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Abstract

The use of parallax angles is one of the standard methods for determining stellar distance. The problem that
arises in using this method is how to measure that angle. In order for the measurement to be correct, it is
necessary for the object we are observing to be stationary in relation to the sun. This is generally not true. One
way to overcome this problem is to observe the object from two different places at the same time. This would
be technically possible but will probably never be realized. Another way to determine the distance is given
in [1]. With certain assumptions, this is a mathematically completely correct method. After the publication
of the third Gaia’s catalog [2], we are now able to test the proposed method using real data. Unfortunately,
for the majority of stars it is not possible to obtain the distance directly, but with the help of some additional
measurements we would be able to indirectly determine the distance of such stars.

Keywords: stellar distance, stellar velocity,The Gaia Catalogue’s

1. Determining the stellar distance and velocity

Suppose that the observed star Z is moving with a uniform, rectilinear space motion regarding the sun Fig. 1.
Let us denote by τ1 the time when the signal was sent from the point noted by Z1 and by t1 the time when
the signal is registered at point noted by A. We assume that τ1 and t1 are expressed in the same units of time.
The unit vector of the direction AZ1 is denoted by â. In an analogous way, we will define triples (τ2, t2, b̂) and
(τ3, t3, ĉ) for pairs of points (B,Z2) and (C,Z3), respectively.
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Figure 1: Star Z moves uniformly regarding the sun. There is one nontrivial solution.

Coordinate system (K) is heliocentric ecliptic coordinate system. Coordinate axes are determined in accor-
dance with the ICRS standard.

This is a list of constants that will be used in the calculations:

Π = 3.14159265358979 (1)

R = AU = 149597870.7 [km] (2)

c = 299792.458 [km/sec] (3)

yearday = 365.25 (number of days in one year) (4)

daysec = 24 ∗ 3600 [sec] (number of seconds in one day) (5)

yearsec = yearday ∗ daysec [sec] (6)

The reference epoch for Gaia DR1 is J2015
J2015 = 2015/01/01 12:00(?) (GMT) or 0.5 days from the beginning of the year 2015.
The reference epoch for Gaia DR2 is J2015.5
J2015.5 = 2015 July 2, 21:00:00 (GMT) or 365.25*0.5 days from the beginning of the year 2015.
The reference epoch for Gaia DR3 is J2016
J2016 = J2015 + yearday = 2016/01/01 18:00(?) (GMT)

Vernal equinox in 2015 happened on March Mar 20, 22:45 (GMT) or 78.94791667 days
from the beginning of the year 2015.

We will now define the times when the measurements were made, and the time t0 that will be considered
as the initial time.

t0 = 78.94791667 ∗ daysec [sec] - Vernal equinox in 2015
t1 = 0.5 ∗ daysec [sec] - the time of the first measurement (corresponds to J2015)
t2 = 0.5 ∗ yearsec [sec] - the time of the second measurement (corresponds to J2015.5)
t3 = yearsec [sec] -the time of the third measurement (corresponds to J2016)

The spherical coordinates (lon2015, lat2015), (lon2015.5, lat2015.5) and (lon2016, lat2016) are given in the
Gaia’s catalogs:
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� lon2015 - Ecliptic longitude of the source in ICRS at the reference epoch J2015.0
� lat2015 - Ecliptic latitude of the source in ICRS at the reference epoch J2015.0
� lon2015.5 - Ecliptic longitude of the source in ICRS at the reference epoch J2015.5
� lat2015.5 - Ecliptic latitude of the source in ICRS at the reference epoch J2015.5
� lon2016 - Ecliptic longitude of the source in ICRS at the reference epoch J2016.0
� lat2016 - Ecliptic latitude of the source in ICRS at the reference epoch J2016.0

We will now transform the spherical coordinates into Cartesian coordinates.

ax = cos(lon2015) ∗ cos(lat2015) (7)

ay = cos(lat2015) ∗ sin(lon2015) (8)

az = sin(lat2015) (9)

â = [ax, ay, az] (10)

bx = cos(lon2015.5) ∗ cos(lat2015.5) (11)

by = cos(lat2015.5) ∗ sin(lon2015.5) (12)

bz = sin(lat2015.5) (13)

b̂ = [bx, by, bz] (14)

cx = cos(lon2016) ∗ cos(lat2016) (15)

cy = cos(lat2016) ∗ sin(lon2016) (16)

cz = sin(lat2016) (17)

ĉ = [cx, cy, cz] (18)

The origin of the (K) coordinate system is at the barycenter of the solar system, therefore the velocity v at
which the solar system moves relative to the (K) is equal to zero [1].

v = [vx, vy, vz] (19)

vx = 0 (20)

vy = 0 (21)

vz = 0 (22)

Let the angles α, β and γ be defined as follows:

α = 6 (S,O,A) =
2 ∗Π ∗ (t1 − t0)

yearsec
(23)

β = 6 (S,O,B) =
2 ∗Π ∗ (t2 − t0)

yearsec
(24)

γ = 6 (S,O,C) =
2 ∗Π ∗ (t3 − t0)

yearsec
(25)

We will now determine the coordinates of points A(t1), B(t2), and C(t3) , which indicate the positions of
the observer at the time the measurements were made Fig. 1.
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A(t1) = (Ax, Ay, Az) (26)

Ax = t1 ∗ vx +R ∗ cos (α) = R ∗ cos (α) (27)

Ay = t1 ∗ vy +R ∗ sin (α) = R ∗ sin (α) (28)

Az = t1 ∗ vz = 0 (29)

B(t2) = (Bx, By, Bz) (30)

Bx = t2 ∗ vx +R ∗ cos (β) = R ∗ cos (β) (31)

By = t2 ∗ vy +R ∗ sin (β) = R ∗ sin (β) (32)

Bz = t2 ∗ vz = 0 (33)

C(t3) = (Cx, Cy, Cz) (34)

Cx = t3 ∗ vx +R ∗ cos (γ) = R ∗ cos (γ) (35)

Cy = t3 ∗ vy +R ∗ sin (γ) = R ∗ sin (γ) (36)

Cz = t3 ∗ vz = 0 (37)

Let define the time intervals ∆t1 and ∆t2 as follows:

∆t1 = t2 − t1 (38)

∆t2 = t3 − t1 (39)

One can define the matrices M and N :

M =


∆t2 ∗ c 1 1 1
Cx −Ax ax bx cx
Cy −Ay ay by cy
Cz −Az az bz cz

 (40)

N =


∆t1 ∗ c 1 1 1
Bx −Ax ax bx cx
By −Ay ay by cy
Bz −Az az bz cz

 (41)

With τ1, τ2 and τ3 we denote the times when the signals have been sent Fig. (1). Of course, these times
mean nothing to us, but we can define the times ∆τ1, ∆τ2 as it follows:

∆τ1 = τ2 − τ1 (42)

∆τ2 = τ3 − τ1 (43)

The time on the star Z may be slower or faster than the time on Earth, but we assume that the stellar time
∆τi is converted to terrestrial time.

Coefficient k is defined in the following way.

k =
Z0Z2

Z0Z1

=
∆τ2
∆τ1

(44)

It has been proved in [1] that :

k =
det(M)

det(N)
(45)
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Let us define matrices D,D1, D2, D3 in following way:

D =

(k − 1) ∗ ax −k ∗ bx cx
(k − 1) ∗ ay −k ∗ by cy
(k − 1) ∗ az −k ∗ bz cz

 (46)

D1 =

(1− k) ∗Ax + k ∗Bx − Cx −k ∗ bx cx
(1− k) ∗Ay + k ∗By − Cy −k ∗ by cy
(1− k) ∗Az + k ∗Bz − Cz −k ∗ bz cz

 (47)

D2 =

(k − 1) ∗ ax (1− k) ∗Ax + k ∗Bx − Cx cx
(k − 1) ∗ ay (1− k) ∗Ay + k ∗By − Cy cy
(k − 1) ∗ az (1− k) ∗Az + k ∗Bz − Cz cz

 (48)

D3 =

(k − 1) ∗ ax −k ∗ bx (1− k) ∗Ax + k ∗Bx − Cx

(k − 1) ∗ ay −k ∗ by (1− k) ∗Ay + k ∗By − Cy

(k − 1) ∗ az −k ∗ bz (1− k) ∗Az + k ∗Bz − Cz

 (49)

Assuming that det(D) 6= 0 , we found [1] that the distances d1, d2, d3 are given by the following equations :

d1 =
det(D1)

det(D)
(50)

d2 =
det(D2)

det(D)
(51)

d3 =
det(D3)

det(D)
(52)

The triple (d1, d2, d3) represents a unique solution. Therefore, the collinear points Z1, Z2 and Z3 are uniquely
determined. If there were some other three collinear points Z ′1, Z

′
2 and Z ′3 which would correspond to the three

positions of the observed object, then we would have two different solutions, which is contrary to the fact that
there is only one triple as a solution. In this way we proved that:

� d1 - denotes distance between the Earth (satellite) and a star at the time (t1)
� d2 - denotes distance between the Earth (satellite) and a star at the time (t2)
� d3 - denotes distance between the Earth (satellite) and a star at the time (t3)

For brevity in writing this method will be denoted by (3P ).

Let us define the arithmetic mean noted by d , standard deviation noted by σ and the coefficient of variation
(CV ) noted by cv as follows:

d =
d1 + d2 + d3

3
(53)

σ =

√√√√√ 3∑
i=1

(d− di)2

3
(54)

cv =
σ

d
(55)
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The distances d1, d2 and d3 are defined in different ways but we will assume that the differences between
them are relatively very ”small” compared to d.

Transverse velocity(speed) vt is defined as usual:

vt[km/sec] =
d ∗ tan(PM)

∆t2
=
d ∗ tan(PM)

yearsec
(56)

In fact Equation (56 ) should be written in the following form:

vt[km/sec] =
d ∗ tan(PM)

∆τ2
(57)

Where total proper motion is noted by PM while ∆t2 and ∆τ2 are defined by equations (39) and (43).
Time interval ∆τ2 can be measured using Doppler effect [4]. The difference between the times ∆τi and ∆ti is
due for two reasons, first the speed of light is finite and second the distance d is constantly changing.
For example if the observed object moves away then ∆t2 > ∆τ2.

2. Analysis of the obtained results

Depending on whether it is possible to determine the distance d and with what precision, all observed cosmic
objects can be divided into three groups:

1◦ (d1 > 0)
∧

(d2 > 0)
∧

(d3 > 0)
∧

(cv < ε) where ε represents some small number and
d1 = AZ1, d2 = BZ2 and d3 = CZ3

In this case we will say that the star Z moves uniformly at a distance d from the Earth Fig. (1).
The accuracy in determining the distance d is significantly greater when points A, B and C form a triangle
instead of lying on one line. This means that the intervals between the two measurements should be four
(sixteen,twenty-eight..) instead of six months. This case is presented in Table 1.

Source id Ecl.lon(2016) Ecl.lat(2016) d1[km] d2[km] d3[km] cv Dist[km]

3961616055021330688 179.7821975005790 29.6831549248165 2.142 E16 2.134 E16 2.126 E16 0.0038 2.135 E16

3961742979894505856 180.1228034635390 29.4999358548088 1.850 E17 1.8472 E17 1.8438 E17 0.0018 1.8472 E17

2342878993244280448 359.6681908 -29.52927592 1.33132 E17 1.33173 E17 1.33213 E17 0.0003 1.33173 E17

Table 1: Distance d is calculated on the basis of the data obtained from the Gaia’s catalogs,
where coefficient of variation cv < 0.004

2◦ (d1 > 0)
∧

(d2 > 0)
∧

(d3 > 0)
∧

(cv ≥ ε)

where ε represents some small number and d1 = AS1, d2 = BS2 and d3 = CS3
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Figure 2: The star moves along a curve that is close to a straight line. All distances di are positive, but we are
still unable to determine the distance d

In this case we will say the measurements are not accurate enough or that the star does not move
uniformly with respect to the sun Fig. (2). The time difference between the two measurements is six months.
If we were to reduce this time to 2-4 months, then in some cases the trajectory along which the observing star
moves would be closer to a straight line. This means that the accuracy in determining the distance d would
eventually increase. This case is presented in Table 2.

Source id Ecl.lon(2016) Ecl.lat(2016) d1[km] d2[km] d3[km] cv Dist[km]

2342610197010495616 0.353415475 -30.19461453 9.0678 E15 6.35516 E15 3.63505 E15 0.43 -

2342901155275643392 0.530649858 -29.58663349 2.94577 E16 2.33137 E16 1.71527 E16 0.26 -

3442647460064052224 85.923436780576 5.465370789112 1.50462 E15 2.27783 E15 3.05312 E15 0.3398 -

Table 2: Distance d cannot be precisely determined because coefficient of variation cv > 0.25

3◦ (d1 < 0)
∨

(d2 < 0)
∨

(d3 < 0)

where d1 = AS1, d2 = BS2 and d3 = CS3
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Figure 3: The star Z is moving along a curve. Some of distances di are negative

If at least one of di is less than zero it means that d does not represent the distance between the earth
and the star Z. The points S1, S2 and S3 lie on one line and since there is one solution it means that the points
Z1, Z2 and Z3 are not collinear but lie on some curve Fig. (3). As indicated in Table 3, the distance between
the observer and the star is not possible to determine.

Source id Ecl.lon(2016) Ecl.lat(2016) d1[km] d2[km] d3[km] cv Dist[km]

3961707520645185536 180.0038102526130 29.7935242455032 -4.651 E16 -4.474 E16 -4.297 E16 -0.0395 -

3961592522895189632 179.9320080075880 30.2431018805237 -8.873 E16 -9.828 E16 -1.8438 E17 -0.0973 -

3442624890011192320 86.08541291 5.146543438 -2.51603 E15 3.45772 E15 9.44761 E15 1.727 -

Table 3: Some of distances di are less than zero. The star moves along the curve and it is not possible to
determine distant d

Therefore it could be concluded, in order to obtain optimal results in determining the distance d, the time
interval between two measurements should not be fixed, but chosen according to which of the three groups the
observed object belongs to.

3. Comparison between the two methods

After testing 320, 000 randomly selected stars, assuming that the cv was equal to 0.001, for only 321 stars we
were able to determine the distance d. In percentage it is about 0.1%. We have considered only those cases
where ra error < 1 [mas] and dec error < 1 [mas] for each of the three Epochs [2].
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Source id Ecl.lon(2016) Ecl.lat(2016) cv Dist[km] Dist(Prx)[km]

3892032057203216512 179.464250611527 2.265023777597 4.93E-06 2.91551E+15 -

6708720503832637056 277.843888734382 -22.691401979412 3.58E-05 1.13911E+16 9.27202E+15

5960619316369918976 265.263620489822 -17.335282366231 3.56E-05 2.92601E+15 6.01184E+17

4283639513032943872 282.108514007983 27.488067363330 5.24E-06 6.13541E+16 1.33945E+17

4155142887628422656 280.073983972126 12.495318825158 1.42E-05 1.40158E+17 2.61482E+16

4052874077025202304 275.923229156324 -2.631458890691 8.30E-05 4.29259E+16 8.92399E+16

5627132972875759488 148.161330687293 -49.058942695502 9.98E-05 8.76936E+16 3.96268E+16

4073377151404982528 280.416811660799 -2.572231092517 3.65E-05 1.78858E+16 8.3734E+16

2774766954475533312 14.845191577444 6.420382868841 2.40E-04 5.53097E+15 1.30875E+16

166222071943317760 69.016283020408 9.305778028492 7.36E-04 2.18849E+16 8.07471E+15

5576498473844837120 110.866773513287 -60.378239028318 6.13E-04 1.14915E+17 6.98058E+15

214695656962915712 88.865916267096 27.505576601733 6.74E-04 6.33499E+16 5.51230E+16

3443394165898284544 86.843372879689 5.386570760321 2.24E-04 4.2984E+16 1.85977E+16

Table 4: Distances obtained by the (3P) method and the standard parallax method.

Table 4 shows only a few examples but also in all other cases there are significant differences between the
two methods in determining the distance d.

4. Determining the distance d for stars with negative parallax

In the (3P) method, the parallax angle does not play any role, so it is completely irrelevant whether the parallax
is positive or not.

Source id Ecl.lon(2016) Ecl.lat(2016) Parallax[mas] cv Dist[km] Dist(Prx)[km]

5870540554937313792 230.8123891030300 -44.4001685138039 -1.351731861 2.63E-04 1.68442E+16 -

5820665779779315968 252.6634092423410 -46.5826995849347 -1.073606785 7.96E-04 3.32807E+17 -

4316942586391274752 300.5130336201920 34.1575615028951 -4.338644109 4.94E-04 6.65775E+15 -

4026999166801713536 167.2093209988000 30.3870056006152 -1.052721103 1.81E-04 2.31501E+16 -

902781578495836544 117.2702243058950 13.7984472959831 -1.021739621 5.11E-04 7.73277E+15 -

4234495599583215872 301.187125786867 18.822706614695 -0.051135084 5.10E-05 1.72358E+17 -

4172623468949463936 273.405832104713 16.697263354807 -0.006873903 4.07E-06 5.8401E+16 -

4123917096702075264 265.296806899843 6.161622135268 -0.0001959 6.66E-05 6.62041E+16 -

4002033106025556992 173.793473382709 23.271354771437 -0.2758356 7.74E-04 1.27353E+18 -

Table 5: Distances for stars with negative parallax.

Using the proposed method, as shown in Table 5, it is easy to find the distance d for those stars for which
this would not be possible if we used the standard parallax method.

5. The distance for stars whose parallax is greater than 10 [mas]

Just for comparison between the two methods, the distances of several stars, whose parallax is greater than 10,
are shown in Table 6.

# Source id Ecl.lon(2016) Ecl.lat(2016) Parallax[mas] cv Dist[km] Dist(Prx)[km]

1 3433155616700212736 93.087491261317 3.386323758837 22.08313702 1.58E-04 4.66583E+15 6.9865E+14

2 3444013946861337344 88.762042702292 6.976990094510 13.68358517 5.85E-04 5.6425E+15 1.12751E+15

3 6871699360068438784 295.411412404273 4.200803323270 20.70966019 2.89E-04 6.06583E+15 7.44985E+14

4 195463274447721728 84.208040079038 19.720229918935 13.08067231 5.43E-06 1.91901E+16 1.17948E+15

5 654704237414120192 118.569387968675 -5.049570286238 32.03269916 6.94E-06 2.50054E+16 4.81645E+14

7 5490774701892502016 138.499803200596 -74.508682013379 11.21404409 9.84E-06 3.45189E+16 1.37581E+15

8 5272621390101236608 199.803820553988 -76.083791197977 28.49767132 6.96E-06 1.01299E+17 5.41391E+14

Table 6: Distances for stars whose parallax is greater than 10 [mas]

The distance of the star marked with #8 is far greater than the distance of the star marked with #7,
although the parallax angle of the star #8 is greater than the parallax angle of the star marked with #7.
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6. How big is the Milky Way galaxy

The Milky Way is the second-largest galaxy in the Local Group (after the Andromeda Galaxy), with its stellar
disk approximately 170–200 [kly] and on average, approximately 1 [kly] thick. The Sun is 25–28 [kly] from the
Galactic Center [3].
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•F F•

Figure 4: A schematic picture of the Sun’s location in the Milky Way Galaxy

In referring to Fig 4. the following definitions apply:

� S - denotes position of the Sun
� G - denotes position of the Galactic center
� AB - denotes Galactic disc diameter
� NGP - denotes North Galactic Pole
� SGP - denotes South Galactic Pole
� l - denotes galactic longitude
� b - denotes galactic latitude

After we selected all the objects so that abs(l − 180) < 1 and among them we chose the three that have
the greatest distances we got the final result shown in Table 7.

Source id Gal.lon(2016) Gal.lat(2016) PM[mas] Prx[mas] cv Dist[km] Dist(Prx)[km] vt

3443331871693269888 180.537841235841 0.195830806156 13.633407 0.833999059 2.35E-05 2.61944E+17 1.84993E+16 548.63

3444241477048617472 179.145655747991 -0.154164937766 10.922541 1.513166702 5.27E-04 2.61773E+17 1.01961E+16 439.25

3443507209439201280 179.968690915909 0.715079161227 56.838364 6.075675427 6.42E-04 8.03899E+16 2.53937E+15 701.96

Table 7: The three farthest stars toward the galactic anticenter abs(l − 180) < 1

The same procedure was repeated assuming that ((l < 0.5) ∨ (360− l) < 0.5). The final result is shown in
Table 8.

Source id Gal.lon(2016) Gal.lat(2016) PM[mas] Prx[mas] cv Dist[km] Dist(Prx) vt

4057271883016119424 359.815611289133 -0.410278140213 2.231856 0.361633128 3.71E-04 1.560923E+18 4.266309E+16 535.20

4057204675365716736 359.709334091534 -0.834622324361 0.98699296 0.477899496 4.99E-04 1.215018E+18 3.228375E+16 184.23

4057431312201067008 0.992836333984 -0.819336706345 3.3731406 1.241408484 5.87E-04 6.324761E+17 1.242813E+16 327.75

Table 8: The three farthest stars toward the galactic center (l < 0.5) ∨ (360− l) < 0.5

From Tables 7 and 8 we have the following equations:

1 [ly] = 9.461E + 12 [km] (58)

SB = 2.61944E + 17 [km] = 27, 687 [ly] (59)

SA = 1.560923E + 18 [km] = 164, 985 [ly] (60)

BA = (SA+ SB) = 1.82287E + 18 [km] = 192, 672 [ly] (61)
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If we assume that GA = GB then it follows that:

SG = BA ∗ 0.5− SB = (SA+ SB) ∗ 0.5− SA = (SB − SA) ∗ 0.5 (62)

SG = (1.560923E + 18− 2.61944E + 17) ∗ 0.5 [km] = 6.49490E + 17 = 68, 649 [ly] (63)

The galaxy does not have a perfectly symmetrical shape, so this result result should be taken with caution.

Tables 9 and 10 were defined in a similar way, taking into account those objects so that (90 − b < 1) and
(b+ 90 < 1), respectively.

# Source id Gal.lon(2016) Gal.lat(2016) PM[mas] Prx[mas] cv Dist[km] Dist(Prx)[km] vt

1 3961499231910404608 180.235046103830 28.928911422356 17.319605 0.604518241 4.82E-04 1.49221E+19 2.55218E+16 39,704

2 3961644607969332608 180.404725877696 29.854718309393 278.43823 9.61882474 1.37E-04 3.34243E+18 1.60398E+15 142,975

3 3961751157512399104 180.019001468704 30.490758148786 13.677024 0.061422163 9.42E-04 1.90751E+18 2.51186E+17 4008

4 3961624438797750656 180.582079994910 29.632830085481 52.60498 3.168342637 1.38E-05 1.0051E+18 4.86955E+15 8122

5 3961741399346682752 180.360953536279 30.589299839668 5.618753 0.840045033 7.84E-04 7.03273E+17 1.83661E+16 607

Table 9: The five farthest stars toward the north galactic pole (90− b < 1)

# Source id Gal.lon(2016) Gal.lat(2016) PM[mas] Prx[mas] cv Dist[km] Dist(Prx)[km] vt

1 2342975612828207616 0.561739748958 -29.020121757189 15.172308 0.504548759 1.57E-04 2.24734E+20 2.55218E+16 523,832

2 2342630022579538176 0.541936108764 -30.264239493186 86.033516 1.537226261 8.10E-04 1.07195E+19 1.00365E+16 141,681

3 2342564876515950720 359.42887157572 -30.047353984642 15.577604 0.625130738 9.42E-04 2.92889E+18 2.46803E+16 7,009

4 2342704617571982208 0.298403519461 -29.704444217656 75.32534 1.13608906 3.25E-04 1.9785E+18 1.35803E+16 22,895

5 2342604080976989824 0.361966189375 -30.401246017438 9.464713 0.996803191 9.37E-04 1.24758E+18 1.54779E+16 1,814

6 2342906210451685760 0.528476982416 -29.454414577265 7.2573557 -0.128968379 6.99E-04 1.07286E+18 - 1,196

Table 10: The five farthest stars toward the north galactic pole (b+ 90 < 1)

Obviously, for objects #2 in Table 9 and #1 and #2 in Table 10, the distances are extremely large, which
is one of the reasons why the transverse velocities are extremely high. We can consider two possibilities. First,
if they were Galactic objects then it is most likely a measurement error. If they were extragalactic objects then
again there are two possibilities. Firstly, it could be a random measurement error. Another possibility is that
due to the distortion of the space around the Galaxy, the line connecting the object and the observer is not a
straight line but a curve. In this case the proposed algorithm cannot be applied.

7. Star constellations distance

For some stars from a stellar constellation it is not possible to determine the distance. Therefore, it is necessary
to find those stars for which it is possible to find the distance. In this way, we can indirectly determine the
distance of other stars if we are able to prove that these stars move in the orbit of some of the stars whose
distance has already been determined. Table 11 shows one such simple example. This is just an example and
it has not been proved that stars marked with #2,#3 and #4 move in the orbit of the star marked with #1.

# Source id Ecl.lon(2015) Ecl.lat(2015) cv Dist[km]

1 4057492678697287680 266.824804064947 -5.4591431218883 4.96E-03 9.32042E+15

2 4057492678690136832 266.826252097473 -5.4494776145305 -1.27E-01 -

3 4057492678690657664 266.833184350181 -5.4564239180936 -8.65E-02 -

4 4057492678690661888 266.827298363692 -5.4488755851829 4.73E-01 -

Table 11: Star constellations distance is determined by the distance of the star marked with the #1

Things get much more complicated because generally each constellation is made of several hundred (thou-
sand) stars. But the principle should remain the same. It is necessary to find those stars for which it is possible
to determine the distance and then the others that move in their orbits. The star from the first group could be
called a ”mother star” while the star from the second group could be called a ”daughter star”.
We can say that it is easy to determine whether a star belongs to the mother-star group, but the question is
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how to find its mother-star for a daughter-star. We will not deal with this problem in this paper, because it
requires much more observation.
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