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Abstract 

Backdrop Purging is a common pre-processing step 

in computer vision and video processing for object 

tracking, people recognition, and other tasks. Several 

successful background-subtraction algorithms have 

recently been proposed, however nearly all of the best-

performing ones are supervised. The availability of some 

annotated frames of the test video during training is 

critical to their performance. As a result, there is no 

literature on their performance on completely "unseen" 

videos. We provide a new supervised background-

subtraction technique for unseen films (BSUV-Net) 

based on a fully-convolutional neural network in this 

paper. The current frame and two background frames 

collected at various time scales, along with their 

semantic segmentation maps, are fed into our 

network. We also offer a new data-augmentation 

strategy that mitigates the influence of illumination 

differences between the background frames and the 

current frame in order to limit the risk of overfitting. 

In terms of F-measure, recall, and precision, BSUV-

Net beats state-of-the-art algorithms assessed on 

unseen videos on the CDNet-2014 dataset. 

 

1. Introduction 

Backdrop Purging is a foundational, lowlevel task 

in computer vision and video processing. The aim of 

BACKDROP PURGING is to segment an input video 

frame into regions corresponding to either foreground or 

background. It is frequently used as a pre-processing 

step for higher-level tasks such as object tracking, 

people and motor-vehicle recognition, human activity 

recognition, etc. Since BACKDROP PURGING is 

often the first pre-processing step, the accuracy of its 

output has an overwhelming impact on the overall 

performance of subsequent steps. Therefore, it is 

critical that BACKDROP PURGING produce as 

accurate a foreground/background segmentation as 

possible. 

Traditional BACKDROP PURGING algorithms 

are unsupervised and rely on a background model to 

predict foreground regions. PAWCS, SWCD and 

WisenetMD are considered to be state-of-theart 

unsupervised BACKDROP PURGING algorithms. 

However, since they rely on the accuracy of the 

background model, they encounter difficulties when 

applied to complex scenes. Recently, ensemble 

methods and a method leveraging semantic 

segmentation have been proposed which significantly 

outperform traditional algorithms. 

The success of deep learning in computer vision 

did not bypass BACKDROP PURGING research. A 

number of supervised deeplearning BACKDROP 

PURGING algorithms have been developed with 

performance easily surpassing that of traditional 

methods. However, most of these algorithms have been 

tuned to either one specific video or to a group of similar 

videos, and their performance on unseen videos has not 

been evaluated. For example, FgSegNet uses 200 

frames from a test video for training and the remaining 

frames from the same video for evaluation. If applied 

to an unseen video, its performance drops 

significantly. 

In this paper, we introduce Backdrop Purging for 

Unseen Videos (BSUV-Net), a fully-convolutional 

neural network for predicting foreground of an 

unseen video. A key feature of our approach is that 

the training and test sets are composed of frames 

originating from different videos. This guarantees that 

no ground-truth data from the test videos have been 

shown to the network in the training phase. By  

employing two reference backgrounds at different 

time scales, BSUV-Net addresses two challenges 

often encountered in BACKDROP PURGING: varying 

scene illumination and intermittently-static objects that 

tend to get absorbed into the background. We also 

propose novel data augmentation which further 

improves our method’s performance under varying 

illumination. Furthermore, motivated by recent work 

on the use of semantic segmentation in BACKDROP 

PURGING, we improve our method’s accuracy by 

inputting semantic information along with the 

reference backgrounds and current frame. The main 

contributions of our work are as follows:  



 

1. Supervised BACKDROP PURGING for Unseen Videos: Although supervised algorithms, especially 
neural networks, have significantly improved BACKDROP PURGING performance, they are tuned to a 
specific video and thus their performance on unseen videos deteriorates dramatically. To the best of our 
knowledge, BSUV-Net is the first supervised BACKDROP PURGING algorithm that is truly generalizable to 
unseen videos. 

2. Data Augmentation for Increased Resilience to Varying Illumination: Changes in scene illumination 
pose a major challenge to BACKDROP PURGING algorithms. To mitigate this, we develop a simple, yet 
effective, data augmentation technique. Using a simple additive model we vary the illumination of the current 
frame and the reference background frames that are fed into BSUV-Net during training. This enables us to 
effectively tackle various illumination change scenarios that may be present in test videos. 

3. Leveraging Semantic and Multiple Time-Scale Information: BSUV-Net improves foreground-

boundary segmentation accuracy by accepting semantic information as one of its inputs. This is unlike in an 

earlier BACKDROP PURGING method which used semantic information as a post-processing step. The 

other network inputs are the current frame (to be segmented) and a two-frame background model with data 

from different time scales. While one background frame, based on distant history, helps with the discovery of 

intermittently-static objects, the other frame, based on recent history, is key for handling dynamic factors such 

as illumination changes. 

Based on our extensive experiments on the CDNet-2014 dataset ,BSUV-Net outperforms state-of-the-art 

BACKDROP PURGING algorithms evaluated on unseen videos 

 

2. Related Work 

A wide range of BACKDROP PURGING algorithms have been developed in the past, each having some 

advantages and disadvantages over others. Since this is not a survey paper, we will not cover all BACKDROP 

PURGING variants. Instead, we will focus only on recent top-performing methods. We divide these algorithms into 

3 categories: (i) BACKDROP PURGING by (unsupervised) background modeling, 

(ii) supervised BACKDROP PURGING tuned to a single video or a group of videos, (iii) Improving 

BACKDROP PURGING algorithms by post-processing. 

2.1. BACKDROP PURGING by Background Modeling 

Nearly all traditional BACKDROP PURGING algorithms first compute a background model, and then use it to 

predict the foreground. While a simple model based on the mean or median of a subset of preceding frames offers 

only a single background value per pixel, a probabilistic Gaussian Mixture Model (GMM) allows a range of 

background values. This idea was improved by creating an online procedure for the update of GMM parameters in a 

pixel-wise manner. Kernel Density Estimation (KDE) was introduced into BACKDROP PURGING as a non-

parametric alternative to GMMs and was subsequently improved. The probabilistic methods achieve better 

performance compared to single-value models for dynamic scenes and scenes with small background changes. 

In, Barnich and Droogenbroeck introduced a samplebased background model. Instead of implementing a 

probabilistic model, they modeled the background by a set of sample values per pixel and used a distance-based 

model to decide whether a pixel should be classified as background or foreground. Since color information alone is 

not sufficient for complex cases, such as illumination changes, Bilodeau et al. introduced Local Binary 

Similarity Patterns (LBSP) to compare the current frame and background using spatiotemporal features instead 

of color. St-Charles et al. combined color and texture information, and introduced a wordbased approach, 

PAWCS. They considered pixels as background words and updated each word’s reliability by its persistence. 

Similarly, SuBSENSE by St-Charles et al.  combines LBSP and color features, and employs pixel-level feedback 

to improve the background model. 

Recently, Isik et al. introduced SWCD, a pixel-wise, sliding-window approach leveraging a dynamic control 

system to update the background model, while Lee et al. introduced WisenetMD, a multi-step algorithm to 

eliminate false positives in dynamic backgrounds. In , Sultana et al. introduced an unsupervised background 

estimation method based on a generative adversarial network (GAN). They use optical flow to create a motion 

mask and then in-paint covered regions with background values estimated by a GAN. The foreground is then 

computed by subtracting the estimated background from the current frame followed by morphological operations. 



 

They, however, do not achieve state-of-the-art results. Zeng et al. introduced RTSS which uses deep learning-

based semantic segmentation predictions to improve the background model used in SubSENSE. 

2.2. Supervised BACKDROP PURGING 

Although Backdrop Purging has been extensively studied in the past, the definition of a supervised 

BACKDROP PURGING algorithm is still vague. Generally speaking, the aim of a supervised BACKDROP 

PURGING algorithm is to learn the parameters (e.g., neuralnetwork weights) of a complex function in order to 

minimize a loss function of the labeled training frames. Then, the per formance of the algorithm is evaluated on a 

separate set of test frames. In this section we divide the supervised BACKDROP PURGING algorithms into three 

groups namely, video-optimized, videogroup-optimized and video-agnostic depending on which frames and videos 

they use during training and testing. 

Several algorithms use some frames from a test video for training and all the frames of the same video for 

evaluating performance on that video. In such algorithms, parameter values are optimized separately for each 

video. We will refer to this class of algorithms as video-optimized BACKDROP PURGING algorithms. In 

another family of algorithms, randomly-selected frames from a group of test videos are used for training and 

all the frames of the same videos are used for testing. Since some frames from all test videos are used for 

training, we will refer this class of algorithms as video-groupoptimized algorithms. Note that, in both of these 

scenarios the algorithms are neither optimized for nor evaluated on unseen videos and to the best of our 

knowledge all of the top-performing supervised BACKDROP PURGING algorithms to-date are either video-

optimized or video-group-optimized. In this paper, we introduce a new category of supervised BACKDROP 

PURGING algorithms, called video-agnostic algorithms, that can be applied to unseen videos with no or little 

loss of performance. To learn parameters, a video-agnostic algorithm uses frames from a set of training videos 

but for performance evaluation it uses a completely different set of videos. 

In recent years, supervised learning algorithms based on convolutional neural networks (CNNs) have been 

widely applied to BACKDROP PURGING. The first CNN-based BACKDROP PURGING algorithm was 

introduced in. This is a video-optimized algorithm which produces a single foreground probability for the center 

of each 27 × 27 patch of pixels. A method proposed in uses a similar approach, but with a modified CNN which 

operates on patches of size 31 × 31 pixels. 

Instead of using a patch-wise algorithm, Zeng and Zhu introduced the Multiscale Fully-Convolutional Neural 

Network (MFCN) which can predict the foreground of the entire input image frame in one step. Lim and Keles 

proposed a triplet CNN which uses siamese networks to create features at three different scales and combines these 

features within a transposed CNN. In a follow-up work, they removed the triplet networks and used dilated 

convolutions to capture the multiscale information . In, Bakkay et al. used generative adversarial networks for 

BACKDROP PURGING. The generator performs the BACKDROP PURGING task, whereas the discriminator 

tries to classify the BACKDROP PURGING map as real or fake. Although all these algorithms perform very 

well on various BACKDROP PURGING datasets, it is important to note that they are all video-optimized, thus 

they will suffer a performance loss when tested on unseen videos. In, Babae et al. designed a video-group-

optimized CNN for BACKDROP PURGING. They randomly selected 5% of CDNet-2014 frames as a training set 

and developed a single network for all of the videos in this dataset. In, Sakkos et al. used a 3D CNN to capture the 

temporal information in addition to the color information. Similarly to, they trained a single algorithm using 70% 

of frames in CDNet-2014 and then used it to predict the foreground in all videos of the dataset. Note that even these 

approaches do not generalize to other videos since some ground truth data from each video exists in the training 

set. Table 1 compares and summarizes the landscape of supervised BACKDROP PURGING algorithms and the 

methodology used for training and evaluation. 

As discussed above, none of the CNN-based BACKDROP PURGING algorithms to-date have been designed 
for or tested on unseen videos with no ground truth at all. This limits their practical utility since it is not possible 
to label some frames in every new video. Since the publication of our preprint, we have learned about a recent 
BACKDROP PURGING algorithm named 3DFR, which uses 3D spatiotemporal convolution blocks in an 
encoder-decoder architecture to predict background in an unseen video. However, only reports evaluation results 
on 10 out of the 53 videos of CDNet2014. 

 



 

2.3. Improving BACKDROP PURGING Algorithms by Post-Processing 

Over the last few years, many deep-learning-based algorithms were developed for the problem of semantic 

segmen tation and they achieved state-of-the-art performance. In, Braham and Droogenbroeck introduced a post-

processing step for BACKDROP PURGING algorithms based on semantic segmentation predictions. Given an 

input frame, they predicted a segmentation map using PSPNet and obtained pixel-wise probability predictions 

for semantic labels such as person, car, animal, house etc. Then, they manually grouped these labels into two sets 

foreground and background labels, and used this information to improve any BACKDROP PURGING algorithm’s 

output in a post-processing step. They obtained very competitive results by using SubSENSE as the 

BACKDROP PURGING algorithm. 

Bianco et al. introduced an algorithm called IUTIS which combines the results produced by several 

BACKDROP PURGING algorithms. They used genetic programming to determine how to combine several 

BACKDROP PURGING algorithms’ outputs using a sequence of basic binary operations, such as logical “and/or”, 

majority voting and median filtering. Their best result was achieved by using 5 top-performing BACKDROP 

PURGING algorithms on the CDNet2014 dataset at the time of publication. Zeng et al. followed the same idea, 

but instead of genetic programming, used a fully-convolutional neural network to fuse several BACKDROP 

PURGING results into a single output, and outperformed IUTIS on CDNet-2014. 

 

 

 

3. Proposed Algorithm: BSUV-Net 

3.1. Inputs to BSUV-Net 

Segmenting an unseen video frame into foreground and background regions without using any information 

about the background would be an ill-defined problem. In BSUV-Net, we use two reference frames to characterize 

the background. One frame is an “empty” background frame, with no people or other objects of interest, which can 

typically be extracted from the beginning of a video e.g., via median filtering over a large number of initial 

frames. This provides an accurate reference that is very helpful for segmenting intermittentlystatic objects in the 

foreground. However, due to dynamic factors, such as illumination variations, this reference may 

 

Table 1. Training/evaluation methodologies of supervised BACKDROP PURGING 

algorithms on CDNet-2014. 

Algorithm Are some frames from test videos used 

in training? 

Training and 
evaluation 

methodology 
Braham-CNN-
BACKDROP 

PURGING  

Yes First half of the labeled frames of the 
test video 

video-optimized 

MFCNN  Yes 
Randomly selected 200 frames from 

the first 
3000 labeled frames of the test video 

video-optimized 

Wang-CNN-
BACKDROP 

PURGING  
FGSegNet  

BScGAN  

 

Yes 

 

Hand picked 200 labeled frames of the 

test video 

 

video-optimized 

Babae-CNN-
BACKDROP 

PURGING  

Yes 5% of the labeled frames of all 
videos 

video-group-
optimized 

    
3D-CNN-

BACKDROP 
PURGING  

Yes 70% of the labeled frames of all 
videos 

video-group-
optimized 

BSUV-Net 
(proposed) 

No No frame from test videos is used in 
training 

video-agnostic 

 

  



 

    

  

 

 

 

not be valid after some time. To counteract this, we 

use another reference frame that characterizes recent  

background, for example by computing median of 100 

frames preceding the frame being processed. 

However, this frame might not be as accurate as the 

first reference frame since we cannot guarantee that 

there will be no foreground objects in it (if such 

objects are present for less than 50 frames, the temporal 

median will suppress them). By using two reference 

frames captured at different time scales, we aim to 

leverage benefits of each frame type. 

Braham et al have shown that leveraging results of 

semantic segmentation significantly improves the 

performance of a BACKDROP PURGING algorithm, 

for example by using semantic segmentation results in 

a post-processing step. In BSUV-Net, we follow a 

different idea and use semantic information as an 

additional input channel to our neural network. In this 

way, we let our network learn how to use this 

information. To extract semantic segmentation 

information, we used a stateof-the-art CNN called 

DeepLabv3 trained on ADE20K, an extensive 

semantic-segmentation dataset with 150 different 

class labels and more than 20,000 images with 

dense annotations. Let us denote the set of object 
classes in ADE20K as C = {c0, c1, . . . , c149}. 
Following the same procedure as in, we divided these 
classes into two sets: foreground and background 
objects. As foreground objects, we used person, car, 
cushion, box, book, boat, bus, truck, bottle, van, bag 
and bicycle. The rest of the classes are used as 
background objects. The softmax layer of DeepLabv3 
provides pixel-wise class probabilities pcj   for cj  ∈ 

C. Let I[m, n] be an input frame at spatial location 
m, n and   
 

 
 
 
 
 
 
Let {pc [m, n]}149 be the predicted probability 
distribution of BSUV-Net has two parts: encoder and 
decoder. In the encoder network, we use 2 × 2 
maxpooling operators to decrease the spatial 
dimensions. In the decoder network, we use up-
convolutional layers (transposed convolution with a 
stride of 2) to increase the dimensions back to those of 
the input. In all convolutional and upconvolutional 
layers, we use 3 × 3 convolutions as in VGG. The 
residual connections from the encoder to the decoder 
help the network combine low-level visual information 
gained in the initial layers with high-level visual 
information gained in the deeper layers. Since our 
aim is to increase the performance on unseen videos, 
we use strong batch normalization (BN) and spatial 
dropout (SD)  layers to increase the generalization 
capacity. Specifically, we use a BN layer after each 
convolutional and up-convolutional layer, and an SD 
layer before each max-pooling layer. Since our task can 
be viewed as a binary segmentation, we use a sigmoid 
layer as the last layer in BSUV-Net. The operation of 
the overall network can be defined as a nonlinear 
map 
G(W) : X → Y where X ∈ Rw×h×12 is a 12-
channel input, w and h are its spatial dimensions, 
W represents the parameters of neural network G, 
and Y ∈ [0, 1]w×h is a pixel-wise foreground 
probability prediction. Note that 

since this is a fully-convolutional neural network, it 

does not require fixed input size; any frame size can 

be used, but some padding may be needed to account 

for max-pooling operations. 
In most BACKDROP PURGING datasets, the 

number of background pixels is much larger than the 
number of foreground pixels. This class imbalance 
creates significant problems for the commonlyused 
loss functions, such as cross-entropy and mean-squared 
error. A good alternative for unbalanced binary 
datasets is 

I[m, n]. We compute a foreground probability map (FPM) 

S[m, n] =  
 

  cj 
∈F 

pcj [m, n],  where F  is the set of 

fore- 

the Jaccard index. Since the network output is a 
probability map, we opted for a relaxed form of the 
Jaccard index as the 

We use the current, recent and empty frames in color, 

each along with its FPM, as the input to BSUV-Net 

Clearly, the number of channels in BSUV-Net’s input 

layer loss function, defined as follows: 

 

T + (Y[m, n]Y[m, n]) m,n 

is 12 for each frame consists of 4 channels 

(R,G,B,FPM). 

3.2. Network Architecture and Loss 

Function 

JR(Y, Y 
) = T + 

 
 

m,
n 

Y[m, n]+Y  [m, n]−Y[m, n]Y  [m, 

n] 

We use a UNET-type [19] fully-convolutional 

neural network (FCNN) with residual connections. The 

architecture of  where Y ∈ {0, 1}w×h is the ground 

truth of X, T is a smoothing parameter and m, n are 

the spatial locations. 
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Figure 1. Network architecture of BSUV-Net. BN stands for batch normalization and SD stands for spatial 

dropout. Grayscale images at the network input show foreground probability maps (FPM) of the corresponding 

RGB frames. 

 

3.3. Resilience to Illumination Change by Data 
Augmentation 

Since neural networks have millions of parameters, 

they are very prone to overfitting. A widely-used 

method for reducing overfitting in computer-vision 

problems is to enlarge the dataset by applying several 

data augmentations such as random crops, rotations 

and noise addition. Since we are dealing with videos 

in this paper, we can also add augmentation in the 

temporal domain. 

In real-life BACKDROP PURGING problems, 

there might be a significant illumination difference 

between an empty background frame acquired at an 

earlier time and the current frame. However, only a 

small portion of videos in CDnet-2014 capture 

significant illumination changes which limits 

BSUVNet’s generalization performance. Therefore, 

we introduce a new data-augmentation technique to 

account for global 

illumination changes between the empty reference 
frame and the current frame. Suppose that RE ∈ 
Rw,h,3 represents the RGB channels of an empty 
reference frame. Then, an augmented version of 
RE can be computed as R E[m, n, c] = RE[m, n, c] 
+ d[c] for c  = 1, 2, 3, where d ∈ R3 represents a 
frame-specific global RGB change in our 
illumination model. By choosing d randomly for 
each 
example during training (see Section 4.2 for details), 

we can make the network resilient to illumination 

variations. 

considered hard-shadow pixels as background. Our 

treatment of hard shadows is consistent with what is 

done in CDNet-2014 for the change-detection task. 

In CDNet-2014, the author propose seven binary 

performance metrics to cover a wide range of 

BACKDROP PURGING cases: recall (Re), 

specificity (Sp), false positive rate (FPR), false 

negative rate (FNR), percentage of wrong 

classification (PWC), precision (Pr) and F-measure 

(F1). They also introduced two ranking-based metrics 

namely “average ranking” (R) and “average ranking 

accross categories” (Rcat) which combine all 7 metrics 

into ranking scores. The details of these rankings can 

be found at “changedetection.net”. 

4.2. Training and Evaluation Details 

As discussed in Section 2.2, we use a video-

agnostic evaluation methodology in all experiments. 

This allows us to measure an algorithm’s 

performance on real-world-like tasks when no 

ground-truth labels are available. To evaluate BSUV-

Net performance on all videos in CDNet-2014, we 

used 18 different combinations of training/test video 

sets. The splits are structured in such a manner that 

every video appears in the test set of exactly one 

split, but when it does so, it does not appear in the 

training set for that split. Detailed information about 

these sets can be found in the supplementary material. 

Let us denote the m-th combination 
by (V m   , V m ). Then, ∪18   V m  is equal to the set of 

train te
st 

m=1 test 



 

 

train 

4. Experimental Results 

4.1. Dataset and Evaluation Metrics 

In order to evaluate the performance of BSUV-Net, we used CDNet-2014, the largest BACKDROP 

PURGING dataset with 53 natural videos from 11 categories including challenging scenarios such as shadows, 

night videos, dynamic background, etc. The spatial resolution of videos varies from 320× 240 to 720 × 526 pixels. 

Each video has a region of interest labelled as either 1) foreground, 2) background, 3) hard shadow or 

4) unknown motion. When measuring an algorithm’s performance, we ignored pixels with unknown motion label 

and all 53 videos in CDNet-2014. During training, we used 200 

frames suggested in for each video in V m   . 
When training on different sets V m , we used exactly the same hyperparameter values across all sets to make 

sure that we are not tuning our network to specific videos. In all of our experiments, we used ADAM optimizer 
with a learning rate of 10−4, β1 = 0.9, and β2 = 0.99. The minibatch size was 8 and we trained for 50 epochs. 
As the empty background frame, we used the median of all foreground-free frames within the first 100 frames. 
In a few videos containing highway traffic, the first 100 frames did not contain a single foreground-free frame. 
For these videos, we hand-picked empty frames (e.g., in groups) and used their median as the empty reference. 
Although this may seem like a limitation, in practice one can randomly sample several hundred frames at the 
same time of the day across several days (similar illumination) and median filter them to obtain an empty 
background frame (due to random selection, a moving object is unlikely to occupy the same location in more 
than 50% of frames). Since there is no single empty background frame in videos from the pantiltzoom (PTZ) 
category, we slightly changed the inputs. Instead of “empty background + recent background” pair we used “recent 
background + more recent background” pair, where the recent background is computed as the median of 100 
preceding frames and the more recent background is computed as the median of 30 preceding frames. 

Although BSUV-Net can accept frames of any spatial dimension, we used a fixed size of 224 × 224 pixels 
(randomly cropped from the input frame) so as to leverage parallel GPU processing in the training process. We 
applied random data augmentation at the beginning of each epoch. For illumination resilience, we used the data 
augmentation method of Section 3.3 with d[c] = I + Ic, where I is the same for all c and sampled from N (0, 
0.12), while Ic is independently sampled from N (0, 0.042) for each c. We also added ran 
dom Gaussian noise from N (0, 0.012) to each pixel in each 
color channel. For pixel values, we used double precision 

numbers that lie between 0 and 1. 

In the evaluation step, we did not apply any scaling or cropping to the inputs. To obtain binary maps, we 
applied thresholding with threshold θ = 0.5 to the output of the sigmoid layer of BSUV-Net. 

 

4.3. Quantitative Results 

Table 2 compares BSUV-Net against state-of-the-art BACKDROP PURGING algorithms in terms of the seven 
metrics and two rankings discussed in Section 4.1. All quantitative results shown in this paper are computed by 
“changedetection.net” evaluation servers to reflect the real performance on test data. Since BSUV-Net is video-
agnostic, comparing it with video optimized or video-group-optimized algorithms would not be fair and we omit 
them.   Instead, we compare BSUVNet with state-of-the-art unsupervised algorithms, namely SWCD, 
WisenetMD and PAWCS , which, by definition, are video-agnostic. We exclude RTSS and 3DFR in Table 2 
since their results on the test frames are not available on “changedetection.net”. We include the results of IUTIS-
5 and SemanticBACKDROP PURGING, but we list them separately because these are post-processing 
algorithms. Note that, both IUTIS-5 and SemanticBACKDROP PURGING can be applied to any BACKDROP 
PURGING algorithm from Table 2, including BSUV-Net, to improve its performance. To show this, we also 
report the result of BSUV-Net post-processed by SemanticBACKDROP PURGING. In the self-contained 
algorithms category, we also list FgSegNet v2 since it is currently the best performing algorithm on CDNet-2014. 
However, since FGSegNet v2’s performance reported on “changedetection.net” has been obtained in a video-
optimized manner, we trained it anew in a video-agnostic manner using the same methodology that we used for 
BSUV-Net. As expected, this caused a huge performance decrease of FgSegNet v2 compared to it’s video-optimized 
training. As is clear from Table 2, BSUVNet outperforms its competitors on almost all of the metrics. The F-
measure performance demonstrates that BSUV-Net achieves excellent results without compromising either recall 
or precision. Table 2 also shows that the performance of BSUV-Net can be improved even further by combining it 
with SemanticBACKDROP PURGING. The combined algorithm outperforms all of the video-agnostic 



 

algorithms that are available on “changedetection.net”. 

Table 3 compares the per-category F-measure performance of BSUV-Net against state-of-the-art BACKDROP 

PURGING algorithms. For RTSS, the values of performance metrics shown in Table 3 are as reported in their 

paper. Columns 2-12 report the F-measure for each of the 11 categories from “changedetection.net”, while the 

last column reports the mean F-measure across all categories. Similarly to Table 2, we divided this table into post-

processing and self-contained algorithms.   It can be observed that BSUV-Net achieves the best performance in 5 

out of 11 categories. It has a striking performance advantage in the “night” category. All videos in this category 

are traffic-related and many cars have headlights turned on at night which causes significant local illumination 

variations in time. BSUV-Net’s excellent performance in this category demonstrates that the proposed model is 

indeed largely illumination-invariant. 

BSUV-Net performs poorer than other algorithms in “camera jitter” and “dynamic background” categories. 

We believe this is related to the empty and recent background frames we are using as input. The median 

operation used to compute background frames creates very blurry images for these categories since the 

background is not static. Thus, BSUV-Net predicts some pixels in the background as foreground and increases 

the number of false positives. 

4.4. Visual Results 

A visual comparison of BSUV-Net with SWCD and WisenetMD is shown in Figure 2. Each column shows a 

sample frame from one of the videos in one of the 8 categories. It can be observed that BSUV-Net produces 

visually the best results for almost all categories. 

In the “night” category, SWCD and WisenetMD produce many false positives because of local illumination 

changes. BSUV-Net produces better results since it is designed to be illumination-invariant. In the “shadow” 

category, BSUV-Net performs much better in the shadow regions. Results in the “intermittent object motion” and 

“baseline” categories show that BSUV-Net can successfully detect intermittently-static 

Table 2. Comparison of methods for unseen videos from CDNet-2014. For fairness, we separated the post-
processing and self-contained algorithms. 

 
Method R Rcat Re Sp FPR FNR PWC Pr F

1 

Post-processing algorithms 
BSUV-net + 

SemanticBACKDRO
P PURGING∗ 

9.00 14.00 0.817
9 

0.9944 0.005
6 

0.182
1 

1.132
6 

0.831
9 

0.798
6 

IUTIS-5∗ + 
SemanticBACKDROP 

PURGING∗ 

9.43 11.45 0.789
0 

0.996
1 

0.003
9 

0.211
0 

1.072
2 

0.830
5 

0.789
2 

IUTIS-5∗ 11.43 10.36 0.784
9 

0.9948 0.005
2 

0.215
1 

1.198
6 

0.808
7 

0.771
7 

Self-contained algorithms 
BSUV-

net 
9.29 13.1

8 
0.820

3 
0.9946 0.005

4 
0.179
7 

1.140
2 

0.811
3 

0.786
8 

SWCD 15.43 19.0
0 

0.7839 0.9930 0.007
0 

0.216
1 

1.341
4 

0.752
7 

0.758
3 

WisenetM
D 

16.29 15.1
8 

0.8179 0.9904 0.009
6 

0.182
1 

1.613
6 

0.753
5 

0.766
8 

PAWCS 14.00 15.4
5 

0.7718 0.994
9 

0.005
1 

0.228
2 

1.199
2 

0.785
7 

0.740
3 

FgSegNet 
v2 

44.57 44.0
9 

0.5119 0.9411 0.058
9 

0.488
1 

7.350
7 

0.485
9 

0.371
5 

 

 

 

 

 

 

 



 

Table 3. Comparison of methods according to the per-category F-measure for unseen 

videos from CDNet-2014. 

 

Method 
Bad 

weath

er 

Low 
framer

ate 

Night PT

Z 

Therm

al 

Shado

w 

Int. 
obj. 
motio

n 

Camer
a 
jitter 

Dynam
ic 
backgr

. 

Base
- 
line 

Turb
u- 
lence 

Overa

ll 

Post-processing algorithms 
BSUV-net + 

SemanticBACKDR
OP PURGING∗ 

0.87
30 

0.678
8 

0.68
15 

0.656
2 

0.84
55 

0.96
64 

0.760
1 

0.778
8 

0.81
76 

0.964
0 

0.763
1 

0.798
6 

IUTIS-5∗ + 
SemanticBACKDRO

P PURGING∗ 

0.82
60 

0.788
8 

0.50
14 

0.567
3 

0.82
19 

0.94
78 

0.787
8 

0.83
88 

0.94
89 

0.960
4 

0.692
1 

0.789
2 

IUTIS-5∗ 0.82
48 

0.77
43 

0.52
90 

0.428
2 

0.83
03 

0.90
84 

0.729
6 

0.833
2 

0.89
02 

0.956
7 

0.783
6 

0.771
7 

Self-contained algorithms 
BSUV-

net 
0.87
13 

0.67
97 

0.698
7 

0.628
2 

0.85
81 

0.92
33 

0.749
9 

0.77
43 

0.796
7 

0.969
3 

0.705
1 

0.786
8 

RTSS 0.86
62 

0.67
71 

0.529
5 

0.548
9 

0.85
10 

0.95
51 

0.786
4 

0.83
96 

0.932
5 

0.959
7 

0.763
0 

0.79
17 

SWCD 0.82
33 

0.73
74 

0.580
7 

0.454
5 

0.85
81 

0.87
79 

0.709
2 

0.74
11 

0.864
5 

0.921
4 

0.773
5 

0.758
3 

Wisenet
MD 

0.86
16 

0.64
04 

0.570
1 

0.336
7 

0.81
52 

0.89
84 

0.726
4 

0.82
28 

0.837
6 

0.948
7 

0.830
4 

0.753
5 

PAWCS 0.81
52 

0.65
88 

0.415
2 

0.461
5 

0.83
24 

0.89
13 

0.776
4 

0.81
37 

0.893
8 

0.939
7 

0.645
0 

0.740
3 

FgSegNe
t v2 

0.32
77 

0.24
82 

0.280
0 

0.350
3 

0.60
38 

0.52
95 

0.200
2 

0.42
66 

0.363
4 

0.692
6 

0.064
3 

0.371
5 

             



 

   objects. It is safe to say that BSUV-Net is capable of 

simultaneously handling the discovery of intermittently-

static objects and also the dynamic factors such as 

illumination change. 

An inspection of results in the “dynamic 

background” category shows that BSUV-Net has 

detected most of the foreground pixels but failed to 

detect the background pixels around the foreground 

objects. We believe this is due to the blurring effect of 

the median operation that we used in the computation 

of background frames. Using more advanced 

background models as an input to BSUV-Net might 

improve the performance in this category. 

4.5. Ablation Study 

One of the contributions of BSUV-Net is its multi-

channel input composed of two background frames 

from different time scales and a foreground 

probability map (FPM). Another contribution is 

temporal data augmentation tailored to handling 

illumination changes. In Table 4, we explore their 

impact on precision, recall and F-measure. Each 

column on the left represents one characteristic and 

each row represents a different combination of these 

characteristics. RGB channels of the current frame 

are used in all of the 

combinations. “Empty BG” and “Recent BG” refer to 
the use of empty and\or recent background frames, 
respectively, in addition to the current frame. “Data 
aug.” refers to temporal data augmentation described in 
Section 3.3 and “FPM” refers to the use of semantic 
FPM channel in addition to the RGB channels for all 
input frames. It is clear that all these characteristics 
have a significant impact on the overall performance. 
Using only the current frame as input results in very 
poor metrics. The introduction of empty or/and recent 
background frames leads to a significant 
improvement. Adding temporal data augmentation 
or/and FPM channels further improves the 
performance and the final network achieves state-of-
the-art results. 

Table 4. Impact of background frames, data 

augmentation for temporal illumination change and 

FPM on BSUV-Net performance. 

 
Curre
nt 
fram

e 

Empt
y 

BG 

Rece
nt 

BG 

Dat
a 
aug

. 

FP

M 
Pr Re F1 

✓ 0.361
5 

0.550
9 

0.347
6 

✓ ✓    0.699
4 

0.768
6 

0.681
9 

✓  ✓   0.697
6 

0.706
4 

0.635
1 

✓ ✓ ✓   0.765
8 

0.760
6 

0.715
6 

✓ ✓ ✓ ✓  0.757
4 

0.815
9 

0.744
7 

✓ ✓ ✓  ✓ 0.780
7 

0.774
7 

0.745
0 

✓ ✓ ✓ ✓ ✓ 0.811
3 

0.820
3 

0.786
8 

In this paper, we proposed to add semantic FPM 

channel as input in order to improve our algorithm’s 

performance. However, if the background and 

foreground object categories are chosen carefully, FPM 

can be used as a BACKDROP PURGING algorithm 

by itself. This would require prior information about 

the video (to compute FPM) and, therefore, would 

not qualify as a video-agnostic method. In our 

algorithm, however, we combine FPM information 

with RGB channels and background frames. When 

applying DeepLabv3 to compute 

 

Figure 2. Visual comparison of sample results 

from BSUV-Net, SWCD and WisenetMD on 

unseen videos from CDNet-2014. 

 

 

FPM frames, we pre-defined global background and 

foreground class categories which might be wrong for 

some of the videos. To demonstrate that our algorithm is 

not replicating FPM but leverages its semantic information 

to boost performance, we compared BSUV-Net with 

thresholded FPM used as a BACKDROP PURGING 

result (Table 5).It is clear that FPM alone is not a 

powerful tool for BACKDROP PURGING as it is 

significantly outperformed by BSUV-Net. 

 

 

 

We manually selected empty background frames from 

among the initial frames as explained in Section 4.2. In 

Table 6, we show the impact of this manual process by 

comparing the manual selection strategy with an 

automatic one, that is using the median of all frames 

in the test video as a the empty background frame. 

Clearly, the manual selection slightly improves 



 

precision while significantly decreasing recall. We 

believe this is due to the increase of false negatives 

caused by the appearance of some of the foreground 

objects in the empty background. Since videos in 

CDNet2014 are rather short (at most 10 minutes), in 

some cases the median of all frames does not result in 

an empty background. However, for stationary 

surveillance cameras in a real-life scenario it is often 

possible to compute an empty background, for 

example by taking the median of frames at the same 

time of the day (when it is expected to be empty) over 

many days. 

 

5. Conclusions and Future Work 

We introduced a novel deep-learning algorithm for 

background subtraction of unseen videos and 

proposed a videoagnostic evaluation methodology 

that treats each video in a dataset as unseen. The 

input to BSUV-Net consists of 

the current frame and two reference frames from 

different time-scales, along with semantic 

information for all three frames (computed using 

Deeplabv3 ). To increase the generalization capacity 

of BSUV-Net, we formulated a simple, yet effective, 

illumination-change model. Experimental results on 

CDNet-2014 show that BSUV-Net outperforms 

state-of-the-art video-agnostic BACKDROP 

PURGING algorithms in terms of 7 out of 9 

performance metrics. Its performance can be further 

improved by adding SemanticBACKDROP 

PURGING  as a post-processing layer. This shows 

great potential for deep-learning BACKDROP 

PURGING algorithms designed for unseen or 

unlabeled videos. 

In the future, we are planning further work on 

temporal data-augmentation techniques to improve 

performance for challenging categories, such as 

“dynamic background” and “camera jitter”. We will 

also investigate different background models for the 

reference frames. In this work, we kept our focus on 

designing a high-performance, supervised 

BACKDROP PURGING algorithm for unseen 

videos without considering the computational 

complexity. To bring BSUV-Net closer to realtime 

performance, we are also planning to study a 

shallownetwork implementation designed for fast 

inference. 
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