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Abstract

In one-dimensional quantum systems with short-range interactions, we prove that
a thermal state at inverse temperature § = O(1) has a matrix product representation

with bond dimension e?(V8102(1/6) guch that all local properties are approximated to
accuracy e.

1 Introduction

One of the most fundamental statements in quantum statistical mechanics is that the state
at temperature 7' = 1/ is described by the density matrix

og:=e )7 7 =trePH (1)

where Z is the partition function of the Hamiltonian H. In a system of N spins or qudits
with local dimension d, o is a square matrix of order d”. From a computational point of
view, it is highly desirable to encode og with a small number of parameters.

Here we focus on one-dimensional systems with short-range interactions. In a remarkable
sequence of papers [1}-4], o5 is proved to be efficiently approximated by a matrix product
operator (MPO) [5, 6]. Let O(z) := O(zlog ). The state-of-the-art result is

Theorem 1 (|4]). There exists an MPO p with bond dimension
66(52/34,, /ﬁlog(N/E)) (2)

such that ||og — p|l1 < €, where || X||; := tr VXX denotes the trace norm.
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Remark. See Refs. |1H3] for analogues of this theorem in two and higher spatial dimensions.

In practice, we may not have to increase the bond dimension with the system size N.
An extreme example is the infinite imaginary time-evolving block decimation algorithm [7],
which yields a translation-invariant matrix product representation of thermal states directly
in the thermodynamic limit. It is empirically observed that a constant bond dimension is
sufficient for computing expectation values of local observables. This observation cannot be
explained by Theorem , where the bond dimension (2)) grows with the system size N and
diverges in the thermodynamic limit N — +oc.

We prove that there exists an MPO with bond dimension

O(8/2+/B1og(1/0)) (3)

such that all local properties of o5 are approximated to accuracy e. For § = O(1), the bond
dimension is sub-polynomial in 1/e, i.e., o(1/€e°) for an arbitrarily small constant ¢ > 0.

2 Results

Consider a chain of N spins or qudits with local dimension d.

Definition 1 (matrix product operator [5,[6]). Let {Oj}?igl be a basis of the space of linear
operators on the Hilbert space of a spin. Let {D;}¥ with Dy = Dy = 1 be a sequence of
positive integers. An MPO has the form

d2—1
p= > (Aﬁ)Ag) . '4’?) O0j, ® 0, @ -+ @ Ojy, (4)

J1,J25--JN=0

where A;? is a matrix of size D;_;1 x D;. Define maxo<;<n D; as the bond dimension of the
MPO p.

Consider a local Hamiltonian
N-1
H=)Y H, |H=o0(), (5)
i=1

where H; represents the nearest-neighbor interaction between spins at positions 2,7 + 1, and
| - || denotes the operator norm. The thermal state oz at inverse temperature /3 is given by

Eq. .
Theorem 2. There exists an MPO p with bond dimension @ such that

[tr(050) — tr(pO)| < (6)

for any local observable O with ||O] < 1.



Proof. We will purify o3. We introduce a second (auxiliary) copy of the system. Spins in
the original and auxiliary systems are labeled by 1,2,..., N and 1,2,..., N, respectively.
Let {|j >};l;é be the computational basis of the Hilbert space of a spin, and

d—1

e P2 o N o
)= @b = Xl M)

where [¢); is an (unnormalized) maximally entangled state of spins i and . By construction,
|W) is normalized and is a purification of o5 = tr,(|¥)(V|), where tr, denotes the partial
trace over the auxiliary system. Combining every pair of spins 4,4 into a composite spin of
local dimension d?, we obtain a chain of N composite spins. Let i|i + 1 be a cut separating
the first © and the last N — i composite spins.

Lemma 1 (Eq. (83) of Ref. [4]). Let Ay > Xy > -+ be the Schmidt coefficients of | V) across
the cut i|i + 1 in non-ascending order. Then,

Z )\? <6 for Qs:= €é<62/3+ v Blog(l/é)). (8)
J>Qs
Using this lemma and Lemma 4 in Ref. [§], we obtain an MPO p with bond dimension
Q3% such that
(T]O¥) - tx(70)| = O(V3) 9)
for any local observable O with ||O|| < 1. As tracing out the auxiliary system does not in-

crease the bond dimension, p := tr, p is an MPO on the original system with bond dimension
Q3. We complete the proof by letting € be the right-hand side of Eq. @ m

Remark. Recall that p is a locally accurate approximation (9) to the purification |¥) of
0. Since (pure) matrix product states (MPS) [9, |10] are more favorable than MPO in both
theory [11] and practice [12], one might prefer g to be an MPS. This can be achieved by using
the main results of Refs. [13}{15] instead of Lemma 4 in Ref. [8] at the price of weakening

the upper bound on the bond dimension of p to OBty Blog(l/e))/e.
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Recently, I became aware of a related work by Alhambra and Cirac [16], which constructed
locally accurate tensor network approximations to thermal states and time-evolution opera-
tors in any spatial dimension. Specializing to thermal states in one dimension, my methods
and results are significantly different from theirs. Their proof consists of two steps:

1. Construct local approximations assuming exponential decay of correlations.
2. Merge local approximations using the “averaging trick” of Refs. |13} |15} /17].

The proof of Theorem [2| uses neither of these ingredients. Different from Eq. (5) in Result 1
of Ref. |16], the bound does not depend on the correlation length and is sub-polynomial
in 1/e for = O(1). This solves an open problem in the conclusion section of Ref. [16].
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