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Abstract
In this manuscript, we define a conformal map from the unit disc onto the semi plane. Later,
we define a function f(z) = (s − 1)ζ(s). We prove that f(z) belongs to the Hardy space,

H
1
3 (D). We apply Jensen’s formula noting that the measure associated with the singular

interior factor of f is zero. Finally, we get∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0
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1 Introduction

The Riemann zeta function, ζ(s) is defined as the analytic continuation of the Dirichlet series

ζ(s) :=

∞∑
n=1

1

ns

which converges in the half plane <(s) > 1. The Riemann zeta function is a meromorphic function
on the whole complex s-plane, which is holomorphic everywhere except for a simple pole
at s = 1 with residue 1. All the non trivial zeros of the Riemann zeta function lie in the
critical strip 0 < <(s) < 1. Riemann Hypothesis states that all the non trivial zeros of the
Riemann zeta function lies on the critical line <(s) = 1

2 .
Levinson [6], in 1974 proved that more than one third of zeros of Riemann zeta function are on the
critical line. Balazard et al.[1] in 1999 proved an equivalent of the Riemann Hypothesis. Shaoji Feng
[7], in 2012 proved that atleast 41.28 % of the zeros of Riemann zeta function are on the critical line.
Pratt et al.[8] in 2020 proved that more than five-twelfths of the zeros are on the critical line.

2 Main Result

Let,
∑
<(ρ)> 1

2
be the sum over the hypothetical zeros with real part greater than 1

2 of the Riemann

zeta function, ζ(s). In the sum, the zeros of multiplicity n are counted n times. Balazard et al.[1]
proved that

1

2π

∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑
<(ρ)> 1

2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ (1)

and the Riemann Hypothesis is true if and only if [1],∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0 (2)
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The goal of this paper is to prove the following result.

Theorem 1: If ζ(s) denotes the Riemann zeta function then∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0

We start the proof of Theorem 1 as follows: Let, f be a function in the Hardy Space Hp(D) where
D = {z ∈ C | |z| < 1} and 0 < p <∞. Denote by f∗ the function defined almost everywhere on the
unit circle ∂D = {z ∈ C | |z| = 1} by,

f∗(eiθ) = lim
r→1−

f(reiθ)

Let, z ∈ D where D = {z ∈ C | |z| < 1}. For i =
√
−1, write

s = s(z) =
1

2
+

i− z
2(i+ z)

=
i

i+ z

The formula s(z) defines an injective, onto and conformal representation of unit disc D in the semi
plane <(s) > 1

2
By Jensen’s Formula ([2, Theorem 3.61]) for f(0) 6= 0 and r < 1,

1

2π

∫ π

−π
log |f(reiθ)|dθ = log |f(0)|+

∑
|α|<r,f(α)=0

log
r

|α|
(3)

where in the sum,
∑
|α|<r,f(α)=0, zeros of multiplicity n are counted n times.

Denote the singular interior factor of f by,

exp

{
−
∫ π

−π

eiθ + z

eiθ − z
dµ(θ)

}
As r → 1, r < 1, equation (3) becomes ([1] or [3, p. 68]),

1

2π

∫ π

−π
log |f∗(eiθ)|dθ = log |f(0)|+

∑
|α|<1,f(α)=0

log
1

|α|
+

∫ π

−π
dµ(θ) (4)

Now we consider the function,
f(z) = (s− 1)ζ(s)

where s = i
i+z then,

f(z) = − z

i+ z
ζ

(
i

i+ z

)

Lemma 1.1: f belongs to the Hardy space, H
1
3 (D) that is f ∈ H 1

3 (D)

Proof. ζ(s) has the following property [9, p.95],

|ζ(s)| = O(|s|), |s| → ∞, <(s) ≥ 1

2

If, |z| < 1 then <
(

i
i+z

)
> 1

2 so we have,

|f(z)| =
∣∣∣∣ z

i+ z
ζ

(
i

i+ z

)∣∣∣∣ ≤ c

|i+ z|2

for some positive constant c.

|f(reiθ)| ≤ c

|ie−iθ + r|2
≤ c

cos2(θ)
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⇒ |f(reiθ)| 13 ≤ c
1
3

(cos2(θ))
1
3∫ π

−π
|f(reiθ)| 13 dθ ≤ c 1

3

∫ π

−π

dθ

(cos2(θ))
1
3

= 2c
1
3

Γ( 1
6 )Γ( 1

2 )

Γ( 2
3 )

<∞

where Γ denotes the Gamma function. Hence, f ∈ H 1
3 (D)

Now using the above lemma we proceed to prove another lemma.

Lemma 1.2: Measure µ associated to the singular interior factor of f is zero.

Proof. To prove that the measure µ associated to the singular interior factor of f is zero, we adopt
the method used by Bercovivi and Foias [10, Proposition 2.1]
Some theorems in Hardy space theory are ([4] and [5]),

Theorem (a): If f ∈ Hp(D) where p > 0, then f has non tangential finite limit on the unit circle
almost everywhere denoted by f∗(eiθ), and log |f(eiθ)| is integrable unless f(z) ≡ 0. Also f(eiθ) ∈ Lp
[4, p.17, Theorem 2.2]

Theorem (b): Every function f(z) 6≡ 0 in Hp(D) (p > 0) has a unique factorisation of the form
f(z) = B(z)S(z)F (z), where B(z) is a Blaschke product, S(z) is a singular inner function which is
determined by a positive singular measure µ and F (z) is an outer function such that F ∈ Hp(D) [4,
p.24, Theorem 2.8]. Also, |B(z)| < 1 in |z| < 1 [4, p.19, Theorem 2.4].

Theorem (c): Let f ∈ Hp(D), p > 0, and let Γ be an open arc on ∂D. If f(z) is analytic across
Γ, then its inner factor and its outer factor are analytic across Γ. If f(z) is continuous across Γ, then
its outer factor is continuous across Γ [5, p.74, Theorem 6.3]

Theorem (d): If measure µ 6≡ 0 , then there is a point eiθ for which

lim
z→eiθ

S(z) = 0

non tangentially [5, p.73, Theorem 6.2]
Moreover if

lim
h→0

µ((θ − h, θ + h))

h log 1/h
=∞,

then for every n = 1, 2, ... [5, p.74, (6.4)]

lim
z→eiθ

|S(z)|
(1− |z|2)n

= 0

Now, f(z) = (s− 1)ζ(s) where s = 1
1+z2

We have proved earlier that f ∈ H 1
3 (D) , so by Theorem (b), f(z) has a decomposition

f(z) = B(z)S(z)F (z)

Define a set M = {z ∈ C | |z| = 1, z 6= −i}
We know that (s − 1)ζ(s) is analytic across the line <(s) = 1

2 . Since f(z) is analytic across arc M ,
so by Theorem (c) its inner factor and outer factor are analytic across M . So, f(z) is analytic across
M.
By Theorem (d), if µ 6≡ 0 then limz→eiθ

|S(z)|
(1−|z|2)n = 0

Lemma 1.2(a): If µ 6≡ 0 then limr→1,r<1 f(−ir) = 0

Proof.
f(−ir) = B(−ir)S(−ir)F (−ir)

|f(−ir)| =
∣∣∣∣(1− r2)3F (−ir) S(−ir)

(1− r2)3
B(−ir)

∣∣∣∣
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By Theorem (b) above, |B(−ir)| < 1 for r < 1

By Theorem (d) above, limr→1,r<1
|S(−ir)|
(1−r2)3 = 0

Since by Theorem (b), F ∈ H 1
3 (D) so we get [4, p.36, lemma],

|(1− r)3F (z)| ≤ 8||F || 1
3

where ||F ||p = limr→1

{
1
2π

∫ 2π

0
|F (reiθ)|pdθ

} 1
p

giving the following inequality,

|(1− r2)3F (−ir)| ≤ 8|(1− r)3F (−ir)| ≤ 64||F || 1
3

Using these bounds in |f(−ir)| =
∣∣∣(1− r2)3F (−ir) S(−ir)(1−r2)3B(−ir)

∣∣∣ since the middle term goes to zero

by Theorem (d) and the remaining two terms are bounded, so we get

lim
r→1,r<1

|f(−ir)| = 0

Since, |.| is continuous function, we get , |limr→1,r<1 f(−ir)| = 0 so,

lim
r→1,r<1

f(−ir) = 0

In this case ,

lim
r→1,r<1

r

1− r
ζ

(
1

1− r

)
= 0

Let, x = 1
1−r

lim
x→∞, x>0

(x− 1)ζ(x) = 0

which is a contradiction as the above limit is ∞.

Hence our assumption that µ 6≡ 0 is wrong. So, we must have

µ ≡ 0 (5)

We are ready for another lemma useful in applying Jensen’s formula later.

Lemma 1.3: ∫ π

−π
log |f∗(eiθ)|dθ = 0

Proof. Let,

I =

∫ π

−π
log |f∗(eiθ)|dθ

We have, f(z) = (s− 1)ζ(s) where s = i
i+z

I =

∫ π

−π
log

∣∣∣∣ eiθ

i+ eiθ
ζ

(
i

i+ eiθ

)∣∣∣∣ dθ
Write,

I = K + L

where

K =

∫ π

−π
log

∣∣∣∣ eiθ

i+ eiθ

∣∣∣∣ dθ
and

L =

∫ π

−π
log

∣∣∣∣ζ ( i

i+ eiθ

)∣∣∣∣ dθ
Lemma 1.3(b):

K = 0
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Proof.

K = −
∫ π

−π
log
∣∣i+ eiθ

∣∣ dθ
By Jensen’s formula, since m(z) = i+ z is analytic in |z| ≤ 1 so we have K = 0

Lemma 1.3(c): ∫ π

−π
log

∣∣∣∣ζ ( i

i+ eiθ

)∣∣∣∣ dθ = 0

Proof.
i

i+ eiθ
=

1

2
+
i

2
tan

(
π

4
− θ

2

)
L =

∫ π

−π
log

∣∣∣∣ζ ( i

i+ eiθ

)∣∣∣∣ dθ =

∫ π

−π
log

∣∣∣∣ζ (1

2
+
i

2
tan

(
π

4
− θ

2

))∣∣∣∣ dθ
Substitute φ = π

4 −
θ
2 then,

L = 2

∫ 3π/4

−π/4
log

∣∣∣∣ζ (1

2
+
i

2
tanφ

)∣∣∣∣ dφ
L = 2

∫ π/2

−π/4
log

∣∣∣∣ζ (1

2
+
i

2
tanφ

)∣∣∣∣ dφ+ 2

∫ 3π/4

π/2

log

∣∣∣∣ζ (1

2
+
i

2
tanφ

)∣∣∣∣ dφ
Define

L1 = 2

∫ π/2

−π/4
log

∣∣∣∣ζ (1

2
+
i

2
tanφ

)∣∣∣∣ dφ
and

L2 = 2

∫ 3π/4

π/2

log

∣∣∣∣ζ (1

2
+
i

2
tanφ

)∣∣∣∣ dφ
In L1, substitute t = tanφ

2 which is a valid substitution as t = tanφ
2 is injective on (−π/4, π/2)

L1 =

∫ ∞
−1

log
∣∣ζ ( 12 + it

)∣∣
1
4 + t2

dt

In L2, substitute p = tanφ
2 which is a valid substitution as p = tanφ

2 is injective on (π/2, 3π/4)

L2 =

∫ −1
∞

log
∣∣ζ ( 12 + ip

)∣∣
1
4 + p2

dp

L2 = −
∫ ∞
−1

log
∣∣ζ ( 12 + ip

)∣∣
1
4 + p2

dp

Hence,
L = L1 + L2 = 0

⇒
∫ π

−π
log |f∗(eiθ)|dθ = 0 (6)

Next, we proceed to another lemma.

Lemma 1.4: f(z) = − z
i+z ζ

(
i
i+z

)
is analytic in |z| ≤ r, r < 1 and log |f(0)| = 0
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Proof. Let, w(z) = i
i+z and define

h(z) = (z − 1)ζ(z)

h(z) is entire function and w(z) is analytic in |z| ≤ r, r < 1 so the composition h(w(z)) = f(z) is
analytic in |z| ≤ r, r < 1. Hence, f is continuous at zero.

f(0) = lim
z→0

f(z)

f(0) = lim
z→0

−z
i+ z

ζ

(
i

i+ z

)
Let, η = i

i+z then
f(0) = lim

η→1
(η − 1)ζ(η) = 1 (7)

log |f(0)| = 0 (8)

Now, we proceed to next lemma.

Since, f(0) 6= 0 and f(z) = − z
i+z ζ

(
i
i+z

)
so f(α) = 0 corresponds to ζ

(
i

i+α

)
= 0.

Let, ρ denote non trivial zeros of Riemann zeta function then,

ρ =
i

i+ α

Lemma 1.8: ∑
|α|<1,f(α)=0

log
1

|α|
=

∑
<(ρ)> 1

2 ,ζ(ρ)=0

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣
Proof. ρ = i

i+α gives α = i
(

1−ρ
ρ

)
so |α| < 1 corresponds to <(ρ) > 1

2 and f(α) = 0 corresponds to

ζ(ρ) = 0. Hence we get ∑
|α|<1,f(α)=0

log
1

|α|
=

∑
<(ρ)> 1

2 ,ζ(ρ)=0

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ (9)

Using equation (5),(6),(8) and (9) in equation (4), we get,∑
<(ρ)> 1

2 ,ζ(ρ)=0

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ = 0 (10)

Using equation (1) and (10) gives, ∫ ∞
−∞

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0

This proves equation (2) and completes the proof of Theorem 1. Hence the Riemann Hypothesis is
true.
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