs.
[As we'll be frequently employing Indeterminacy, we'll
represent it by the letter 'u' (from the German word for
indeterminacy, Unbestimmtheit)].
As a venue migrates in towards Rs, u decreases. The

probability density of the venue being at a particular
radial distance, r, therefore, increases. This results in
venues piling up as they approach Rs. But as the venues
'tile' space-time, the only way they can pile up is by way
of curvature (i.e. squishing in the radial dimension and
compensating by lengthening in the real-time τ dimen-
sion): To a distant observer, the venues would decrease in
size and migrate more slowly which is to say time would
slow down.
Recalling (see Statement 2 ) that the contravariant dis-

tance to a black hole is
∫ r̄

0
dr = r̄, while the covariant

distance is
∫ r̄

0
d( r

1−2Gm/r ) =∞, we (in Cartesian coordi-

nates) associate the contravariant distance with the num-
ber of Planck lengths from the observer to the point of
observation and the covariant distance with the number
of venues from the observer to the point of observation.
This implies that local to the particle, space-time is

not stochastic. And there, a deterministic Lagrangian
can be de�ned. That 'local to the particle space-time'
coordinate system is covariant (as it is moving with the
particle). From another coordinate frame (e.g. the labo-
ratory frame) measurements on that local frame are sub-
ject to the intervening stochasticity, and because of that
stochasticity, the measurements are also stochastic, and
the measurements are contravariant, as can be seen by
the raising of the covariant coordinates by the stochastic
metric tensor).]
Now, near r = Rs, space-time becomes Q-classical (no

quantum e�ects, as opposed here to R-classical: no gen-
eral relativity e�ects) so a metric makes some sense.
Since the Measures (bias in the coin �ips) are presumed
not to be a function of location, we take the simplifying
assumption that the metric tensor does not depend on
the Measures, but only on the Indeterminacy, u. And,
for the moment, we'll ignore how a venue migrates in a
mass (when Rs is less than the mass radius).
Since for a mass, we have spherical symmetry, we can

let, ds2 = −f(u)dt2 + g(u)dr2 + r2dΩ2 where f and g
are two (to be determined) functions of u, and dΩ2 ≡
dθ2 + sin2(θ)dϕ2 is the metric of a 2-dimensional sphere.
Consider f(u) and g(u). We wish dt to lengthen and dr
to shorten as u decreases. ds can be thought of as the
time element in the frame of the venue. So, for example,
as u goes to zero, a big change in t will result in a small
change of s, and a small change in r results in a large
change in s. The simplest implementation of the above
suggests that f(u) is just u itself and g(u) is u−1 i.e.
ds2 = −udt2 + u−1dr2 + r2dΩ2.
Now, as to u, note that,
at r = in�nity: u = 1,
at r = Rs : u =0, and
for r < Rs : u can become unphysical (u<0).
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The simplest expression for u satisfying the above is,
u = (1− Rs

r ) which gives us

ds2 = −(1− Rs
r )dt2 + (1− Rs

r )−1dr2 + r2dΩ2

We have of course, as described earlier, equated the
Schwarzschild radius with the Indeterminacy radius.

This is the result Karl Schwarzschild derived from the
General Relativity �eld equations. One can easily go a
bit further by noting that Rs can only be a function of the
mass, and �nding a product of mass with some physical
constants to give a quantity with dimensions of length
suggests Rs = kGm

c2 where k is a constant. So we now
have (setting units so that c=1),

ds2 = −(1− kGms
r )dt2 + (1− kGms

r )−1dr2 + r2dΩ2.

We still need to determine the value of the constant,
k. But this is known territory. Rs was derived (by Karl
Schwarzschild and others) by requiring the metric to re-
produce the Newtonian result at large values of r and
small values of mass, and we need not reproduce the
derivation(s) here.

VIII. THE CONSTANCY OF THE SPEED OF
LIGHT

We consider that the Granular: Stochastic Space-time
(G:SST) theory is (or can be made to be) a super-set
of the Lorentz Aether Theory (LAT) where the aether is
space-time itself (speci�cally, the 'grains'/venues making
up the space-time). By doing so, we can appropriate the
LAT derivation of the constancy of the speed of light.
(We feel that any theory of space-time should contain an
explanation of that constancy.)

As is widely known[25], the Michelson-Morley exper-
iment failed to �nd the Lorentz aether, thus seemingly
invalidating the Lorentz Theory[26]. Less widely known
perhaps, is that the second version of Lorentz's theory
(with H. Poincairé as second author) reproduced Ein-
stein's Special Relativity (ESR) so well that there is no
experimental way to decide between the two theories[26].
The second LAT theory di�ers from the �rst in that it
posits that the aether is partially dragged along with
a moving body in the aether. This is akin to frame
dragging (e.g. the Lense-Thirring e�ect) in the Kerr
Metric[27]. We will posit frame dragging in G:SST as
well, i.e. the dragging along of venues by a moving ob-
ject. (Note that the Kerr metric itself 'breaks' the conti-
nuity space-time. If it didn't, the frame dragging would
'wind-up' space-time, and it doesn't[28]. One might take
this as an argument for a discrete space-time such as in
G:SST.)

Although LAT derives the constancy of the speed of
light whereas ESR takes it as a given, there are objections
to LAT:

There is an 'aether', the makeup of which is not spec-
i�ed.

There is a privileged, albeit unobservable, reference
frame where the aether is at rest (isotropic).

The (constant) velocity of light results from electro-
magnetic interactions with waves (and matter), and not
from properties of space-time.
G:SST can address these issues: As for the makeup of

the aether, G:SST says the aether is the space-time itself.
And in 1922, Einstein himself said essentially the same
thing.
[Note: Einstein (translation)-�Recapitulating, we may

say that according to the general theory of relativity
space is endowed with physical qualities; in this sense,
therefore, there exists an ether. According to the general
theory of relativity, space without ether is unthinkable;
for in such space there not only would be no propagation
of light, but also no possibility of existence for standards
of space and time (measuring-rods and clocks), nor there-
fore any space-time intervals in the physical sense. But
this ether may not be thought of as endowed with the
quality characteristic of ponderable media, as consisting
of parts which may be tracked through time. The idea
of motion may not be applied to it�]
A privileged reference frame is also not an issue in

G:SST. The stochastic nature of space-time makes it im-
possible to de�ne a global rest frame. But we can consider
a local privileged reference frame where the correlation
region (the region where we can consider a background
privileged frame) is large compared to the region where
we are doing experiments. And the Unruh e�ect[29] im-
plies that Lorentz frames are privileged.
The constancy of the speed of light not a result of the

properties of space-time, can be addressed as well. While
there is nothing wrong with the LAT derivation of the
constancy, we can give a qualitative geometrical model
as an alternate way of thinking about the constancy:
We suggest that frame-dragging occurs whenever a

mass (non-zero rest mass) moves through space-time.
Photons, as their rest mass is zero, move without frame-
dragging. This (as we will see) allows an argument show-
ing the constancy of c.

Consider an object (here, the black circle) moving at
high speed in the direction of the arrow. The object
moves through the venues (here represented by the white
rectangles). But due to venue frame dragging at high ve-
locities, the venues are pushed ahead of the moving ob-
ject. But venues are constant in volume, and the only
way that they can 'pile up' is by contracting in the di-
rection of motion (and expanding in other dimensions).
The object must move through these venues. If we in-

crease the object's speed, the contraction also increases.
To an external observer (making contravariant observa-
tions), the objects increase in velocity decreases until it
stops completely (where the venue dimension in the di-
rection of motion goes to zero). This establishes that a
mass has a limiting velocity.
We have postulated then, that a particle with non-

zero rest mass drags along (empty) venues as it moves



13

Photons, having zero rest mass, do not drag venues.
So, if a particle moving with respect to the local priv-

ileged reference frame emits a photon, the photon does
initially travel with a velocity of c plus the velocity of
the particle. But the particle is dragging venues. As the
venue contracts in the direction of motion, since its vol-
ume is constant, it expands in the time dimension. And
this makes the time a photon takes to pass through the
venue constant. The photon has more venues to pass
through than it would have if the particle were not mov-
ing. Because of the additional distance (i.e. number of
venues) the photon needs to travel, its speed at the de-
tector, would be a constant, which is to say c.
If the detector were extremely close to the emitter (on

the order of Planck lengths) one would measure a value of
the velocity greater than c. This length scale is too small
to measure so the velocity greater than c is unobservable.
The G:SST model violates Galilean Relativity in that

motion is not (in this model) relative. LAT violates it as
well. This is allowed (in both cases) by having a privi-
leged reference frame.
With G:SST then, there is a new phenomenon at play:

'Velocity Induced Frame-dragging. So, in addition to
frame-dragging being generated by (a rotating) mass (or
acceleration), it is also generated by an object's linear
motion in the space-time aether. One way of perhaps
justifying this is to consider the conservation of energy,
as the sum of potential and kinetic energy. The former is
gravity dependent while the other is motion dependent.
Since gravity yields curvature, perhaps velocity does as
well. Potential then, could be considered a result of
Mach's Principle. (Linear frame-dragging, though little
known, was discussed by Einstein in around 1920.[30, 31])
[Frame-dragging has much in common with curvature,

speci�cally Schwarzschild curvature. We might therefore
expect the metric tensors to be similar. Indeed, without
doing any calculations, we can guess at a metric for the
moving object. Consider the g11 (the radial component
of the Schwarzschild metric) (1 − 2Gm

rc2 )−1. The velocity
induced model is not a function of mass, so m and G are
unlikely to be in g11. However, note that Gm/rc2 has

units of v2/c2, so we might expect g11 to be (1− k v
2

c2 )−1

where k is a constant. We would expect a (coordinate)
singularity to occur when v = c, so that would make
k = 1. A similar argument can be made for g00, the time
component.]

IX. GEOMETRIC PROPERTIES OF MASS

The G:SST model associates mass with a non-zero �fth
dimension, moving the concept of mass into geometry.
The principal function of mass is (in the model) the

stabilization of space-time, i.e, one would like the �uctu-
ations in/of space-time not to rip apart masses. In par-
ticular, a mass causes adjacent mass-containing venues,
because of stabilization, to act as a single larger venue
(which is why E(mass)=hf works).

In empty space, in particular, the venues' dimension
coordinates �uctuate (and this is required for the cre-
ation and annihilation of empty venues). The �uctuating
mass can be associated with vacuum energy �uctuations
and metric tensor �uctuations. The idea of metric ten-
sor �uctuations was the initial idea behind the stochastic
space-time theory (the precursor paper).
In (the usual interpretation of) General Relativity,

mass causes 'curvature'. But what is curvature? Ar-
guably, it is merely an artifact of describing space-time
with one too few dimensions. For example, if a (two di-
mensional) ant were wandering on the surface of a sphere,
he could measure curvature and determine that his en-
vironment was non-Euclidean. A three-dimensional (ig-
noring time) being would say the space(-time) was Eu-
clidean and the ant was not able to see that third di-
mension. G. 't. Hooft has made a similar argument, as
has J. Beichler. (And, of course, 'Campbell's Embedding
Theorem'[32] states that any n-dimensional Riemannian
manifold can be embedded locally in an n+1-dimensional
Ricci-�at manifold.) But for us, rather than using a full
extra dimension to explain curvature, we describe cur-
vature as an artifact of the dimensional contraction or
expansion of venue coordinate values. A feature of this
granular model is that some phenomena attributed to the
large-scale structure of space-time (e.g curvature) can be
explained by extremely small scale phenomena (e.g. com-
pression and expansion of venue dimensions).
Graphically, the left image below represents the tra-

ditional 'gravity well' curvature representation, and the
right image is the left image but looking directly down
from above.

The right image is still a three-dimensional represen-
tation. But, in the G:SST interpretation, it is a two-
dimensional image, the 'depth' being due to the com-
pression of venues. We have reduced space-time by one
dimension (without losing information) and since there
is no curvature, the space-time (arguably) is �at. (This
is a kind of 'holographic principle'.)

Note: As previously noted, for the motion of a mass,
the mass doesn't become 'fuzzy', but (because of migra-
tion external to the mass) its location does begin to blur
as the mass decreases below the Planck mass. This re-
sults in an e�ectively larger mass diameter.
A quantum particle apparently spreads. So, in some

sense, the mass is e�ectively spread through the space-
time. And the �eld equations act on the spread mass.
And (since inside a mass, the Ricci tensor is not zero) the
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space-time near a quantum particle has a non-constant
real 4-volume element.
In short then, there is relationship between a particle's

mass and its radius; the higher the mass, the shorter the
radius.
While Newton and Einstein described the action of

gravity, a mechanism for gravity was not provided.
G:SST though, does suggest a mechanism: When venues
are near a large mass (from outside the mass), their 3-
volumes are compressed. The constancy of the volume
is maintained by a corresponding expansion of the time
coordinate.
The space compression continues when a venue is inte-

rior to the mass. Here the �fth dimension important and
is non-zero. As one approaches The Schwarzschild radius,
(at least one of) the venue's dimensions approaches zero.
As it reaches zero, the venue thus annihilates. A venue
then comes in to take its place. So there is a continuous
stream of venues approaching the Schwarzschild radius
and annihilating. Venue creation in the space-time at
large makes up for the loss of venues. If a venue holds a
test mass, it will fall in toward the surface of the large
mass. (This is largely because of the mass-free venues
'in front' of that venue.) The speed (as a function of
the radial distance from the center from the large mass)
can easily be calculated (and the result of the calculation
compared with the Newtonian result):
Consider a spherical shell at some distance from a mass

(M). As the venues at the shell migrate in toward the
mass, the number of venues at the shell do not change,
so as the shell's radius changes the venues must compress
in the two dimensions perpendicular to the radial direc-
tion. To keep the volume constant, the real time compo-
nent (the imaginary-time component is too small in scale
to have any e�ect here) must expand as the square of a
coordinate perpendicular to r (because of the two space
coordinate compressions). Venues are being annihilated
at a constant rate. So if one uses a stopwatch to monitor
how fast a venue (containing a test particle) is falling to-
ward the surface of the mass, it will appear to go faster
as it approaches because of the slowing of the stopwatch.
So the distance covered by the falling venue will go as
the square of the rate of the slowing of time. This is
to say that, v2 = constant

r . There is also a contraction
of the venue in the r direction, but that is a relativistic
e�ect that we will ignore for the moment. The velocity
equation from Newtonian physics is, v2 = 2GM

r . The
constant above is (related to) the rate at which venues
are annihilated, so we can associate that rate with 2GM
which gives a connection of G:SST to 'physics'. Further,
since the Newtonian description of an object falling un-
der the in�uence of gravity is a conversion of potential to
kinetic energy, the G:SST derivation of the fall of gravity
provides the link to kinetic and potential energy. More
importantly though, it might explain the concept of en-
ergy in terms of G:SST.

To summarize: The volume, V, of a sphere is 4πr3

3 .
dV
dr = 4πr2. But venue volume is invariant. So as the 3-

volume, V, decreases proportionally to r2, the real-time
component must increase proportionally to r2. However
the r coordinate of a venue decreases as the venue ap-
proaches a mass, and the decrease is non-linear. So far
from a mass, in the Newtonian domain, a venue's r coor-
dinate is essentially constant. So that leaves t to increase
proportionally to r2.
Venue creation to replenish the venues lost to annihi-

lation will happen over a large region of space-time. But
one would expect that the closer one is to the mass re-
sponsible for the annihilation, the higher the rate of venue
creation. The venues thus created would then cause a
very small deviation from the inverse square law, and
also from the General Relativity predictions. Because of
the increase of venue creation as one approaches a mass,
one would expect the deviation to be most evident with
a test mass in a highly elliptical orbit around the mass
responsible for the annihilations.
Note: Carlo Rovelli states that relativity's the slowing

of time is the source of gravity[33]. G:SST says the anni-
hilation of venues is the source of gravity and the rate of
fall due to gravity is determined by the slowing of time.

X. HIGHLY SPEULATIVE NOTES ON
QUIDDITY, ENTANGLEMENT, AND THE

TWO-SLIT EXPERIMENT

A. Information & Quiddity : Pilot-waves &
Entanglement

There are two forms of information at play: one of
which is restricted to travel at no greater than the speed
of light and the other (e.g. collapse of the wave func-
tion, entanglement and the like) not so restricted. These
are very di�erent processes, and so using the word 'infor-
mation' for the both of them is confusing. We'll reserve
'information' for the �rst case, and 'quiddity' for quan-
tum information. (Quiddity means the inherent nature
or essence of something. And the �rst three letters, qui,
make it easy to remember QUantum Information.)
Information is carried by photons or mass (energy).

Quiddity, as it provides instantaneous signal transport
(and therefore can also travel backward in time), can
not be carried by energy. In Granular Stochastic Space-
time theory then, what can carry quiddity? The only
thing left is empty venues. While a venue has an invari-
ant 5-dimensional volume, it can vary in its individual
dimensions. As described earlier, the 4-dimensional vol-
ume is related to the probability density, Ψ*

Ψ. So that
probability density is a type of quiddity.
Entanglement

Bell's theorem[34] requires that to have entanglement,
we must abandon 'objective reality' and/or 'locality'.
Dropping locality means that things separated in space
can in�uence each other instantaneously. Dropping ob-
jective reality means that a physical state isn't de�ned
until it is measured (e.g. is the cat dead or alive?).
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Weak measurement experiments[35�37] building on the
work of Yakir Aharonov and Lev Vaidman[38] strongly
suggests that there is objective reality in quantum
mechanics[38, 39] (in contradiction to the Copenhagen
interpretation of quantum mechanics). By objective re-
ality, we mean a particle does have a path (blurred some-
what by space-time �uctuations) regardless of whether it
is being observed or not.
We're left then, with non-locality. G:SST is non-local.

The issue, of course, is how to have non-locality whilst
not violating Einstein's prohibition of information trav-
eling faster than light. We slightly re-interpret that pro-
hibition by positing that it is energy (as opposed to in-
formation) that can't travel faster than light.
The usual way of thinking about entanglement is that

a measurement the state of one of the entangled par-
ticles forces the state of the other. An alternate ap-
proach (which we adopt) says that both particles are
synchronously �itting (at the Planck time scale) between
their allowed states. When one particle's state is mea-
sured, it freezes the �itting of it and also the other par-
ticle.
The mechanism for the freezing is unknown, but pos-

sibly something like the following:
Empty venues carry no energy, and so can migrate

through space-time arbitrarily rapidly. The hope then
is that we can �nd a way that empty venues can carry
quiddity. We suggest though, that through some un-
known mechanism (which is why this is a suggestion and
not a theory) that a number of empty venues can be
bound together can migrate collectively through space-
time (e.g. spiraling through space-time) they would then
carry a more complex quiddity. This is rather like the
DeBrogli 'ghost waves'. So, for instance, two created en-
tangled particle would carry this quiddity with them as
they spread out (as a link between them). And through
another unknown mechanism, a measurement of one par-
ticle forces the state of the other and then dissolves the
link.
Entanglement is a process seeming to require superpo-

sition plus faster than light quiddity, and G:SST provides
for both.
The aim in the previous was not to provide a the-

ory/mechanism for entanglement, but to argue that
Stochastic Granular space-time Theory allows for it.

B. The Delayed-choice Two-slit Experiment

The diagram shows the 'delayed choice two-slit exper-
iment': A low-intensity source directs electrons to a box
containing two slits (slit 1 and slit 2). The beam inten-

sity is such that there is only one electron traveling in the
box at any time. As expected, an interference pattern is
gradually produced on the screen at the back of the box.
If a particle detector is introduced at slit 2 to determine
which slit an electron passed through, then there will be
no interference produced. One can arrange that the de-
tector is optionally turned on only when the electron has
passed by slit 1. If the detector is on at that point, then
again, there will be no interference pattern produced. So
it seems that when the electron gets to slit 2 and �nds
that the detector is on, it goes back in time to tell the
electron to go through, or not go through slit-1.
How does the Granular Stochastic Space-time model

possibly explain this?
First, we introduce the concept of an 'ephemeral' mea-

surement: An electron has an associated electromagnetic
�eld. As it goes through a slit, that �eld will interact
with the electrons in the wall of the box at the slit.
The box electrons then can tell if an electron has passed
through a slit. And this could be considered a measure-
ment; the box electrons could be considered a particle
detector. But the interference pattern still occurs in this
case. The di�erence is that the box electrons measure-
ments are ephemeral; After the moving electron passes
through the slit, the box electrons return to their undis-
turbed state, retaining no 'memory' of the measurement.
The measurement is not preserved. The �lm can be run
backward and it would be a valid physical situation. For
there to be a true measurement then, there must be a
mechanism to 'remember' the measurement � a latch or
�ip-�op of sorts. And that would mean the �lm could
not be run backward. We regard measurement then, as a
breaking of time-reversal symmetry. In the macro-world,
everything is a measurement of sorts (viewing a scene
gives an estimate of positions, etc.) and hence we can't
run macro-world scenes backwards.
With quiddity (in this case, the pilot wave) able to

move superluminaly as well as to move backward in time,
there isn't much to explain. The pilot wave precedes the
electron going into the box. The pilot wave determines
the probability of the electron being found at any point
in the box at any time. If (at any time) the detector is
switched on, that would change the geometry and hence
the wave (at all points, future and past). The electron
would continue its motion, catching up with the revised
pilot wave and then moving accordingly. (This is much
like the mechanism of entanglement).

XI. DISCUSSION

The object of the present model is to provide a concep-
tual geometrical basis for quantum mechanics�to show
that the 'quantum weirdness' can be explained in terms
of the behavior of space-time.
General relativity is a theory relating the large scale

structure of space-time to the masses in it. Similarly, the
granular stochastic space-time model relates the micro-



16

structure of space-time to the behavior of masses at the
quantum level. One says for general relativity, mass tells
space how to bend, and space tells mass how to move.
And in G:SST, we say mass tells space how to jell, and
space tells mass how to jiggle. The model is neither one
of quantum mechanics nor General Relativity. It requires
both theories in its development.
Having recognized that quantum mechanics is merely

an operational calculus, and also having observed that
general relativity is a true theory of nature with both an
operational calculus and a Weltanschauung, we have at-
tempted to generate quantum mechanics from the struc-
ture of space-time. As a starting point we have used a
version of Mach's principle where in the absence of mass,
space-time is not �at, but unde�ned (or more exactly,
not well de�ned) such that PΘ(gµν) = −A|gµυ| (where
A is a constant) is, at a given point Θ, the probability
distribution for gµν (in the Copenhagen sense[43]) .
The model, as it stands, subtends both the

Bohm-DeBroglie and the Copenhagen interpretations
(Bohmenhagen): At the extreme sub-quantum (Planck
length/time) scale, there is objective reality independent
of measurement. And it is Bohmian.
At the quantum scale the Copenhagen interpretation

is e�ectively the case as states are changing much faster
than can be measured.
In the model, particles move (in an indeterminate man-

ner) due to the space-time �uctuations exterior to the

particle (similar to the way a Brownian Motion pollen
grain moves). But unlike with Brownian motion, time
(as well as space) �uctuates.

This is a global approach to quantum theory. It should
be noted that there are two logically distinct approaches
to conventional quantum mechanics: a local, and a global
formulation. The local formalism relies on the existence
of a di�erential equation (such as the Schrödinger equa-
tion) describing the physical situation (e.g. the wave
function of the particle) at each point in space-time. The
existence of this equation is operationally very conve-
nient. On the other hand, the global formulation (or path
formulation, if you will) is rather like the Feynman path
formalism for quantum mechanics[44], which requires the
enumeration of the �action� over these paths. This for-
malism is logically very simple, but operationally it is
exceptionally complex. Our approach is a local formal-
ism. Statement 3, P (x, t) = −Ag, is local and provides
the basis for the further development of stochastic space-
time quantum theory.
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