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Abstract

In one-dimensional quantum systems with short-range interactions, a set of leading
numerical methods is based on matrix product states, whose bond dimension deter-
mines the amount of computational resources required by these methods. We prove
that a thermal state at constant inverse temperature β has a matrix product representa-

tion with bond dimension eÕ(
√
β log(1/ε)) such that all local properties are approximated

to accuracy ε. This justifies the common practice of using a constant bond dimension
in the numerical simulation of thermal properties.

1 Introduction

Classical simulation of quantum many-body systems is a fundamental problem in computa-
tional physics. One difficulty is that a generic many-body state cannot even be represented
in polynomial space because the dimension of the Hilbert space grows exponentially with the
system size. Fortunately, many physically interesting states are non-generic and structured.
It may be possible to avoid the “curse of dimensionality” by exploiting their structure.

In one-dimensional quantum systems such as spin chains, matrix product state (MPS)
methods, including the celebrated density matrix renormalization group, are popular and
numerically powerful [1]. As the name suggests, an MPS is a data structure representing a
many-body state by products of matrices. The dimension of the matrices is called the bond
dimension, which determines the space complexity or the number of parameters in the MPS.

Consider a system in thermal equilibrium. In textbooks and courses, we learned that the
system at temperature T = 1/β is in a mixed state described by the density operator

σβ := e−βH/Z, Z := tr e−βH , (1)
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where H is the Hamiltonian and Z is the partition function.
Since MPS methods are widely used, it is important to understand their empirical success

in simulating the thermal properties of one-dimensional systems with short-range interac-
tions. In a remarkable sequence of papers [2–5], σβ is proved to be efficiently approximated
by a matrix product operator (MPO) [6–8], which is a straightforward generalization of MPS
to operators. Let Õ(x) := O(x log x). The best known result is

Theorem 1 ([5]). Consider a chain of N spins governed by a local Hamiltonian H. There
exists an MPO % with bond dimension

e
Õ
(
β2/3+
√
β log N

ε

)
(2)

such that ‖%− σβ‖1 ≤ ε, where ‖X‖1 := tr
√
X†X is the trace norm.

Remark. See Refs. [2–4] for analogues of this theorem in two and higher spatial dimensions.

In practice, we may not have to increase the bond dimension with the system size N .
An extreme example is the infinite imaginary time-evolving block decimation algorithm [9],
which yields a translationally invariant matrix product representation of σβ directly in the
thermodynamic limit. It is empirically observed that a constant bond dimension is sufficient
for computing expectation values of local observables. This observation cannot be explained
by Theorem 1, where the bond dimension (2) grows with the system size N and diverges in
the thermodynamic limit N → +∞.

In this paper, we prove that there exists an MPO with bond dimension

e
Õ
(
β2/3+
√
β log 1

ε

)
(3)

such that all local properties of σβ are approximated to accuracy ε. For constant β, the bond
dimension (3)

• is independent of N . This justifies the common practice of using a constant bond
dimension in the numerical simulation of thermal properties.

• grows slower than any power law in 1/ε, e.g., � 1/ε0.001, as ε→ 0+. This explains the
empirical observation that high precision can be achieved with a small or moderate
bond dimension.

As a side remark, Refs. [10–14] constructed locally accurate matrix product approxima-
tions to pure states with low entanglement.

2 Results

Consider a chain of N spins with local dimension d.

Definition 1 (matrix product operator). Let {Ôj}d
2−1
j=0 be a basis of the space of linear

operators on the Hilbert space of a spin. Let {Di}Ni=0 with D0 = DN = 1 be a sequence of
positive integers. An MPO has the form

ρ =
d2−1∑

j1,j2,...,jN=0

(
A

(1)
j1
A

(2)
j2
· · ·A(N)

jN

)
Ôj1 ⊗ Ôj2 ⊗ · · · ⊗ ÔjN , (4)
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where A
(i)
ji

is a matrix of size Di−1 ×Di. Define max0≤i≤N Di as the bond dimension of the
MPO ρ.

Consider a local Hamiltonian

H =
N−1∑
i=1

Hi, ‖Hi‖ ≤ 1, (5)

where Hi represents the nearest-neighbor interaction between spins at positions i, i+ 1, and
‖ · ‖ is the operator norm. The thermal state σβ at inverse temperature β is given by Eq.
(1).

Theorem 2. There exists an MPO ρ with bond dimension (3) such that

| tr(ρÔ)− tr(σβÔ)| ≤ ε (6)

for any local observable Ô with ‖Ô‖ ≤ 1.

Proof. We will purify σβ. We introduce a second (auxiliary) copy of the system. Spins in
the original and auxiliary systems are labeled by 1, 2, . . . , N and 1̄, 2̄, . . . , N̄ , respectively.
Let {|j〉}d−1

j=0 be the computational basis of the Hilbert space of a spin, and

|Ψ〉 :=
e−βH/2 ⊗ I√

Z

N⊗
i=1

|ψ〉i, |ψ〉i :=
d−1∑
j=0

|j〉i|j〉ī, (7)

where |ψ〉i is an (unnormalized) maximally entangled state of spins i and ī. By construction,
|Ψ〉 is normalized and is a purification of σβ = tra(|Ψ〉〈Ψ|), where tra denotes the partial
trace over the auxiliary system. Combining every pair of spins i, ī into a composite spin of
local dimension d2, we obtain a chain of N composite spins. Let i|i+ 1 be a cut separating
the first i and the last N − i composite spins.

Lemma 1 (Eq. (83) of Ref. [5]). Let λ1 ≥ λ2 ≥ · · · be the Schmidt coefficients of |Ψ〉 across
the cut i|i+ 1 in non-ascending order. Then,∑

j>Qδ

λ2
j ≤ δ for Qδ := e

Õ
(
β2/3+
√
β log 1

δ

)
. (8)

Using this lemma and Lemma 4 in Ref. [10], we obtain an MPO ρ̃ with bond dimension
Q2
δ such that ∣∣〈Ψ|Ô|Ψ〉 − tr(ρ̃Ô)

∣∣ = O(
√
δ) (9)

for any local observable Ô with ‖Ô‖ ≤ 1. As tracing out the auxiliary system does not in-
crease the bond dimension, ρ := tra ρ̃ is an MPO in the original system with bond dimension
Q2
δ . We complete the proof of Theorem 2 by letting ε be the right-hand side of Eq. (9).

Remark. Recall that ρ̃ is a locally accurate approximation (9) to the purification |Ψ〉 of σβ.
Since (pure) MPS is more favorable than MPO in both theory and practice, one might prefer
ρ̃ to be an MPS. This can be achieved by using Lemma 4 in Ref. [12] instead of Lemma 4
in Ref. [10] at the price of weakening the upper bound (3) on the bond dimension of ρ to

eÕ(β2/3+
√
β log(1/ε))/ε.
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Notes

Very recently, I became aware of related work by Alhambra and Cirac [15], which constructed
locally accurate tensor network approximations to thermal states and time evolution in any
spatial dimension. Specializing to thermal states in one dimension, my methods and results
are different from theirs. Their proof consists of two steps:

1. Construct “local approximations” assuming exponential decay of correlations.

2. Merge local approximations using the “averaging trick” of Refs. [11–13].

The proof of Theorem 2 uses neither of these ingredients. Different from Eq. (5) in Result
1 of Ref. [15], the bond dimension (3) does not depend on the correlation length and grows
slower than any power law in 1/ε as ε→ 0+ for constant β. This solves an open problem in
the conclusion section of Ref. [15].
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[9] R. Orús and G. Vidal. Infinite time-evolving block decimation algorithm beyond uni-
tary evolution. Physical Review B, 78(15):155117, 2008.

[10] Y. Huang. Computing energy density in one dimension. arXiv:1505.00772.

[11] N. Schuch and F. Verstraete. Matrix product state approximations for infinite systems.
arXiv:1711.06559.

[12] Y. Huang. Approximating local properties by tensor network states with constant bond
dimension. arXiv:1903.10048.

[13] A. M. Dalzell and F. G. S. L. Brandão. Locally accurate MPS approximations for
ground states of one-dimensional gapped local Hamiltonians. Quantum, 3:187, 2019.

[14] Y. Huang. Matrix product state approximations: Bringing theory closer to practice.
Quantum Views, 3:26, 2019.

[15] Á. M. Alhambra and J. I. Cirac. Locally accurate tensor networks for thermal states
and time evolution. arXiv:2106.00710.

5


	Introduction
	Results

