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Abstract

In one-dimensional quantum systems with short-range interactions, we prove that
a thermal state at inverse temperature β = O(1) has a matrix product representation

with bond dimension eÕ(
√
β log(1/ε)) such that all local properties are approximated to

accuracy ε.

1 Introduction

One of the most fundamental statements in quantum statistical mechanics is that the state
at temperature T = 1/β is described by the density matrix

σβ := e−βH/Z, Z := tr e−βH , (1)

where Z is the partition function of the Hamiltonian H. In a system of N spins or qudits
with local dimension d, σβ is a square matrix of order dN . From a computational point of
view, it is highly desirable to encode σβ with a small number of parameters.

Here we focus on one-dimensional systems with short-range interactions. In a remarkable
sequence of papers [1–4], σβ is proved to be efficiently approximated by a matrix product
operator (MPO) [5, 6]. Let Õ(x) := O(x log x). The state-of-the-art result is

Theorem 1 ([4]). There exists an MPO ρ with bond dimension

e
Õ
(
β2/3+
√
β log(N/ε)

)
(2)

such that ‖σβ − ρ‖1 ≤ ε, where ‖X‖1 := tr
√
X†X denotes the trace norm.
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Remark. See Refs. [1–3] for analogues of this theorem in two and higher spatial dimensions.

In practice, we may not have to increase the bond dimension with the system size N .
An extreme example is the infinite imaginary time-evolving block decimation algorithm [7],
which yields a translation-invariant matrix product representation of thermal states directly
in the thermodynamic limit. It is empirically observed that a constant bond dimension is
sufficient for computing expectation values of local observables. This observation cannot be
explained by Theorem 1, where the bond dimension (2) grows with the system size N and
diverges in the thermodynamic limit N → +∞.

We prove that there exists an MPO with bond dimension

e
Õ
(
β2/3+
√
β log(1/ε)

)
(3)

such that all local properties of σβ are approximated to accuracy ε. For β = O(1), the bond
dimension (3) is sub-polynomial in 1/ε, i.e., o(1/εc) for an arbitrarily small constant c > 0.

2 Results

Consider a chain of N spins or qudits with local dimension d.

Definition 1 (matrix product operator [5, 6]). Let {Ôj}d
2−1
j=0 be a basis of the space of linear

operators on the Hilbert space of a spin. Let {Di}Ni=0 with D0 = DN = 1 be a sequence of
positive integers. An MPO has the form

ρ =
d2−1∑

j1,j2,...,jN=0

(
A

(1)
j1
A

(2)
j2
· · ·A(N)

jN

)
Ôj1 ⊗ Ôj2 ⊗ · · · ⊗ ÔjN , (4)

where A
(i)
ji

is a matrix of size Di−1 ×Di. Define max0≤i≤N Di as the bond dimension of the
MPO ρ.

Consider a local Hamiltonian

H =
N−1∑
i=1

Hi, ‖Hi‖ = O(1), (5)

where Hi represents the nearest-neighbor interaction between spins at positions i, i+ 1, and
‖ · ‖ denotes the operator norm. The thermal state σβ at inverse temperature β is given by
Eq. (1).

Theorem 2. There exists an MPO ρ with bond dimension (3) such that

| tr(σβÔ)− tr(ρÔ)| ≤ ε (6)

for any local observable Ô with ‖Ô‖ ≤ 1.
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Proof. We will purify σβ. We introduce a second (auxiliary) copy of the system. Spins in
the original and auxiliary systems are labeled by 1, 2, . . . , N and 1̄, 2̄, . . . , N̄ , respectively.
Let {|j〉}d−1

j=0 be the computational basis of the Hilbert space of a spin, and

|Ψ〉 :=
e−βH/2 ⊗ I√

Z

N⊗
i=1

|ψ〉i, |ψ〉i :=
d−1∑
j=0

|j〉i|j〉ī, (7)

where |ψ〉i is an (unnormalized) maximally entangled state of spins i and ī. By construction,
|Ψ〉 is normalized and is a purification of σβ = tra(|Ψ〉〈Ψ|), where tra denotes the partial
trace over the auxiliary system. Combining every pair of spins i, ī into a composite spin of
local dimension d2, we obtain a chain of N composite spins. Let i|i+ 1 be a cut separating
the first i and the last N − i composite spins.

Lemma 1 (Eq. (83) of Ref. [4]). Let λ1 ≥ λ2 ≥ · · · be the Schmidt coefficients of |Ψ〉 across
the cut i|i+ 1 in non-ascending order. Then,∑

j>Qδ

λ2
j ≤ δ for Qδ := e

Õ
(
β2/3+
√
β log(1/δ)

)
. (8)

Using this lemma and Lemma 4 in Ref. [8], we obtain an MPO ρ̃ with bond dimension
Q2
δ such that

|〈Ψ|Ô|Ψ〉 − tr(ρ̃Ô)| = O(
√
δ) (9)

for any local observable Ô with ‖Ô‖ ≤ 1. As tracing out the auxiliary system does not in-
crease the bond dimension, ρ := tra ρ̃ is an MPO on the original system with bond dimension
Q2
δ . We complete the proof by letting ε be the right-hand side of Eq. (9).

Remark. Recall that ρ̃ is a locally accurate approximation (9) to the purification |Ψ〉 of
σβ. Since (pure) matrix product states (MPS) [9, 10] are more favorable than MPO in both
theory [11] and practice [12], one might prefer ρ̃ to be an MPS. This can be achieved by using
the main results of Refs. [13–15] instead of Lemma 4 in Ref. [8] at the price of weakening

the upper bound (3) on the bond dimension of ρ to eÕ(β2/3+
√
β log(1/ε))/ε.
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Recently, I became aware of a related work by Alhambra and Cirac [16], which constructed

locally accurate tensor network approximations to thermal states and time-evolution opera-
tors in any spatial dimension. Specializing to thermal states in one dimension, my methods
and results are significantly different from theirs. Their proof consists of two steps:

1. Construct local approximations assuming exponential decay of correlations.

2. Merge local approximations using the “averaging trick” of Refs. [13, 15, 17].

The proof of Theorem 2 uses neither of these ingredients. Different from Eq. (5) in Result 1
of Ref. [16], the bound (3) does not depend on the correlation length and is sub-polynomial
in 1/ε for β = O(1). This solves an open problem in the conclusion section of Ref. [16].
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