A seasonal behavioral stock buying pattern in the United States stock exchange.

Tariq Khan Ankeny, Iowa USA

Humans, like all life, are sensitive to their environment. Human and animal individuals can be triggered into impulsive and even violent activities from spikes in serum serotonin. Serum histamine level is directly proportional to environmental allergen levels producing dreaded seasonal allergic symptoms. But serum serotonin level, or the control of the level, is inversely proportional to serum histamine levels. Examples are presented where analysis over time of stock buying, as measured in the daily closing level of the United States stock exchange, shows a seasonal "J" shaped pattern that correlates with serotonin falls and spikes (histamine spikes and crashes) induced by the rise and fall of environmental allergens. A logical predictive strategy is thus presented where, excluding very large shocks like wars, market players could "buy low" an exchange-traded fund (ETF) i.e., indexed "stock," every fall season (between August 25 to September 5) and then subsequently "sell high" (between October 17 and October 31) as increased serotonin in the aggregate population leads to the increase in impulsive and speculative (over-confident) stock buying before "normalizing" around November.

"We are all animals, my lady. Most are too afraid to see it!" -- Darkness -- Legend

"In all the known history of Mankind, advances have been made primarily in physical technology; in the capacity of handling the inanimate world about Man. Control of self and society has been left to chance or to the vague gropings of intuitive ethical systems based on inspiration and emotion... Psychohistory was the quintessence of sociology; it was the science of human behavior reduced to mathematical equations. The individual human being is unpredictable, but the reactions of human mobs, Seldon found, could be treated statistically." -- Isaac Asimov -- Second Foundation

"We human beings are part of nature and therefore we are more likely to find out about our 'inner' nature, to understand ourselves, by looking outside ourselves, at our role and place as animals. In John Gray's words, 'A zoo is a better window from which to look out of the human world than a monastery.' This is not paradoxical, and without some such realignment of approach, the modern incoherence will continue." -- Peter Watson -- Ideas a history of thought and invention, from fire to Freud

"Wouldn't economics make a lot more sense if it were based on how people actually behave, instead of how they should behave?"

-- Dan Ariely -- Predictably Irrational: The Hidden Forces That Shape Our Decisions

"Pages and pages of data... efficiency functioning on multiple levels and in multiple dimensions... there it was all the time, staring you in the face. Buried within the message itself." -- S.R. Hadden -- Contact

Serotonin: ...serotonergic neurons play an important part in a variety of psychiatric conditions from anxiety disorders to schizophrenia as well as behavioral impulse-related disorders (violence, substance abuse, obsessive control, gambling, etc....)

Humans, like all life forms, are sensitive to their environment. So much so, in fact, that mentally ill or mentally unstable individuals can be triggered into impulsive and violent activities (Fig. 1) from spikes in serum serotonin (Cetin et. al., 2017). But serotonin spikes also affect "normal" humans as well. Also, serum histamine levels are directly proportional to environmental allergen levels producing the obvious and dreaded seasonal allergic reaction symptoms. But serum serotonin level, or the control of the level in the brain, is inversely proportional to serum histamine levels (Hough, 1999, and Munari et. al., 2015, and Ryo et. al., 2006). Also note that male humans have 52% more serotonin than females (Nishizawa et. al., 1997).

Analysis over time of stock market stock buying, as measured in the daily closing level of the United States stock exchange (also the S&P 500 and Dow Jones Industrial Average indexes), shows a seasonal "J" shaped pattern that correlates with serotonin falls and spikes (histamine spikes and crashes) induced by the rise and fall of environmental allergens (Fig 2.).

A logical predictive strategy is thus presented where, excluding very large shocks like wars or Presidential election scandal before November voting day, or in our specific analysis presented here, the removal of the 2008 financial crisis and the 2020 global pandemic impact from covid-19, market players could "buy low" an exchange-traded fund (ETF) i.e., indexed "stock," every fall season (between an approximate date range of August 25 to September 5) and then subsequently "sell high" (between an approximate date range of October 17 and October 31) as increased serotonin in the aggregate population leads to the increase in impulsive and speculative (over-confident) stock buying before "normalizing" back to the normal regression curve around November 1 each year.

A scientific motto, often demonstrated to be true, is that "biology drives psychology." The advent of near real-time tracking of allergen levels in given cities has led to a possible predictive model from known human serum biochemistry of histamine and serotonin interactions versus observed year-over-year acts of violence a la mass shootings from mentally unstable individuals or even stock market overly optimistic buying akin to impulsive gambling. "Normal" individuals can be observed and analyzed tracking simple impulsive behaviors from similar, albeit manageable, increases in blood serum serotonin levels leading to excess confidence and risk taking from the biochemistry of the associated crash in airborne allergens of pollen that thus lowers serum histamine levels.

Examples of the phenomena can be seen in both fall and spring allergy seasons but the fall season with ragweed is very consistent with the dates of start, peak, and end each year while the spring season involves various trees that pollenate and the start, peak, and end can vary by a month or so given the length of a year's winter. The fall "J" shaped event is also more obvious and significant in size compared to spring example events. The fact that fall pollen start and stop dates "moves" down the latitudes (spring moves up) still only leads to a date range that is a most 10 days to two weeks in length and this can be seen in examples. Fall and spring of 2020 and 2021 are shown (Fig 3.) with the original graph followed by the diagramed graph for comparison. The same is done using the years 2004 and 2005 (Fig. 4) to show fall season buy and sell ranges and the "J" shaped drop and larger increase. Note it is interesting to observe that the market almost never fully drops below the higher level reached at the top of the "J." Part of this is growth in human population, investors, and transactions but this could also help explain the aggregate growth in the stock market period; perhaps human bias is too optimistic. Also if our assumed correlation with pollen/histamine/serotonin/stock buying is accurate, then note how exogenous factors like climate change (increases number of pollination weeks before frost), antidepressant (selective serotonin uptake inhibitor SSRI) medications and even gym related exercise, stimulants, and steroids could all in theory have an effect on a population of investors or stock traders that in the end are still making a decision or bet with serotonin influencing their judgment to one degree or another whether any individual actor understands or admits this. Note too that this investment strategy must involve and indexed stock as any individual stock is too correlated with events specific to a given company or industry versus the aggregate effect noticed at scale with the entire market and with indexed stocks.

The goal of this essay is only to propose the possible correlation and to promote additional considerations for behavioral economics if not environmental, sociological, bio-chemical, psychological economics or finance research. The data exists so that experienced analysts can do full regression analysis to carefully exclude minor shocks and to compare every annual season as far back as the data allows to confirm or refute the given hypothesis with formal regression analysis. Thus, the limitations of this proposal are known and understood in depth.

An example analysis is done using closing daily stock market data from 1915 to 2019. Years 2008 and 2020 are removed as outliers leading to excessively low closing values from exogenous events. As a model to proxy the hypothesis, the BUY LOW day is chosen to be the last day of August for each year and then SELL HIGH day is chosen to be the last day of October for each year. The difference between the last market day in October price minus the last day in August price per the hypothesis should be a positive value with statistical significance with at the very least a weak direct relationship. Removing 2008 and 2020 shocks that is the observed result from basic linear regression analysis using Microtrends.net data (Fig. 5-10).

Figures

Source: https://link.springer.com/article/10.1007/s10453-019-09601-2

May

25,000

Sep

Nov

2021

Mar

Fig 3. Original and overlay of Fall 2020 to Spring 2021 of Dow Jones (DJIA) index vs pollen/serotonin.

Fig 4. Original and overlay of fall 2004 and 2005 S&P 500 vs serotonin vs BUY/SELL date ranges.

&P 500 Index - 90 Year Historical Chart

Practive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline I and each data point represents the month-end closing value. The current month is updated on an hourly basis with ay's latest value. The current price of the S&P 500 as of June 11, 2021 is **4,247.44**.

Source: https://www.macrotrends.net/2324/sp-500-historical-chart-data

Fig 5. Final regression using all years from 2015 to 2019 removing the years 2008 (global financial crisis exogenous hit) and 2020 (covid19 global pandemic) as both are considered large overwhelming outliers. Doing so then leads to a p-value that rejects null hypothesis.

Source: https://www.statskingdom.com/linear-regression-calculator.html

Regression ANOVA					
Hover over the cells to see the formulas.					
Source	DF	Sum of Square	Mean Square	F Statistic (df ₁ ,df ₂)	P-value
Regression (between \hat{y}_i and \bar{y})	1	732502.624	732502.624	7.9882 (1,102)	0.005666
Residual (between y _i and \hat{y}_i)	102	9353189.911	91697.9403		
Total (between y _i and ỹ)	103	10085692.53	97919.345		
correlation (R) equals 0.2695. It means that there 2. Goodness of fit Overall regression: right-tailed, $F(1,102) = 7.988$. The linear regression model, $Y = b_0 + b_1 X + \epsilon$, pri- in, $Y = b_0 + \epsilon$.	e is a weal 2, p-value rovides a b	 c direct relationship between X ar = 0.005666. Since p-value < α (0.0 wetter fit than the model without the 	nd Y. D5), we reject the H ₀ . Ie independent variable resultin	g 0.8	
The Slope (a): two-tailed, T(102)=2.8263, p-value = 0.005666. For one predictor it is the same as the p-value for the overall model. The Y-intercept (b): two-tailed, T(102) = -2.8003, p-value = 1.9939. Hence b is not significantly different from zero. It is still most likely recommended not to force b to be zero.				0.6	
The linear regression model assumes normality for residual errors. Shapiro will p-value equals 2.598e-11 . It is assumed that the data is not normally distributed.But since the sample size is large, it should not adversely affect the regression model.				0.2	
4. Outliers Outliers may affect the regression line. If the distribution of the residuals is normal, then You should only remove outliers if you identify th	the proba	ability of detecting 6 valid outliers of ors!	or more would be 1.	0.0 2 1-a st	4 6 atistic (α)

Fig. 6. Data using all years including 2008 and 2020 (1915 to 2020) (below):

Source: https://www.statskingdom.com/linear-regression-calculator.html

Fig. 7. All years (1915-2019) removing 2008 and 2020 outlier exogenous shocks (below): *Now we can reject the H0 null hypothesis:*

Source: https://www.statskingdom.com/linear-regression-calculator.html

Fig. 8. Regression Test

Source: https://www.socscistatistics.com/tests/regression/default.aspx

Linear Regression Calculator

For your data, the regression equation for Y is:

$\hat{y} = 0.68242X - 1332.94074$

As you can see the output from this calculator is fairly verbose. Mostly it should be self-explanatory, but you should note that any apparent discrepancies in calculations are because rounding is used for the purposes of display, but not for the calculations themselves.

If you wish to perform a further calculation, it is necessary to hit the reset button at the bottom of the page.

 Calculation Summary

 Sum of X = 208555

 Sum of Y = 1029.74

 Mean X = 1967.5

 Mean Y = 9.7145

 Sum of squares (SS_X) = 99242.5

 Sum of products (SP) = 67724.76

 Regression Equation = \hat{y} = bX + a

 b = SP/SS_X = 67724.76/99242.5 = 0.68242

 a = M_Y - bM_X = 9.71 - (0.68*1967.5) = -1332.94074

 \hat{y} = 0.68242X - 1332.94074

X-Mx	Y-My	$(X - M_x)^2$	$(X - M_x)(Y - M_y)$
-52.5 *	4.4255 -	2756.25 *	-232.3373 *
-51.5	2.6455	2652.25	-136.2418
-50.5	-18.6145	2550.25	940.0337
-49.5	-6.6645	2450.25	329.8942
-48.5	4.4555	2352.25	-216.0904
-47.5	-10.7945	2256.25	512.7401
-46.5	-3.6145	2162.25	168.0756
-45.5	-14.3845	2070.25	654.496
-44.5	-14.6445	1980.25	651.6815
-43.5	-9.7945	1892.25	426.062
-42.5	4.7555	1806.25	-202.1075
-41.5	-21.4645	1722.25	890.7779
-40.5	-17.7745	1640.25	719.8684
-39.5	2.0355	1560.25	-80.4011
-38.5	-116.5345	1482.25	4486.5793
-37.5	-66.7845	1406.25	2504.4198
-36.5	-43.6945	1332.25	1594.8503
-35.5	-20.9745	1260.25	744.5958
-34.5	-23.9645	1190.25	826.7762
-33.5 *	-9.2145	1122.25 *	308.6867 *
-32.5 /	2.1355	1056.25 //	-69.4028 //

Fig 9. Excel results using same data where original data has 2008 and 2020 removed. Last day market day of August is used as BUY LOW indexed price and the last market day of October is used as the SELL HIGH index price. The October price minus the August price (indexed closing level) is the gain. This gain is analyzed year over year where the weak direct positive relationship is seen as expected.

Source: How to Add a Regression Line to a Scatterplot in Excel (statology.org)

Fig. 10. Original Data Set

Source: <u>https://www.macrotrends.net/charts/stock-indexes</u> and <u>https://www.macrotrends.net/charts/stock-indexes</u>

MacroTrends Data Download

Dow Jones Industrial Average: Daily Closing Values

Disclaimer and Terms of Use: Historical data is provided 'as is' and solely for informational purposes, not for trading purposes or advice.

MacroTrends LLC expressly disclaims the accuracy, adequacy, or completeness of any data and shall not be liable for any errors, omissions or other defects in, delays or interruptions in such data, or for any actions taken in reliance thereon. Neither MacroTrends LLC nor any of our information providers will be liable for any damages relating to your use of the data provided.

8/31/1915	81.2	10/30/1915	95.34	1915	14.14
8/31/1916	92.25	10/31/1916	104.61	1916	12.36
8/31/1917	83.4	10/31/1917	74.5	1917	-8.9
8/31/1918	82.46	10/31/1918	85.51	1918	3.05
8/29/1919	104.75	10/31/1919	118.92	1919	14.17
8/31/1920	86.16	10/30/1920	85.08	1920	-1.08
8/31/1921	67.11	10/31/1921	73.21	1921	6.1
8/31/1922	100.78	10/31/1922	96.11	1922	-4.67
8/31/1923	93.46	10/31/1923	88.53	1923	-4.93
8/30/1924	104.14	10/31/1924	104.06	1924	-0.08
8/31/1925	141.18	10/31/1925	155.65	1925	14.47
8/31/1926	162.51	10/30/1926	150.76	1926	-11.75
8/31/1927	189.79	10/31/1927	181.73	1927	-8.06
8/31/1928	240.41	10/31/1928	252.16	1928	11.75
8/30/1929	380.33	10/31/1929	273.51	1929	-106.82
8/29/1930	240.42	10/31/1930	183.35	1930	-57.07
8/31/1931	139.41	10/31/1931	105.43	1931	-33.98
8/31/1932	73.16	10/31/1932	61.9	1932	-11.26
8/31/1933	102.41	10/31/1933	88.16	1933	-14.25
8/31/1934	92.86	10/31/1934	93.36	1934	0.5
8/31/1935	127.89	10/31/1935	139.74	1935	11.85
8/31/1936	166.29	10/31/1936	177.19	1936	10.9
8/31/1937	177.41	10/30/1937	138.17	1937	-39.24
8/31/1938	139.27	10/31/1938	151.73	1938	12.46
8/31/1939	134.41	10/31/1939	151.88	1939	17.47
8/31/1940	129.42	10/31/1940	134.61	1940	5.19
8/30/1941	127.7	10/31/1941	117.82	1941	-9.88
8/31/1942	106.33	10/31/1942	114.07	1942	7.74
8/31/1943	136.62	10/30/1943	138.27	1943	1.65
8/31/1944	146.99	10/31/1944	146.53	1944	-0.46
8/31/1945	174.29	10/31/1945	186.6	1945	12.31
8/30/1946	189.19	10/31/1946	169.15	1946	-20.04
8/29/1947	178.85	10/31/1947	181.81	1947	2.96
8/31/1948	181.71	10/30/1948	188.62	1948	6.91
8/31/1949	178.66	10/31/1949	189.54	1949	10.88
8/31/1950	216.87	10/31/1950	225.01	1950	8.14
8/31/1951	270.25	10/31/1951	262.35	1951	-7.9
8/29/1952	275.04	10/31/1952	269.23	1952	-5.81
8/31/1953	261.22	10/30/1953	275.81	1953	14.59
8/31/1954	335.8	10/29/1954	352.14	1954	16.34
8/31/1955	468.18	10/31/1955	454.87	1955	-13.31
8/31/1956	502.04	10/31/1956	479.85	1956	-22.19
8/30/1957	484.35	10/31/1957	441.04	1957	-43.31

8/29/1958	508.63	10/31/1958	543.22	1958	34.59
8/31/1959	664.41	10/30/1959	646.6	1959	-17.81
8/31/1960	625.99	10/31/1960	580.36	1960	-45.63
8/31/1961	719.94	10/31/1961	703.92	1961	-16.02
8/31/1962	609.18	10/31/1962	589.77	1962	-19.41
8/30/1963	729.32	10/31/1963	755.23	1963	25.91
8/31/1964	838.48	10/30/1964	873.08	1964	34.6
8/31/1965	893.1	10/29/1965	960.82	1965	67.72
8/31/1966	788.41	10/31/1966	807.07	1966	18.66
8/31/1967	901.29	10/31/1967	879.74	1967	-21.55
8/30/1968	896.01	10/31/1968	952.39	1968	56.38
8/29/1969	836.72	10/31/1969	855.99	1969	19.27
8/31/1970	764.58	10/30/1970	755.61	1970	-8.97
8/31/1971	898.07	10/29/1971	839	1971	-59.07
8/31/1972	963.73	10/31/1972	955.52	1972	-8.21
8/31/1973	887.57	10/31/1973	956.58	1973	69.01
8/30/1974	678.58	10/31/1974	665.52	1974	-13.06
8/29/1975	835.34	10/31/1975	836.04	1975	0.7
8/31/1976	973.74	10/29/1976	964.93	1976	-8.81
8/31/1977	861.49	10/31/1977	818.35	1977	-43.14
8/31/1978	876.82	10/31/1978	792.45	1978	-84.37
8/31/1979	887.63	10/31/1979	815.7	1979	-71.93
8/29/1980	932.59	10/31/1980	924.49	1980	-8.1
8/31/1981	881.47	10/30/1981	852.55	1981	-28.92
8/31/1982	901.31	10/29/1982	991.72	1982	90.41
8/31/1983	1216.16	10/31/1983	1225.2	1983	9.04
8/31/1984	1224.38	10/31/1984	1207.38	1984	-17
8/30/1985	1334.01	10/31/1985	1374.31	1985	40.3
8/29/1986	1898.34	10/31/1986	1877.71	1986	-20.63
8/31/1987	2662.95	10/30/1987	1993.53	1987	-669.42
8/31/1988	2031.65	10/31/1988	2148.65	1988	117
8/31/1989	2737.27	10/31/1989	2645.08	1989	-92.19
8/31/1990	2614.36	10/31/1990	2442.33	1990	-172.03
8/30/1991	3043.6	10/31/1991	3069.1	1991	25.5
8/31/1992	3257.4	10/30/1992	3226.3	1992	-31.1
8/31/1993	3651.25	10/29/1993	3680.59	1993	29.34
8/31/1994	3913.42	10/31/1994	3908.12	1994	-5.3
8/31/1995	4610.56	10/31/1995	4755.48	1995	144.92
8/30/1996	5616.21	10/31/1996	6029.38	1996	413.17
8/29/1997	7622.4	10/31/1997	7442.1	1997	-180.3
8/31/1998	7539.07	10/30/1998	8592.1	1998	1053.03
8/31/1999	10829.28	10/29/1999	10729.86	1999	-99.42
8/31/2000	11215.1	10/31/2000	10971.14	2000	-243.96
8/31/2001	9949.75	10/31/2001	9075.14	2001	-874.61
8/30/2002	8663.5	10/31/2002	8397.03	2002	-266.47
8/29/2003	9415.82	10/31/2003	9801.12	2003	385.3
8/31/2004	10173.92	10/29/2004	10027.47	2004	-146.45
8/31/2005	10481.6	10/31/2005	10440.07	2005	-41.53
8/31/2006	11381.15	10/31/2006	12080.73	2006	699.58
8/31/2007	13357.74	10/31/2007	13930.01	2007	572.27
8/29/2008	11543.96	10/31/2008	9325.01	2008	-2218.95
8/31/2009	9496.28	10/30/2009	9712.73	2009	216.45
8/31/2010	10014.72	10/29/2010	11118.49	2010	1103.77
8/31/2011	11613.53	10/31/2011	11955.01	2011	341.48
8/31/2012	13090.84	10/31/2012	13096.46	2012	5.62
8/30/2013	14810.31	10/31/2013	15545.75	2013	735.44
8/29/2014	1/098.45	10/31/2014	1/390.52	2014	292.07

8/31/2015	16528.03	10/30/2015	17663.54	2015	1135.51
8/31/2016	18400.88	10/31/2016	18142.42	2016	-258.46
8/31/2017	21948.1	10/31/2017	23377.24	2017	1429.14
8/31/2018	25964.82	10/31/2018	25115.76	2018	-849.06
8/30/2019	26403.28	10/31/2019	27046.23	2019	642.95
8/31/2020	28430.05	10/30/2020	26501.6	2020	-1928.45

References

- Fatih Hilmi Çetin, Yasemin Taş Torun and Esra Güney (July 26th, 2017). The Role of Serotonin in Aggression and Impulsiveness, Serotonin - A Chemical Messenger Between All Types of Living Cells, Kaneez Fatima Shad, IntechOpen, DOI: 10.5772/intechopen.68918. Retrieved from: <u>https://www.intechopen.com/books/serotonin-a-chemical-messenger-between-alltypes-of-living-cells/the-role-of-serotonin-in-aggression-and-impulsiveness</u>
- Hough LB. Histamine Actions in the Central Nervous System. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK28245/
- Leonardo Munari, PhD, Gustavo Provensi, PhD, Maria Beatrice Passani, PhD, Nicoletta Galeotti, PhD, Tommaso Cassano, PhD, Fernando Benetti, PhD, Renato Corradetti, MD, Patrizio Blandina, MD, Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors' Behavioral and Neurochemical Effects, International Journal of Neuropsychopharmacology, Volume 18, Issue 10, September 2015, pyv045, <u>https://doi.org/10.1093/ijnp/pyv045</u>. Retrieved from: <u>https://academic.oup.com/ijnp/article/18/10/pyv045/623738</u>
- Nishizawa, S., Benkelfat, C., Young, S. N., Leyton, M., Mzengeza, S., de Montigny, C., Blier, P., & Diksic, M. (1997). Differences between males and females in rates of serotonin synthesis in human brain. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5308–5313. <u>https://doi.org/10.1073/pnas.94.10.5308</u> Retrived from: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24674/</u>
- Ryo Yoshimoto, Yasuhisa Miyamoto, Ken Shimamura, Akane Ishihara, Kazuhiko Takahashi, Hidehito Kotani, Airu S. Chen, Howard Y. Chen, Douglas J. MacNeil, Akio Kanatani, Shigeru Tokita. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proceedings of the National Academy of Sciences Sep 2006, 103 (37) 13866-13871; DOI: 10.1073/pnas.0506104103. Retrieved from: https://www.pnas.org/content/103/37/13866