PROOF OF THREE CONJECTURES: BEAL'S CONJECTURE, RIEMANN HYPOTHESIS AND $A B C$
 VERSION 1.0-JUNE 2021

Abdelmajid Ben Hadj Salem, Ingénieur GÉnéral

[^0]We give in detail all the proofs.
Résumé. - Cette monographie présente les preuves de 3 conjectures importantes dans le domaine de la théorie des nombres:

- La conjecture de Beal.
- L'Hypothèse de Riemann.
- La conjecture abc.

Nous donnons les détails des différentes démonstrations.

Abdelmajid Ben Hadj Salem, Ingénieur Général

PROOFS OF THREE
CONJECTURES IN NUMBER THEORY : BEAL'S CONJECTURE, RIEMANN HYPOTHESIS AND THE $A B C$ CONJECTURE
VERSION 1.0-JUNE 2021

Abdelmajid Ben Hadj Salem, Ingénieur Général
Résidence Bousten 8, Mosquée Raoudha, 1181 Soukra Raoudha, Tunisia, .
E-mail: abenhadjsalem@gmail.com,
© -2021- Abdelmajid Ben Hadj Salem -

Figure 1. Photo of the Author (2011)

To the memory of my Parents, to my wife Wahida, my daughter Sinda and my son Mohamed Mazen

PROOFS OF THREE CONJECTURES IN NUMBER THEORY : BEAL'S CONJECTURE, RIEMANN HYPOTHESIS AND THE $A B C$ CONJECTURE
 VERSION 1.0 - JUNE 2021

Abdelmajid Ben Hadj Salem, Ingénieur Général

[^1]Nous donnons les détails des différentes démonstrations.

CONTENTS

1. A Complete Proof of Beal's Conjecture. 8
1.1. Introduction 8
1.1.1. Trivial Case. 9
1.2. Preliminaries 9
1.2.1. Expressions of the roots. 12
1.3. Preamble of the Proof of the Main Theorem 15
1.3.1. Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$ 15
1.3.1.1. $b=1$ 15
1.3.1.2. $b=2$, 16
$1.3 .13, b=3$ 16
1.3.2. Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$. 16
1.4. Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$. 17
1.4.1. Case $b=2$ and $3 \mid a$ 17
1.4.2. Case $b=4$ and $3 \mid a$ 17
1.4.3. Case $b=p$ and $3 \mid a$ 17
1.4.4. Case $b \mid p \Rightarrow p=b . p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$ 21
1.4.5. Case $b=2 p$ and $3 \mid a$: 25
1.4.6. Case $b=4 p$ and $3 \mid a$: 26
1.4.7. Case $3 \mid a$ and $b=2 p^{\prime} \quad b \neq 2$ with $p^{\prime} \mid p$: 31
1.4.8. Case $3 \mid a$ and $b=4 p^{\prime} \quad b \neq 2$ with $p^{\prime} \mid p$: 34
1.4.9. Case $3 \mid a$ and $b \mid 4 p$: 38
1.5. Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$ 42
1.5.1. Case $b=2$ and $3 \mid p$: 42
1.5.2. Case $b=4$ and $3 \mid p$ 42
1.5.3. Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$ 42
1.5.4. Case $b=3$ and $3 \mid p$: 47
1.5.5. Case $3 \mid p$ and $b=p$: 48
1.5.6. Case $3 \mid p$ and $b=4 p$; 48
1.5.7. Case $3 \mid p$ and $b=2 p$: 48
1.5.8. Case $3 \mid p$ and $b \neq 3$ a divisor of p : 48
1.5.9. Case $3 \mid p$ and $b \mid 4 p$: 58
1.6. Numerical Examples. 73
1.6.1. Example 1: 73
1.6.2. Example 2: 74
1.6.3. Example 3: 74
1.7. Conclusion 75
Bibliography. 76
2. Towards A Solution of The Riemann Hypothesis. 77
2.1. Introduction 77
2.1.1. The function ζ. 78
2.1.2. A Equivalent statement to the Riemann Hypothesis 79
2.2. Proof that the zeros of $\eta(s)$ are on the critical line $\Re(s)=\frac{1}{2}$ 80
2.2.1. Case $\sigma=\frac{1}{2} \Longrightarrow 2 \sigma=1$ 82
2.2.2. Case $0<\Re(s)<\frac{1}{2}$, 83
2.2.2.1. Case there is no zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$. 84
2.2.2.2. Case where there are zeros of $\eta(s)$ with $s=\sigma+i t$ and $0<\sigma<\frac{1}{2}$. 84
2.2.3. Case $\frac{1}{2}<\Re(s)<1$. 84
2.3. Conclusion 85
Bibliography. 87
3. Is The $a b c$ Conjecture True? 88
3.1. Introduction and notations 88
3.2. A Proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$, case $c=a+b$. 89
3.2.1. $\mu_{a} \leq \operatorname{rad}^{0.63}(a)$ 90
3.2.2. $\mu_{c} \leq \operatorname{rad}^{0.63}(c)$ 90
3.2.3. $\mu_{a}>\operatorname{rad}^{0.63}(a)$ and $\mu_{c}>\operatorname{rad}^{0.63}(c)$. 90
3.2.3.1. Case: $\operatorname{rad}^{0.63}(c)<\mu_{c} \leq \operatorname{rad}^{1.63}(c)$ and $\operatorname{rad}^{0.63}(a)<\mu_{a} \leq \operatorname{rad}^{1.63}(a)$: 90
3.2.3.2. Case: $\mu_{c}>\operatorname{rad}^{1.63}(c)$ or $\mu_{a}>\operatorname{rad}^{1.63}(a)$ 90
3.2.3.3. Case $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$ 97
3.3. The Proof of the abc conjecture 99
3.3.1. Case : $\epsilon \geq 0.63$ 99
3.3.2. Case: $\epsilon<0.63$ 99
3.3.2.1. Case: $c>R$. 99
3.3.2.2. Case: $c<R$. 101
3.4. Conclusion 101
Bibliography. 102
CONTENTS 7
List of figures 104
List of Tables. 105

CHAPTER 1

A COMPLETE PROOF OF BEAL'S CONJECTURE

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=$ $\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ with p, q integers depending of A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p, q and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers and have or not a common factor. Three numerical examples are given.

Résumé. - En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A, B, C, m, n, et l des entiers positifs avec $m, n, l>2$. Si $A^{m}+B^{n}=C^{l}$ alors A, B, et C ont un facteur commun.
Nous commençons par construire le polynôme $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ avec p, q des entiers qui dépendent de A^{m}, B^{n} et C^{l}. Nous résolvons $x^{3}-p x+q=0$ et nous obtenons les trois racines x_{1}, x_{2}, x_{3} comme fonctions de p, q et d'un paramètre θ. Comme $A^{m}, B^{n},-C^{l}$ sont les seules racines de $x^{3}-p x+q=0$, nous discutons les conditions pourque x_{1}, x_{2}, x_{3} soient des entiers. Trois exemples numériques sont présentés.

1.1. Introduction

In 1997, Andrew Beal [4] announced the following conjecture :

Conjecture 1.1. - Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.1}
\end{equation*}
$$

then A, B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to construct a polynomial $P(x)$ of three order having as roots A^{m}, B^{n} and $-C^{l}$ with the condition 1.1 . The paper is organized as follows. In Section 1, we begin with the trivial case where $A^{m}=B^{n}$. In Section 2, we consider the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$. We express the three roots of $P(x)=x^{3}-p x+q=0$ in function of two parameters ρ, θ that depend of A^{m}, B^{n}, C^{l}. The Sections 3,4 and 5 are the main parts of the paper. We write that $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}$. As $A^{2 m}$ is an integer, it follows that $\cos ^{2} \frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. We discuss the conditions of divisibility of p, a, b so that the expression of $A^{2 m}$ is an integer. Depending of each individual case, we obtain that A, B, C have or not a common factor. We present three numerical examples in section 6 and we give conclusions in the last section.
1.1.1. Trivial Case. - We consider the trivial case when $A^{m}=B^{n}$. The equation (1.1) becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{1.2}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow \exists c \in \mathbb{N}^{*} / C=2 c$, it follows $2 A^{m}=2^{l} c^{l} \Longrightarrow A^{m}=$ $2^{l-1} c^{l}$. As $l>2$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow 2\left|B^{n} \Longrightarrow 2\right| B$. The conjecture (3.1) is verified.

We suppose in the following that $A^{m}>B^{n}$.

1.2. Preliminaries

Let $m, n, l \in \mathbb{N}^{*}>2$ and $A, B, C \in \mathbb{N}^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.3}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{1.4}
\end{gather*}
$$

Using the equation 1.3$), P(x)$ can be written as:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{1.5}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n} \\
\quad q=A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{1.7}
\end{array}
$$

As $A^{m} \neq B^{n}$, we have :

$$
\begin{equation*}
p>\left(A^{m}-B^{n}\right)^{2}>0 \tag{1.8}
\end{equation*}
$$

Equation 1.5 becomes:

$$
\begin{equation*}
P(x)=x^{3}-p x+q \tag{1.9}
\end{equation*}
$$

Using the equation (1.4), $P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.

Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{1.10}
\end{equation*}
$$

To resolve 1.10 let:

$$
\begin{equation*}
x=u+v \tag{1.11}
\end{equation*}
$$

Then $P(x)=0$ gives:
(1.12)
$P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0$
To determine u and v, we obtain the conditions:

$$
\begin{align*}
& u^{3}+v^{3}=-q \tag{1.13}\\
& u v=p / 3>0 \tag{1.14}
\end{align*}
$$

Then u^{3} and v^{3} are solutions of the second order equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{1.15}
\end{equation*}
$$

Its discriminant Δ is written as :

$$
\begin{equation*}
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27} \tag{1.16}
\end{equation*}
$$

Let:

$$
\begin{align*}
& \bar{\Delta}=27 q^{2}-4 p^{3} \\
& =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{1.17}\\
& .17) \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3}
\end{align*}
$$

Noting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2} \tag{1.19}
\end{array}
$$

we can write 1.17 as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{1.20}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite 1.20 as :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right) \tag{1.21}
\end{equation*}
$$

We call t the parameter :

$$
\begin{equation*}
t=\frac{\beta}{\alpha} \tag{1.22}
\end{equation*}
$$

$\bar{\Delta}$ becomes :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right) \tag{1.23}
\end{equation*}
$$

Let us calling :

$$
\begin{equation*}
y=y(t)=27 t-4(t-1)^{3} \tag{1.24}
\end{equation*}
$$

Since $\alpha>0$, the sign of $\bar{\Delta}$ is also the sign of $y(t)$. Let us study the sign of y. We obtain $y^{\prime}(t)$:

$$
\begin{equation*}
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t) \tag{1.25}
\end{equation*}
$$

$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:
The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4\left[\Longrightarrow y>0\right.$. As we have $t=\frac{\beta}{\alpha}>4$ because as $A^{m} \neq B^{n}$:

$$
\begin{equation*}
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n} \tag{1.26}
\end{equation*}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation 1.15 does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positive or a negative real and $u \cdot v=p / 3$.

t	$-\infty$	-1/2		5/2	4	$+\infty$
$1+2 \mathrm{t}$	-	0	+		+	
5-2t	+		+	0	-	
$y^{\prime}(t)$	-	0	+	0	-	
$y(t)$						

Figure 1. The table of variations

1.2.1. Expressions of the roots. -

Proof. - The solutions of 1.15 are:

$$
\begin{align*}
X_{1} & =\frac{-q+i \sqrt{-\Delta}}{2} \tag{1.27}\\
X_{2}=\overline{X_{1}} & =\frac{-q-i \sqrt{-\Delta}}{2} \tag{1.28}
\end{align*}
$$

We may resolve:

$$
\begin{align*}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \tag{1.29}\\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2} \tag{1.30}
\end{align*}
$$

Writing X_{1} in the form:

$$
\begin{equation*}
X_{1}=\rho e^{i \theta} \tag{1.31}
\end{equation*}
$$

with:

$$
\begin{equation*}
\rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \tag{1.32}
\end{equation*}
$$

$$
\text { and } \begin{array}{r}
\sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \\
\cos \theta=-\frac{q}{2 \rho}<0 \tag{1.34}
\end{array}
$$

Then $\theta[2 \pi] \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{1.35}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{1.36}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{1.37}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{1.40}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}} \tag{1.43}
\end{array}
$$

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}} \tag{1.46}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
& v_{1}=\overline{u_{1}} \tag{1.47}\\
& v_{2}=\overline{u_{2}} \tag{1.48}\\
& v_{3}=\overline{u_{3}} \tag{1.49}
\end{align*}
$$

We obtain as real solutions of the equation 1.12 :

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{1.50}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{1.51}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{1.52}
\end{gather*}
$$

We compare the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{align*}
2 \sqrt[3]{p} \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
3 \cos \frac{\theta}{3} & \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{1.53}
\end{align*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{1.54}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of 1.10 , we consider, as A^{m} is supposed great than B^{n}, the expressions:
(1.55)

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

1.3. Preamble of the Proof of the Main Theorem

Theorem 1.2. - Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.56}
\end{equation*}
$$

then A, B, and C have a common factor.

Proof. - $A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}$ is an integer $\Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}$ is also an integer. But:

$$
\begin{equation*}
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{1.57}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{1.58}
\end{equation*}
$$

As $A^{2 m}$ is an integer and p is an integer, then $\cos ^{2} \frac{\theta}{3}$ must be written under the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{1.59}
\end{equation*}
$$

with $b \in \mathbb{N}^{*}$; for the last condition $a \in \mathbb{N}^{*}$ and a, b coprime.

Notations: In the following of the paper, the scalars $a, b, \ldots, z, \alpha, \beta, \ldots$, A, B, C, \ldots and Δ, Φ, \ldots represent positive integers except the parameters θ, ρ, or others cited in the text, are reals.
1.3.1. Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$. - We obtain:

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{1.60}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.
1.3.1.1. $b=1$. $-b=1 \Rightarrow 4<3$ which is impossible.
1.3.1.2. $\left.b=2 .-b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 \cdot p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, we obtain:

$$
\begin{gather*}
\left.A^{2 m}=\left(A^{m}\right)^{2}=\frac{2 p}{3}=2 \cdot p^{\prime} \Longrightarrow 2 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=2^{\alpha} p_{1}^{2} \\
\text { with } 2 \nmid p_{1}, \quad \alpha+1=2 \beta \\
A^{m}=2^{\beta} p_{1} \tag{1.61}\\
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}=2^{\alpha} p_{1}^{2} \tag{1.62}
\end{gather*}
$$

From the equation (1.61), it follows that $2 \mid A^{m} \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. Then, we have $\beta=i . m=i m$. The equation 1.62 implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
1.3.1.2.1. Case $2 \mid B^{n}$. —: If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. The expression of $B^{n} C^{l}$ becomes:

$$
B_{1}^{n} C^{l}=2^{2 i m-1-j n} p_{1}^{2}
$$

- If $2 i m-1-j n \geq 1,2\left|C^{l} \Longrightarrow 2\right| C$ according to $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m-1-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$.
1.3.1.2.2. Case $2 \mid C^{l}$. - : If $2 \mid C^{l}$: with the same method used above, we obtain the identical results.
1.3.1.3. $\left.b=3 .-b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$, as $9 \ll p$ then $A^{2 m}=4 p^{\prime}$. If p^{\prime} is prime, it is impossible. We suppose that p^{\prime} is not a prime, as $m \geq 3$, it follows that $2 \mid p^{\prime}$, then $2 \mid A^{m}$. But $B^{n} C^{l}=5 p^{\prime}$ and $2 \mid\left(B^{n} C^{l}\right)$. Using the same method for the case $b=2$, we obtain the identical results.
1.3.2. Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$. - We have:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} ; \quad A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{1.63}
\end{equation*}
$$

where a, b verify one of the two conditions:

$$
\{3 \mid a \text { and } b \mid 4 p\} \text { or } \begin{array}{|lll}
\{3 \mid p & \text { and } & b \mid 4 p\} \tag{1.64}\\
\hline
\end{array}
$$

and using the equation 1.36 , we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{1.65}
\end{equation*}
$$

For these conditions, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}$ is an integer.
Let us study the conditions given by the equation 1.64 in the following two sections.
1.4. Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$

We obtain :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*} / a=3 a^{\prime} \tag{1.66}
\end{equation*}
$$

1.4.1. Case $b=2$ and $3 \mid a:-A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{1.67}
\end{equation*}
$$

Using the equation 1.66), $A^{2 m}$ becomes :

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{1.68}
\end{equation*}
$$

but $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.
1.4.2. Case $b=4$ and $3 \mid a:-A^{2 m}$ is written :

$$
\begin{align*}
A^{2 m} & =\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \tag{1.69}\\
& \text { and } \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{1.70}
\end{align*}
$$

which is impossible. Then the case $b=4$ is impossible.
1.4.3. Case $b=p$ and $3 \mid a:-$ We have :

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{1.71}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a^{\prime \prime} / a^{\prime}=a^{\prime \prime 2} \\
\text { and } \quad B^{n} C^{l}=p-A^{2 m}=b-4 a^{\prime}=b-4 a a^{\prime 2} \tag{1.74}
\end{array}
$$

The calculation of $A^{m} B^{n}$ gives :

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } \quad & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{1.75}
\end{align*}
$$

The left member of 1.75 is an integer and p also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ is written under the form :

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{1.76}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} \cdot k_{3}, k_{3} \in \mathbb{N}^{*}$.
** A-1- We suppose that $k_{3} \neq 1$, we obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{1.77}
\end{equation*}
$$

Let μ be a prime integer with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** A-1-1- If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow(\mu=2$, but $\left.2 \mid a^{\prime}\right)$ or $\left(\mu \mid a^{\prime}\right)$. Then $\mu \mid a$ it follows the contradiction with a, b coprime.
** A-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \tag{1.78}
\end{equation*}
$$

It follows :

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p :

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{1.79}
\end{equation*}
$$

As $p=b=k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{1.80}
\end{equation*}
$$

From the last equation, we obtain $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** A-1-2-1- If $\mu \mid B^{n}$ which is in contradiction with $\mu \nmid B^{n}$.
** A-1-2-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we arrive to :

$$
\mu \left\lvert\, 3 B^{n}\left\{\begin{array}{l}
\mu \mid B^{n} \tag{1.81}\\
o r \\
\mu=3
\end{array}\right.\right.
$$

** A-1-2-2-1- If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is the contradiction with $\mu \nmid B$ cited above.
** A-1-2-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
** A-2- We assume now $k_{3}=1$, then :

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{1.82}\\
b & =k_{2} \tag{1.83}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{1.84}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{1.85}
\end{equation*}
$$

but $a^{\prime}=a^{2}$, then $p-a$ is a square. Let:

$$
\begin{equation*}
\lambda^{2}=p-a=b-a=b-3 a^{\prime 2} \Longrightarrow \lambda^{2}+3 a^{\prime 2}=b \tag{1.86}
\end{equation*}
$$

The equation 1.85 becomes:

$$
\begin{equation*}
4^{2} a^{\prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a " \lambda \tag{1.87}
\end{equation*}
$$

taking the positive root, but $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a "\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \Longrightarrow \lambda=a^{"}+B^{n} \tag{1.88}
\end{equation*}
$$

** A-2-1- As $A^{m}=2 a " \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$, then $A^{m}=2 a "=2^{i m} A_{1}^{m} \Longrightarrow a "=2^{i m-1} A_{1}^{m}$, but $i m \geq 3 \Longrightarrow 4 \mid a "$. As $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=\lambda=2^{i m-1} A_{1}^{m}+B^{n}$. Taking its square, then :

$$
\lambda^{2}=2^{2 i m-2} A_{1}^{2 m}+2^{i m} A_{1}^{m} B^{n}+B^{2 n}
$$

As $i m \geq 3$, we can write $\lambda^{2}=4 \lambda_{1}+B^{2 n} \Longrightarrow \lambda^{2} \equiv B^{2 n}(\bmod 4) \Longrightarrow \lambda^{2} \equiv$ $B^{2 n} \equiv 0(\bmod 4)$ or $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$.
** A-2-1-1- We suppose that $\lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4) \Longrightarrow 4\left|\lambda^{2} \Longrightarrow 2\right|(b-a)$. But $2 \mid a$ because $a=3 a^{\prime}=3 a^{\prime 2}=3 \times 2^{2(i m-1)} A_{1}^{2 m}$ and $i m \geq 3$. Then $2 \mid b$, it follows the contradiction with a, b coprime.
** A-2-1-2- We suppose now that $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$. As $A^{m}=2^{i m-1} A_{1}^{m}$ and $i m-1 \geq 2$, then $A^{m} \equiv 0(\bmod 4)$. As $B^{2 n} \equiv 1(\bmod 4)$, then B^{n} verifies $B^{n} \equiv 1(\bmod 4)$ or $B^{n} \equiv 3(\bmod 4)$ which gives for the two cases $B^{n} C^{l} \equiv 1(\bmod 4)$.

We have also $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime}+B^{n} . C^{l}=4 a^{" 2}+B^{n} C^{l} \Longrightarrow$ $B^{n} C^{l}=\lambda^{2}-a^{\prime 2}=B^{n} . C^{l}$, then $\lambda, a " \in \mathbb{N}^{*}$ are solutions of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{1.89}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of 1.89 and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the equation 1.89 (see theorem 27.3 in [6]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.

Let $(u, v), u, v \in \mathbb{N}^{*}$ be another pair, solution of the equation (1.89), then $u^{2}-v^{2}=x^{2}-y^{2}=N=B^{n} C^{l}$, but $\lambda=x$ and $a "=y$ verify the equation (1.88) given by $x-y=B^{n}$, it follows u, v verify also $u-v=B^{n}$, that gives $u+v=C^{l}$, then $u=x=\lambda=a "+B^{n}$ and $v=a "$. We have given a proof of the uniqueness of the solutions of the equation 1.89 with the condition $x-y=B^{n}$. As $N=B^{n} C^{l} \equiv 1(\bmod 4) \Longrightarrow Q(N)=[\tau(N) / 2]>1$. But $Q(N)=1$, then the contradiction.

Hence, the case $k_{3}=1$ is impossible.

Let us verify the condition 1.65 given by $b<4 a<3 b$. In our case, the condition becomes :

$$
\begin{equation*}
p<3 A^{2 m}<3 p \quad \text { with } \quad p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{1.90}
\end{equation*}
$$

and $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ that is verified. If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n} \overbrace{>}^{?} 0
$$

Studying the sign of the polynomial $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$ and taking $Y=A^{m}>B^{n}$, the condition $2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0$ is verified, then the condition $b<4 a<3 b$ is true.

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify that $A^{m}>B^{n}$ which is true.
1.4.4. Case $b \mid p \Rightarrow p=b \cdot p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a:-$

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{1.91}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{1.92}
\end{equation*}
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$, we obtain:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right) \tag{1.93}
\end{equation*}
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, so we have :

$$
\begin{gather*}
B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{1.94}\\
\text { and } \quad A^{2 m}=4 . p^{\prime} \cdot a^{\prime} \tag{1.95}
\end{gather*}
$$

** B-1- We suppose that p^{\prime} is prime, then $A^{2 m}=4 a p^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow p^{\prime} \mid a$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \Longrightarrow p^{\prime} \mid B^{n}$ or $p^{\prime} \mid C^{l}$.
** B-1-1- If $p^{\prime}\left|B^{n} \Longrightarrow p^{\prime}\right| B \Longrightarrow B=p^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Hence : $p^{\prime n-1} B_{1}^{n} C^{l}=b-4 a^{\prime}$. But $n>2 \Rightarrow(n-1)>1$ and $p^{\prime} \mid a^{\prime}$, then $p^{\prime} \mid b \Longrightarrow a$ and b are not coprime, then the contradiction.
${ }^{* *}$ B-1-2- If $p^{\prime}\left|C^{l} \Longrightarrow p^{\prime}\right| C$. The same method used above, we obtain the same results.
** B-2- We consider that p^{\prime} is not a prime integer.
** B-2-1- p^{\prime}, a are supposed coprime: $A^{2 m}=4 a p^{\prime} \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $p^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} \cdot p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** B-2-1-1- $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** B-2-1-1-2- We suppose that p_{1} is not prime, we can write it as $p_{1}=\omega^{m} \Longrightarrow p^{\prime}=\omega^{2 m}$, then: $B^{n} C^{l}=\omega^{2 m}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1- If ω is prime, it is different of 2 , then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1-1-1- If $2 m-n \cdot j=0$, we obtain $B_{1}^{n} \cdot C^{l}=b-4 a^{\prime}$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid\left(b-4 a^{\prime}\right)$. But $\omega \neq 2$ and ω is coprime with a^{\prime} then coprime with a, then $\omega \nmid b$. The conjecture (3.1) is verified.
** B-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, in this case with the same method, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid\left(b-4 a^{\prime}\right)$ and $\omega \nmid a$ and $\omega \nmid b$. The conjecture (3.1) is verified.

[^2]** B-2-1-1-2-1-2- We obtain the same results if $\omega \mid C^{l}$.
** B-2-1-1-2-2- Now, $p^{\prime}=\omega^{2 m}$ and ω not prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow$ $\omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** B-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega_{1}^{2 m f-n j} \Omega^{2 m}\left(b-4 a^{\prime}\right):$
** B-2-1-1-2-2-1-1- If $2 f \cdot m-n \cdot j=0$, we obtain $B_{1}^{n} \cdot C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$. But $\omega_{1} \neq 2$ and ω_{1} is coprime with a^{\prime}, then coprime with a, we deduce $\omega_{1} \nmid b$. Then the conjecture (3.1) is verified.
** B-2-1-1-2-2-1-2- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$ and $\omega_{1} \nmid a$ and $\omega_{1} \nmid b$. The conjecture (3.1) is verified.
** B-2-1-1-2-2-1-3- If $2 f . m-n \cdot j<0 \Longrightarrow \omega_{1}^{n . j-2 m \cdot f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} \cdot C_{1}^{l}=$ $\Omega^{2 m}\left(b-4 a^{\prime}\right)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid\left(b-4 a^{\prime}\right)$ with ω_{1}, a, b coprime and the conjecture (3.1) is verified.
** B-2-1-1-2-2-2- We obtain the same results if $\omega_{1} \mid C^{l}$.
** B-2-1-2- If $2 \mid p_{1}$, then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** B-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$, as $A^{m}=2 a^{\prime} p_{1}$, p_{1} is written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime}=2^{2 m-2} \omega^{2 m}$. It follows $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** B-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right)$, it follows if $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ but as $2 \nmid a$, there is no contradiction with a, b coprime and the conjecture (3.1) is verified.
** B-2-1-2-2-2- If $2 \mid C^{l}$, using the same method as above, we obtain the identical results.
** B-2-2- p^{\prime}, a are supposed not coprime. Let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p^{\prime}$.
** B-2-2-1- We suppose firstly $\omega=3$. As $A^{2 m}=4 a p^{\prime} \Longrightarrow 3 \mid A$, but $3\left|p^{\prime} \Longrightarrow 3\right| p$, as $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ and 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p^{\prime}$ that gives $a=3^{\alpha} a_{1}=3 a^{\prime} \Longrightarrow$ $a^{\prime}=3^{\alpha-1} a_{1}, 3 \nmid a_{1}$ and $p^{\prime}=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a^{\prime} p^{\prime}=3^{2 i m} A_{1}^{2 m}=$ $4 \times 3^{\alpha-1+\mu} . a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu-1=2 \mathrm{im}$. As $p=b p^{\prime}=b .3^{\mu} p_{1}=3^{\mu} . b . p_{1}$. The exponent of the term 3 of p is k, the exponent of the term 3 of the left member of the last equation is μ. If $3 \mid b$ it is a contradiction with a, b coprime. Then, we suppose that $3 \nmid b$, and the equality of the exponents: $\min (2 i m, 2 j n, i m+j n)=\mu$, recall that $\alpha+\mu-1=2 i m$. But $B^{n} C^{l}=$ $p^{\prime}\left(b-4 a^{\prime}\right)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)$. We have also $A^{m}+B^{n}=C^{l}$ gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. Let $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. Then, we obtain the conditions:
\[

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu \\
\alpha+\mu-1=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{1.99}
\end{array}
$$
\]

** B-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}=3 a^{\prime}$ and $3 \nmid a_{1}$, the equation (1.97) becomes:

$$
\mu=2 i m
$$

and the first equation (1.96) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m
$$

- If $k=2 i m$, then $2 i m \leq 2 j n \Longrightarrow i m \leq j n \Longrightarrow h l=i m$, and (1.99) gives $\mu=2 i m=n j+h l=i m+n j \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (3.1) is verified.
- If $k=2 j n \Longrightarrow 2 j n=2 i m \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (3.1) is verified.
- If $k=i m+j n=2 i m \Longrightarrow i m=j n \Longrightarrow \epsilon=h l=i m=j n$ case that is seen above and we deduce that $3|A, 3| B$ and $3 \mid C$, and the conjecture (3.1) is verified.
** B-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$ and $a^{\prime}=3^{\alpha-1} a_{1}$.
- If $k=2 i m \Longrightarrow 2 i m=\mu$, but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=2 j n=\mu \Longrightarrow 2 j n=2 i m+1-\alpha$. We obtain $2 j n<2 i m \Longrightarrow j n<$ $i m \Longrightarrow 2 j n<i m+j n, k=2 j n$ is just the minimum of $(2 i m, 2 j n, i m+j n)$. We obtain $j n=h l<i m$ and the equation (1.99) becomes:

$$
B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)
$$

The conjecture (3.1) is verified.

- If $k=i m+j n \leq 2 i m \Longrightarrow j n \leq i m$ and $k=i m+j n \leq 2 j n \Longrightarrow i m \leq$ $j n \Longrightarrow i m=j n \Longrightarrow k=i m+j n=2 i m=\mu$ but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=i m+j n<2 i m \Longrightarrow j n<i m$ and $2 j n<i m+j n=k$ that is a contradiction with $k=\min (2 i m, 2 j n, i m+j n)$.
** B-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime}=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a p^{\prime}=4 \omega^{\alpha+\mu} . a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)=\omega^{\mu} p_{1}\left(b-4 a^{\prime}\right) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\right.$ $\left.\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+j n)$. Then :
- If $\mu=k$, then $\omega \nmid b$ and the conjecture (3.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ we deduce the contradiction with a, b coprime.
- If $k<\mu$, it follows from :

$$
\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is a contradiction with the hypothesis.
B-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then, we obtain the same results as B-2-2-2-1above.
1.4.5. Case $b=2 p$ and $3 \mid a:-$ We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a
$$

Then $2 \mid a$ and $2 \mid b$ that is a contradiction with a, b coprime.
1.4.6. Case $b=4 p$ and $3 \mid a:-$ We have :

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}=\left(A^{m}\right)^{2}=a^{\prime \prime} \\
\text { with } \quad A^{m}=a "
\end{array}
$$

Let us calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}
\end{array}
$$

Let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{1.100}
\end{equation*}
$$

The left member of 1.100 is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as :

$$
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two integers coprime and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
${ }^{* *} \mathrm{C}-1$ - Firstly, we suppose that $k_{3} \neq 1$. Then :

$$
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1}
$$

Let μ be a prime integer and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** C-1-1- If $\mu\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow \mu\right|\left(a^{\prime \prime 2}=a^{\prime}\right) \Longrightarrow \mu \mid\left(3 a^{\prime}=a\right)$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p \Longrightarrow \mu \mid(4 p=b)$, then the contradiction with a, b coprime.
${ }^{* *} \mathrm{C}-1-2$ - If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then:

$$
\begin{equation*}
\mu \neq 2 \quad \text { and } \quad \mu \nmid B^{n} \tag{1.101}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
A^{m}+2 B^{n}=\mu \cdot t^{\prime}
$$

Then:

$$
\begin{aligned}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m} & +B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
& \Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
\end{aligned}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ so that $b=\mu \cdot \mu^{\prime}$, we obtain:

$$
\mu^{\prime} . \mu=\mu\left(4 \mu t^{\prime 2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right)
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** $\mathrm{C}-1-1-1$ - If $\mu \mid B^{n} \Longrightarrow$ then the contradiction with 1.101 .
** C-1-1-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we have :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** $\mathrm{C}-1-1-2-1$ - If $\mu \mid B^{n}$ then the contradiction with 1.101 .
** C-1-1-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
** C-2- We assume now that $k_{3}=1$, then:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{1.102}\\
p & =k_{2} \\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p}
\end{align*}
$$

We take the square of the last equation, we obtain :

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{1.103}
\end{equation*}
$$

but $a^{\prime}=a^{" 2}$, then $4 p-3 a^{\prime}$ is a square. Let :

$$
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a
$$

The equation 1.103 becomes :

$$
\begin{equation*}
a^{\prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a " \lambda \tag{1.104}
\end{equation*}
$$

taking the positive root. Using (1.102), we have:

$$
k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a "\left(A^{m}+2 B^{n}\right)
$$

Then :

$$
A^{m}+2 B^{n}=\lambda
$$

Now, we consider that $b-a=\lambda^{2} \Longrightarrow \lambda^{2}+3 a{ }^{\prime 2}=b$, then the couple $(\lambda, a ")$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{1.105}
\end{equation*}
$$

with $X=\lambda$ and $Y=a "$. But using one theorem on the solutions of the equation given by $1.105, b$ is written under the form (see theorem 37.4 in [1]):

$$
b=2^{2 s} \times 3^{t} \cdot p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime integers so that $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime integers so that $q_{j} \equiv 5(\bmod 6)$. Then, as $b=4 p$:

- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime.
** C-2-2-1- Hence, we suppose that p is written under the form:

$$
p=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $p \equiv$ $1(\bmod 6)$. We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of $p=A^{2 m}+A^{m} B^{n}+B^{2 n}$ in function of the values of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below:

A^{m}, B^{n}	0	1	2	3	4	5
0	0	$\mathbf{1}$	4	3	4	$\mathbf{1}$
1	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$
2	4	$\mathbf{1}$	0	$\mathbf{1}$	4	3
3	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$
4	4	3	4	$\mathbf{1}$	0	$\mathbf{1}$
5	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3

Table 1. Table of $p(\bmod 6)$
** C-2-2-1-1- Case $A^{m} \equiv 0(\bmod 6) \Longrightarrow 2\left|\left(A^{m}=a "\right) \Longrightarrow 2\right|\left(a^{\prime}=a^{\prime 2}\right) \Longrightarrow$ $2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime. All the cases of the first line of the table 1 are to reject.
** C-2-2-1-2- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then $2 \mid B^{n} \Longrightarrow B^{n}=$ $2 B^{\prime}$ and p is written as $p=\left(A^{m}+B^{\prime}\right)^{2}+3 B^{2}$ with $(p, 3)=1$, if not $3 \mid p$, then $3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime. Hence, the pair $\left(A^{m}+B^{\prime}, B^{\prime}\right)$ is solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=p \tag{1.106}
\end{equation*}
$$

The solution $x=A^{m}+B^{\prime}, y=B^{\prime}$ is unique because $x-y$ verify $x-y=A^{m}$. If (u, v) another pair solution of 1.106 , with $u, v \in \mathbb{N}^{*}$, then we obtain:

$$
\begin{gathered}
u^{2}+3 v^{2}=p \\
u-v=A^{m}
\end{gathered}
$$

Then $u=v+A^{m}$ and we obtain the equation of second degree $4 v^{2}+2 v A^{m}-$ $2 B^{\prime}\left(A^{m}+2 B^{\prime}\right)=0$ that gives as positive root $v_{1}=B^{\prime}=y$, then $u=A^{m}+B^{\prime}=$ x. It follows that p in 1.106 has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As p is an odd integer number, we applique one of Euler's theorems on convenient numbers "numerus idoneus" (see [2],[3]): Let m be an odd number relatively prime to n which is properly represented by $x^{2}+n y^{2}$. If the equation $m=x^{2}+n y^{2}$ has only one solution with $x, y>0$, then m is a prime number. Then p is prime and $4 p$ has an unique representation (we put $U=2 u, V=2 v$, with $U^{2}+3 V^{2}=4 p$ and $U-V=2 A^{m}$). But
$b=4 p \Longrightarrow \lambda^{2}+3 a{ }^{\prime \prime} 2=\left(2\left(A^{m}+B^{\prime}\right)\right)^{2}+3\left(2 B^{\prime}\right)^{2}$, the representation of $4 p$ is unique gives:

$$
\begin{array}{r}
\lambda=2\left(A^{m}+B^{\prime}\right)=2 a^{\prime \prime}+B^{n}=2 a^{"}+B^{n} \\
\text { and } \quad a "=2 B^{\prime}=B^{n}=A^{m}
\end{array}
$$

But $A^{m}>B^{n}$, then the contradiction.
** C-2-2-1-3- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-4- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $3 \mid B^{n} \Longrightarrow B^{n}=$ $3 B^{\prime}$. We can write $b=4 p=\left(2 A^{m}+3 B^{\prime}\right)^{2}+3\left(3 B^{\prime}\right)^{2}=\lambda^{2}+3 a^{2}$. The unique representation of b as $x^{2}+3 y^{2}=\lambda^{2}+3 a^{\prime 2} \Longrightarrow a "=A^{m}=3 B^{\prime}=B^{n}$, then the contradiction with $A^{m}>B^{n}$.
** C-2-2-1-5- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv$ $0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
** C-2-2-1-6- Case $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-7- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv$ $4(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=2 C^{\prime}$, we can write that $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}$, see C-2-2-1-2-.
** C-2-2-1-8- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-9- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-10- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv$ $2(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
** C-2-2-1-11- Case $A^{m} \equiv 4(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-12- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-13- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv$ $0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
** C-2-2-1-14- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $C^{l} \equiv$ $2(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=2 C^{\prime}, p$ is written as $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{2}$, see C-2-2-1-2-.
** C-2-2-1-15- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.

We have achieved the study all the cases of the table 1 giving contradictions.

Then the case $k_{3}=1$ is impossible.
1.4.7. Case $3 \mid a$ and $b=2 p^{\prime} \quad b \neq 2$ with $p^{\prime}|p:-3| a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, then:

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right)
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, then we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{1.107}\\
\text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{1.108}
\end{gather*}
$$

** D-1- We suppose that k is prime.
** D-1-1- If $k=2$, then we have $p=2 p^{\prime}=b \Longrightarrow 2 \mid b$, but $A^{2 m}=4 a^{\prime}=$ $\left(A^{m}\right)^{2} \Longrightarrow A^{m}=2 a "$ with $a^{\prime}=a^{\prime \prime}$, then $2|a " \Longrightarrow 2|\left(a=3 a^{\prime 2}\right)$, it follows the
contradiction with a, b coprime.
** D-1-2- We suppose $k \neq 2$. From $A^{2 m}=2 k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $2 \mid a^{\prime} \Longrightarrow a^{\prime}=2 . k . a^{\prime 2} \Longrightarrow A^{m}=2 . k . a "$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} . A_{1}$ with $i \geq 1$ and $k \nmid A_{1} . \quad k^{i m} A_{1}^{m}=2 k a " \Longrightarrow 2 a "=k^{i m-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** D-1-2-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geq 1$ and $k \nmid B_{1}$. It follows $k^{n j-1} B_{1}^{n} C^{l}=p^{\prime}-2 a^{\prime}=p^{\prime}-4 k a^{\prime \prime}$. As $n \geq 3 \Longrightarrow n j-1 \geq 2$, then $k \mid p^{\prime}$ but $k \neq 2 \Longrightarrow k \mid\left(2 p^{\prime}=b\right)$, but $k\left|a^{\prime} \Longrightarrow k\right|\left(3 a^{\prime}=a\right)$. It follows the contradiction with a, b coprime.
** D-1-2-2- If $k \mid C^{l}$ we obtain the identical results.
** D-2- We suppose that k is not prime. Let ω be an integer prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid k_{1}$. The equations 1.1071 .108 become:

$$
\begin{gathered}
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \\
\text { and } \quad A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime}
\end{gathered}
$$

** D-2-1- We suppose that $\omega=2$, then we have the equations:

$$
\begin{array}{r}
A^{2 m}=2^{s+1} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=2^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \tag{1.110}
\end{array}
$$

** D-2-1-1- Case: $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-1-2- Case: $2 \nmid a^{\prime}$. As $2 \nmid k_{1}$, the equation 1.109 gives $2 \mid A^{2 m} \Longrightarrow A=$ $2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$. It follows that $2 i m=s+1$.
** D-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid p^{\prime}$. From the equation 1.110, we obtain that $2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.

[^3]- If $s-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if $2 \mid C^{l}$.
** D-2-1-2-2- We suppose now that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\mu} . \Omega$, with $\mu \geq 1$ and $2 \nmid \Omega$. We recall that $2 \nmid a^{\prime}$. The equation (1.110) is written as:

$$
B^{n} C^{l}=2^{s+\mu} \cdot k_{1} \cdot \Omega
$$

This last equation implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s+\mu-j n} . k_{1} . \Omega$:

- If $s+\mu-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$, and the conjecture 3.1 is verified.
- If $s+\mu-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s+\mu-j n} k_{1} . \Omega \Longrightarrow 2 \nmid C^{l}$, then contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-2-2- We obtain the identical results if $2 \mid C^{l}$.
** D-2-2- We suppose that $\omega \neq 2$. We have then the equations:

$$
\begin{array}{r}
A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1} \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{1.112}
\end{array}
$$

As $\omega \neq 2$, from the equation 1.111 , we have $2 \mid\left(k_{1} \cdot a^{\prime}\right)$. If $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.

D-2-2-1- Case: $2 \nmid a^{\prime}$ and $2 \mid k_{1} \Longrightarrow k_{1}=2^{\mu} . \Omega$ with $\mu \geq 1$ and $2 \nmid \Omega$. From the equation 1.111 , we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$, then $2 i m=1+\mu$. The equation 1.112 becomes:

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s} \cdot 2^{\mu} \cdot \Omega \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{1.113}
\end{equation*}
$$

From the equation $\sqrt{1.113}$, we obtain $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
${ }^{* *}$ D-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \in \mathbb{N}^{*}$ and $2 \nmid B_{1}$.
** D-2-2-1-1-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right)$, then we have $B_{1}^{n} C^{l}=$ $\omega^{s} 2^{\mu-j n} \Omega\left(p^{\prime}-2 a^{\prime}\right)$:

- If $\mu-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $\mu-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
${ }^{* *}$ D-2-2-1-1-2- We suppose that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\alpha} . P$, with $\alpha \in \mathbb{N}^{*}$ and $2 \nmid P$. It follows that $B_{1}^{n} C^{l}=\omega^{s} 2^{\mu+\alpha-j n} \Omega . P$:
- If $\mu+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$ and the conjecture 3.1) is verified.
- If $\mu+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** D-2-2-1-2- We suppose now that $2\left|C^{n} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
1.4.8. Case $3 \mid a$ and $b=4 p^{\prime} b \neq 2$ with $p^{\prime}|p:-3| a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$ if not $b=4 p$ this case has been studied (see paragraph 1.4.6), then we have :

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right)$
As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \tag{1.114}\\
\text { and } \quad A^{2 m}=k \cdot a^{\prime} \tag{1.115}
\end{gather*}
$$

** E-1- We suppose that k is prime. From $A^{2 m}=k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $a^{\prime}=k . a^{" 2} \Longrightarrow A^{m}=k . a^{\prime \prime}$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} \cdot A_{1}$ with $i \geq 1$ and $k \nmid A_{1} . \quad k^{m i} A_{1}^{m}=k a " \Longrightarrow a "=k^{m i-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** E-1-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geq 1$ and $k \nmid B_{1}$. Then $k^{n . j-1} B_{1}^{n} C^{l}=p^{\prime}-a^{\prime}$. As $n . j-1 \geq 2 \Longrightarrow k \mid\left(p^{\prime}-a^{\prime}\right)$. But $k\left|a^{\prime} \Longrightarrow k\right| a$, then $k\left|p^{\prime} \Longrightarrow k\right|\left(4 p^{\prime}=b\right)$ and we arrive to the contradiction that a, b are coprime.
** E-1-2- We suppose that $k \mid C^{l}$, using the same method with the above hypothesis $k \mid B^{n}$, we obtain the identical results.
** E-2- We suppose that k is not prime.
** E-2-1- We take $k=4 \Longrightarrow p=4 p^{\prime}=b$, it is the case 1.4 .3 studied above.
** E-2-2- We suppose that $k \geq 6$ not prime. Let ω be a prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid k_{1}$. The equations 1.114 1.115) become:

$$
\begin{gather*}
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{1.116}\\
\text { and } \quad A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \tag{1.117}
\end{gather*}
$$

** E-2-2-1- We suppose that $\omega=2$.
** E-2-2-1-1- If $2\left|a^{\prime} \Longrightarrow 2\right|\left(3 a^{\prime}=a\right)$, but $2 \mid\left(4 p^{\prime}=b\right)$, then the contradiction with a, b coprime.
** E-2-2-1-2- We consider that $2 \nmid a^{\prime}$. From the equation (1.117), it follows that $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and:

$$
B^{n} C^{l}=2^{s} k_{1}\left(p^{\prime}-a^{\prime}\right)
$$

** E-2-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-a^{\prime}\right)$, from the above expression, we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-1-1- If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=$ $2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
${ }^{* *}$ E-2-2-1-2-1-2- If $2\left|C^{l} \Longrightarrow 2\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-1-2-2- We suppose that $2 \mid\left(p^{\prime}-a^{\prime}\right)$. As $2 \nmid a^{\prime} \Longrightarrow 2 \nmid p^{\prime}, 2 \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow$ $p^{\prime}-a^{\prime}=2^{\alpha} . P$ with $\alpha \geq 1$ and $2 \nmid P$. The equation 1.116) is written as :

$$
\begin{equation*}
B^{n} C^{l}=2^{s+\alpha} k_{1} \cdot P=2^{2 i m+\alpha} k_{1} \cdot P \tag{1.118}
\end{equation*}
$$

then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $2 \nmid B_{1}$. The equation (1.118) becomes $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.

E-2-2-1-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.

E-2-2-2- We suppose that $\omega \neq 2$. We recall the equations:

$$
\begin{array}{r}
A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{1.120}
\end{array}
$$

** E-2-2-2-1- We suppose that ω, a^{\prime} are coprime, then $\omega \nmid a^{\prime}$. From the equation (1.119), we have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s=2 \mathrm{im}$.
** E-2-2-2-1-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right)$. From the equation 1.120 above, we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-1-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=$ $2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+$ $\omega^{j n} B_{1}^{n}$ and the conjecture 3.1 is verified.
- If $2 i m-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-1-2- We suppose that $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime}$ if not $\omega\left|a^{\prime}, \omega\right|\left(p^{\prime}-a^{\prime}\right) \Longrightarrow$ $p^{\prime}-a^{\prime}=\omega^{\alpha} . P$ with $\alpha \geq 1$ and $\omega \nmid P$. The equation 1.120 becomes :

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s+\alpha} k_{1} \cdot P=\omega^{2 i m+\alpha} k_{1} \cdot P \tag{1.121}
\end{equation*}
$$

then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ E-2-2-2-1-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$, with $\omega \nmid B_{1}$. The equation 1.121 is written as $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2- We suppose that ω, a^{\prime} are not coprime, then $a^{\prime}=\omega^{\beta} \cdot a$ " with $\omega \nmid a$ ". The equation 1.119 becomes:

$$
A^{2 m}=\omega^{s} k_{1} a^{\prime}=\omega^{s+\beta} k_{1} \cdot a "
$$

We have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s+\beta=2 \mathrm{im}$.
** E-2-2-2-2-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime} \Longrightarrow \omega \nmid\left(b=4 p^{\prime}\right)$. From the equation 1.120 , we obtain $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ E-2-2-2-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=$ $2^{s-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $s-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+$ $\omega^{j n} B_{1}^{n}$ and the conjecture 3.1 is verified.
- If $s-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
${ }^{* *}$ E-2-2-2-2-2- We suppose that $\omega\left|\left(p^{\prime}-a^{\prime}=p^{\prime}-\omega^{\beta} \cdot a "\right) \Longrightarrow \omega\right| p^{\prime} \Longrightarrow \omega \mid\left(4 p^{\prime}=\right.$ b), but $\omega\left|a^{\prime} \Longrightarrow \omega\right| a$. Then the contradiction with a, b coprime.

The study of the cases of 1.4 .8 is achieved.
1.4.9. Case $3 \mid a$ and $b \mid 4 p: .-a=3 a^{\prime}$ and $4 p=k_{1} b$. As $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=$ $\frac{4 p}{3} \frac{3 a^{\prime}}{b}=k_{1} a^{\prime}$ and $B^{n} C^{l}$:
$B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 a^{\prime}}{b}\right)=\frac{k_{1}}{4}\left(b-4 a^{\prime}\right)$
As $B^{n} C^{l}$ is an integer, we must obtain $4 \mid k_{1}$, or $4 \mid\left(b-4 a^{\prime}\right)$ or $\left(2 \mid k_{1}\right.$ and $2 \mid(b-$ $\left.4 a^{\prime}\right)$).
** F-1- If $k_{1}=1 \Rightarrow b=4 p$: it is the case 1.4.6.
** F-2- If $k_{1}=4 \Rightarrow p=b$: it is the case 1.4.3.
** F-3- If $k_{1}=2$ and $2 \mid\left(b-4 a^{\prime}\right)$: in this case, we have $A^{2 m}=2 a^{\prime} \Longrightarrow 2 \mid a^{\prime} \Longrightarrow$ $2 \mid a$. $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ then the contradiction with a, b coprime.
** F-4- If $2 \mid k_{1}$ and $2\left|\left(b-4 a^{\prime}\right): 2\right|\left(b-4 a^{\prime}\right) \Longrightarrow b-4 a^{\prime}=2^{\alpha} \lambda, \alpha$ and $\lambda \in \mathbb{N}^{*} \geq 1$ with $2 \nmid \lambda ; 2 \mid k_{1} \Longrightarrow k_{1}=2^{t} k_{1}^{\prime}$ with $t \geq 1 \in \mathbb{N}^{*}$ with $2 \nmid k_{1}^{\prime}$ and we have:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{1.123}
\end{array}
$$

From the equation (1.122), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$.
** F-4-1- We suppose that $t=\alpha=1$, then the equations 1.122 1.123 become :

$$
\begin{gather*}
A^{2 m}=2 k_{1}^{\prime} a^{\prime} \tag{1.124}\\
B^{n} C^{l}=k_{1}^{\prime} \lambda \tag{1.125}
\end{gather*}
$$

From the equation (1.124) it follows that $2\left|a^{\prime} \Longrightarrow 2\right|\left(a=3 a^{\prime}\right)$. But $b=4 a^{\prime}+2 \lambda \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2- We suppose that $t+\alpha-2 \geq 1$ and we have the expressions:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{1.127}
\end{array}
$$

** F-4-2-1- We suppose that $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $b=2^{\alpha} \lambda+4 a^{\prime} \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2-2- We suppose that $2 \nmid a^{\prime}$. From (1.126), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow$ $A=2^{i} A_{1}$ and $B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \Longrightarrow 2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** F-4-2-2-1- We suppose that $2 \mid B^{n}$. We have $2 \mid B \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. The equation (1.127) becomes $B_{1}^{n} C^{l}=2^{t+\alpha-2-j n} k_{1}^{\prime} \lambda$:

- If $t+\alpha-2-j n>0 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 3.1 is verified.
- If $t+\alpha-2-j n<0 \Longrightarrow 2 \mid k_{1}^{\prime} \lambda$, but $2 \nmid k_{1}^{\prime}$ and $2 \nmid \lambda$. Then this case is impossible.
- If $t+\alpha-2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{1}^{\prime} \lambda \Longrightarrow 2 \nmid C^{l}$ then it is a contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** F-4-2-2-2- We suppose that $2 \mid C^{l}$. We use the same method described above, we obtain the identical results.
** F-5- We suppose that $4 \mid k_{1}$ with $k_{1}>4 \Rightarrow k_{1}=4 k_{2}^{\prime}$, we have :

$$
\begin{array}{r}
A^{2 m}=4 k_{2}^{\prime} a^{\prime} \\
B^{n} C^{l}=k_{2}^{\prime}\left(b-4 a^{\prime}\right) \tag{1.129}
\end{array}
$$

** F-5-1- We suppose that k_{2}^{\prime} is prime, from (1.128), we have $k_{2}^{\prime} \mid a^{\prime}$. From (1.129), $k_{2}^{\prime}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{2}^{\prime}\right| B^{n}$ or $k_{2}^{\prime} \mid C^{l}$.
** F-5-1-1- We suppose that $k_{2}^{\prime}\left|B^{n} \Longrightarrow k_{2}^{\prime}\right| B \Longrightarrow B=k_{2}^{\prime \beta} \cdot B_{1}$ with $\beta \geq 1$ and $k_{2}^{\prime} \nmid B_{1}$. It follows that we have $k_{2}^{\prime n \beta-1} B_{1}^{n} C^{l}=b-4 a^{\prime} \Longrightarrow k_{2}^{\prime} \mid b$ then the contradiction with a, b coprime.
** F-5-1-2- We obtain identical results if we suppose that $k_{2}^{\prime} \mid C^{l}$.
** F-5-2- We suppose that k_{2}^{\prime} is not prime.
** F-5-2-1- We suppose that k_{2}^{\prime} and a^{\prime} are coprime. From (1.128), k_{2}^{\prime} can be written under the form $k_{2}^{\prime}=q_{1}^{2 j} . q_{2}^{2}$ and $q_{1} \nmid q_{2}$ and q_{1} prime. We have $A^{2 m}=4 q_{1}^{2 j} \cdot q_{2}^{2} a^{\prime} \Longrightarrow q_{1} \mid A$ and $B^{n} C^{l}=q_{1}^{2 j} \cdot q_{2}^{2}\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-5-2-1-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} . B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=q_{1}^{2 j-f n} q_{2}^{2}\left(b-4 a^{\prime}\right)$:

- If $2 j-f . n \geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$ but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (3.1) is verified.
- If $2 j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2}^{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime, then $q_{1} \nmid b$, and the conjecture (3.1) is verified.
- If $2 j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because a^{\prime} is coprime with q_{1}, and $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (3.1) is verified.
** F-5-2-1-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-5-2-2- We suppose that $k_{2}^{\prime}, a^{\prime}$ are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{2}^{\prime}$ and $q_{1} \mid a^{\prime}$. We write k_{2}^{\prime} under the form $q_{1}^{j} . q_{2}$ with $j \geq 1, q_{1} \nmid q_{2}$. From $A^{2 m}=4 k_{2}^{\prime} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. Then from $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
${ }^{* *}$ F-5-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} \cdot B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then, we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$. - If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then the conjecture (3.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
** F-5-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
${ }^{* *}$ F-6- If $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}$ it is impossible. We suppose that $4 \mid\left(b-4 a^{\prime}\right) \Rightarrow$ $4 \mid b$, and $b-4 a^{\prime}=4^{t} . g, t \geq 1$ with $4 \nmid g$, then we have :

$$
\begin{array}{r}
A^{2 m}=k_{1} a^{\prime} \\
B^{n} C^{l}=k_{1} \cdot 4^{t-1} . g
\end{array}
$$

** F-6-1- We suppose that k_{1} is prime. From $A^{2 m}=k_{1} a^{\prime}$ we deduce easily that $k_{1} \mid a^{\prime}$. From $B^{n} C^{l}=k_{1} .4^{t-1} . g$ we obtain that $k_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{1}\right| B^{n}$ or $k_{1} \mid C^{l}$.
** F-6-1-1- We suppose that $k_{1}\left|B^{n} \Longrightarrow k_{1}\right| B \Longrightarrow B=k_{1}^{j} . B_{1}$ with $j>0$ and $k_{1} \nmid B_{1}$, then $k_{1}^{n \cdot j} B_{1}^{n} C^{l}=k_{1} \cdot 4^{t-1} \cdot g \Longrightarrow k_{1}^{n \cdot j-1} B_{1}^{n} C^{l}=4^{t-1} \cdot g$. But $n \geq 3$ and $j \geq 1$, then $n \cdot j-1 \geq 2$. We deduce as $k_{1} \neq 2$ that $k_{1}\left|g \Longrightarrow k_{1}\right|\left(b-4 a^{\prime}\right)$, but $k_{1}\left|a^{\prime} \Longrightarrow k_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-1-2- We obtain identical results if we suppose that $k_{1} \mid C^{l}$.
** F-6-2- We suppose that k_{1} is not prime $\neq 4,\left(k_{1}=4\right.$ see case F-2, above $)$ with $4 \nmid k_{1}$.
** F-6-2-1- If $k_{1}=2 k^{\prime}$ with k^{\prime} odd >1. Then $A^{2 m}=2 k^{\prime} a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a$, as $4 \mid b$ it follows the contradiction with a, b coprime.
** F-6-2-2- We suppose that k_{1} is odd with k_{1} and a^{\prime} coprime. We write k_{1} under the form $k_{1}=q_{1}^{j} . q_{2}$ with $q_{1} \nmid q_{2}, q_{1}$ prime and $j \geq 1$. $B^{n} C^{l}=q_{1}^{j} \cdot q_{2} 4^{t-1} g \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} . B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=q_{1}^{j-f . n} q_{2} 4^{t-1} g$.

- If j - f.n $\geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (3.1) is verified.
- If $j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2} 4^{t-1} g$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime then $q_{1} \nmid b$ and the conjecture (3.1) is verified.
- If $j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because q_{1}, a^{\prime} are primes. $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$ and the conjecture (3.1) is verified.
** F-6-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6-2-3- We suppose that k_{1} and a^{\prime} are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{1}$ and $q_{1} \mid a^{\prime}$. We write k_{1} under the form $q_{1}^{j} \cdot q_{2}$ with $q_{1} \nmid q_{2}$. From $A^{2 m}=k_{1} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. From $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-3-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} . B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$: - If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (3.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $q_{1} \mid A$ and $q_{1} \mid B$ then $q_{1} \mid C$ and we obtain $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-2-3-2- We obtain identical results as above if we suppose that $q_{1} \mid C^{l}$.
1.5. Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$
1.5.1. Case $b=2$ and $3|p:-3| p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a
$$

As:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow 1<2 a<3 \Rightarrow a=1 \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{1}{2}
$$

but this case was studied (see case 1.3.1.2).
1.5.2. Case $b=4$ and $3 \mid p:$ - we have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in \mathbb{N}^{*}$, it follows :

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4.3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a
$$

and:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2
$$

as a, b are coprime, then the case $b=4$ and $3 \mid p$ is impossible.
1.5.3. Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p:-$ As $3 \mid p$, then $p=3 p^{\prime}$ and :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p "$ and $p " \neq 1$ (If $p "=1$, then $p=3 b$, see paragraph 1.5.8 Case $k^{\prime}=1$). Finally, we obtain:

$$
A^{2 m}=\frac{4 b p " a}{b}=4 a p " ; \quad B^{n} C^{l}=p " \cdot(3 b-4 a)
$$

** G-1- We suppose that p " est prime, then $A^{2 m}=4 a p "=\left(A^{m}\right)^{2} \Longrightarrow p " \mid a$. But $B^{n} C^{l}=p "(3 b-4 a) \Longrightarrow p " \mid B^{n}$ or $p " \mid C^{l}$.
** G-1-1- If $p "\left|B^{n} \Longrightarrow p "\right| B \Longrightarrow B=p " B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $p{ }^{\prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $p " \mid a$, then $p " \mid 3 b \Longrightarrow p "=3$ or $p " \mid b$.
** G-1-1-1- If $p "=3 \Longrightarrow 3 \mid a$, with a that we write as $a=3 a^{\prime 2}$, but $A^{m}=6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$, then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow$ $a^{\prime}=3 a "$. As $p{ }^{" n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{2}$. As $n>2 \Longrightarrow n-2 \geq 1$, then $3 \mid b$ and the contradiction with a, b coprime.
** G-1-1-2- We suppose that $p " \mid b$, as $p " \mid a$, then the contradiction with a, b coprime.
** G-1-2- If we suppose $p " \mid C^{l}$, we obtain identical results (contradictions).
** G-2- We consider now that $p "$ is not prime.
** G-2-1- $p ", a$ coprime: $A^{2 m}=4 a p " \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{2}$ and $p^{\prime \prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$, then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** G-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $p "=p_{1}^{2}$.
${ }^{* *}$ G-2-1-1-1- If p_{1} est prime, it is impossible with $A^{m}=2 a^{\prime} . p_{1}$.
** G-2-1-1-2- We suppose that p_{1} is not prime so we can write $p_{1}=\omega^{m} \Longrightarrow$ $p "=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
** G-2-1-1-2-1- If ω est prime, $\omega \neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}(3 b-4 a)$.
** G-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega \nmid(3 b)$, then $\omega \neq 3$ and $\omega \nmid b$, the conjecture (3.1) is verified.
** G-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, using the method as above, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$, then the
conjecture (3.1) is verified.
** G-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n \cdot j-2 m} B_{1}^{n} \cdot C^{l}=3 b-4 a$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, then $C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$, we obtain $\omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$ then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. It follows $n . j-2 m+h . l>0$ and $\omega \mid(3 b-4 a)$ with ω, a, b coprime and the conjecture is verified.
** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if $\omega \mid C^{l}$.
** G-2-1-1-2-2- We suppose that $p^{\prime \prime}=\omega^{2 m}$ and ω is not prime. We write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\nmid \Omega, f \geq 1$, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=$ $\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** G-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega_{1}^{2 . m-n j} \Omega^{2 m}(3 b-4 a):$
** G-2-1-1-2-2-1-1- If $2 f \cdot m-n \cdot j=0$, we obtain $B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega_{1} \nmid(3 b)$, then $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, and the conjecture (3.1) is verified.
${ }^{* *}$ G-2-1-1-2-2-1-2- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, it follows that the conjecture (3.1) is verified.
** G-2-1-1-2-2-1-3- If $2 f . m-n \cdot j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m \cdot f+h . l} B_{1}^{n} \cdot C_{1}^{l}=$ $\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime and the conjecture (3.1) is verified.
** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if $\omega_{1} \mid C^{l}$.
** G-2-1-2- We suppose that $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $p^{\prime \prime}=p_{1}^{2}$.
${ }^{* *}$ G-2-1-2-1- We suppose that $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** G-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}$, p_{1} can written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p "=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** G-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B$. As $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$ there is no contradiction with a, b coprime and the conjecture 3.1 is verified.
** G-2-1-2-2-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain identical results.
** G-2-2- We suppose that $p ", a$ are not coprime: let ω be an integer prime so that $\omega \mid a$ and $\omega \mid p$ ".
** G-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a p " \Longrightarrow 3 \mid A$, or $3 \mid p$, As $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p "$ that gives $a=3^{\alpha} a_{1}, 3 \nmid a_{1}$ and $p "=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a p "=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow$ $\alpha+\mu=2 i m$. As $p=3 p^{\prime}=3 b . p "=3 b .3^{\mu} p_{1}=3^{\mu+1} . b . p_{1}$, the exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the term b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$ and we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=p "(3 b-4 a)$, we obtain $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=$ $3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right), 3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l} \Longrightarrow 3^{i m} A_{1}^{m}+$ $3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. We obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \tag{1.131}\\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)
\end{array}
$$

** G-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation 1.131 becomes:

$$
1+\mu=2 i m
$$

and the first equation 1.130 is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $k=2 i m \Longrightarrow \beta=0$ then $3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation gives $h l=i m$ and the last equation gives $n j+h l=\mu+1=2 i m \Longrightarrow i m=n j$, then $i m=n j=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (3.1) is verified.
- If $k=2 j n$ or $k=i m+j n$, we obtain $\beta=0$, $i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture 3.1 is verified.
** G-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$.
- If $k=2 i m \Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ that gives $\alpha=1+\beta \geq$ $2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
- If $k=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow \beta \geq 1$. If $\beta \geq 1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime.
- If $k=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq 2 j n \Longrightarrow$ $i m \leq j n$, then $i m=j n$. As $k=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$, we obtain $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** G-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p "=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a p "=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime \prime}(3 b-4 a)=\omega^{\mu} p_{1}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b p "=3 \omega^{\mu} b p_{1}=$ $\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+$ $j n)$. Then:
- If $k=\mu$, then $\omega \nmid b$ and the conjecture (3.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime.
- If $k<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ then the contradiction with $\omega \nmid A_{1}$ or $\omega \nmid B_{1}$.
** G-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then, using the same method as for the case G-2-2-2-1-, we obtain identical results.
1.5.4. Case $b=3$ and $3 \mid p:-$ As $3 \mid p \Longrightarrow p=3 p^{\prime}$, We write :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime} a}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3}
$$

As $A^{2 m}$ is an integer and a, b are coprime and $\cos ^{2} \frac{\theta}{3}<1$ (see equation 1.35), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p^{\prime \prime}$ with $p^{\prime \prime} \neq 1$, if not $p=3 p^{\prime}=$ $3 \times 3 p^{\prime \prime}=9$, but $9 \ll\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, the hypothesis $p "=1$ is impossible, then $p ">1$, and we obtain:

$$
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p^{\prime \prime} a}{3}=4 p " a ; \quad B^{n} C^{l}=p^{\prime \prime} .(9-4 a)
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow$ as $a>1, a=2$ and we obtain:

$$
\begin{equation*}
A^{2 m}=4 p " a=8 p " ; \quad B^{n} C^{l}=\frac{3 p^{\prime \prime}(9-4 a)}{3}=p " \tag{1.132}
\end{equation*}
$$

The two last equations above imply that p " is not a prime. We can write p " as : $p "=\prod_{i \in I} p_{i}^{\alpha_{i}}$ where p_{i} are distinct primes, α_{i} elements of \mathbb{N} and $i \in I$ a finite set of indices. We can write also $p^{\prime \prime}=p_{1}^{\alpha_{1}} . q_{1}$ with $p_{1} \nmid q_{1}$. From (1.132), we have $p_{1} \mid A$ and $p_{1}\left|B^{n} C^{l} \Longrightarrow p_{1}\right| B^{n}$ or $p_{1} \mid C^{l}$.
** H-1- We suppose that $p_{1} \mid B^{n} \Longrightarrow B=p_{1}^{\beta_{1}} . B_{1}$ with $p_{1} \nmid B_{1}$ and $\beta_{1} \geq 1$. Then, we obtain $B_{1}^{n} C^{l}=p_{1}^{\alpha_{1}-n \beta_{1}} . q_{1}$ with the following cases:

- If $\alpha_{1}-n \beta_{1} \geq 1 \Longrightarrow p_{1}\left|C^{l} \Longrightarrow p_{1}\right| C$, in accord with $p_{1} \mid\left(C^{l}=A^{m}+B^{n}\right)$, it follows that the conjecture (3.1) is verified.
- If $\alpha_{1}-n \beta_{1}=0 \Longrightarrow B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \nmid C^{l}$, it is a contradiction with $p_{1}\left|\left(A^{m}-B^{n}\right) \Longrightarrow p_{1}\right| C^{l}$. Then this case is impossible.
- If $\alpha_{1}-n \beta_{1}<0$, we obtain $p_{1}^{n \beta_{1}-\alpha_{1}} B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \mid q_{1}$, it is a contradiction with $p_{1} \nmid q_{1}$. Then this case is impossible.
${ }^{* *}$ H-2- We suppose that $p_{1} \mid C^{l}$, using the same method as for the case $p_{1} \mid B^{n}$, we obtain identical results.
1.5.5. Case $3 \mid p$ and $b=p$: We have $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}$ et:

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3}
$$

As $A^{2 m}$ is an integer, it implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, then the contradiction and the case $3 \mid p$ and $b=p$ is impossible.
1.5.6. Case $3 \mid p$ and $b=4 p:-3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=4 p=12 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, then the contradiction with a, b coprime and the case $b=4 p$ is impossible.
1.5.7. Case $3 \mid p$ and $b=2 p:-3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=2 p=6 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the case $b=2 p$ is impossible.
1.5.8. Case $3 \mid p$ and $b \neq 3$ a divisor of $p:-$ We have $b=p^{\prime} \neq 3$, and p is written as $p=k p^{\prime} \quad$ with $\quad 3 \mid k \Longrightarrow k=3 k^{\prime}$ and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=4 a k^{\prime} \\
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right)=k^{\prime}(3 b-4 a)
\end{array}
$$

** $\mathrm{I}-1-k^{\prime} \neq 1$:
** I-1-1- We suppose that k^{\prime} est prime, then $A^{2 m}=4 a k^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k^{\prime} \mid a$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a) \Longrightarrow k^{\prime} \mid B^{n}$ or $k^{\prime} \mid C^{l}$.

[^4]** I-1-1-1-1- If $k^{\prime}=3 \Longrightarrow 3 \mid a$, with a that we can write it under the form $a=3 a^{\prime 2}$. But $A^{m}=6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$ with $A_{1} \in \mathbb{N}^{*}$. Then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a$ ". But $k^{\prime n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{2}$. As $n \geq 3 \Longrightarrow n-2 \geq 1$, then $3 \mid b$. Hence the contradiction with a, b coprime.
** I-1-1-1-2- We suppose that $k^{\prime} \mid b$, but $k^{\prime} \mid a$, then the contradiction with a, b coprime.
** I-1-1-2- We suppose that $k^{\prime} \mid C^{l}$, using the same method as for the case $k^{\prime} \mid B^{n}$, we obtain identical results.
** I-1-2- We consider that k^{\prime} is not a prime.
** I-1-2-1- We suppose that k^{\prime}, a coprime: $A^{2 m}=4 a k^{\prime} \Longrightarrow A^{m}=2 a^{\prime} . p_{1}$ with $a=a^{\prime 2}$ and $k^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** I-1-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $k^{\prime}=p_{1}^{2}$.
** I-1-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} . p_{1}$.
** I-1-2-1-1-2- We suppose that p_{1} is not prime and it can be written as $p_{1}=\omega^{m} \Longrightarrow k^{\prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
${ }^{* *}$ I-1-2-1-1-2-1- If ω is prime $\neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=$ $\omega^{2 m-n j}(3 b-4 a)$.

- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$, as $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C^{l} \Longrightarrow$ $\omega \mid C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then $\omega \nmid(3 b) \Longrightarrow \omega \neq 3$ and $\omega \nmid b$. Hence, the conjecture (3.1) is verified.
- If $2 m-n j \geq 1$, using the same method, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$. Then, the conjecture (3.1) is verified.
- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<$ $0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. If
$n . j-2 m+h . l>0 \Longrightarrow \omega \mid(3 b-4 a)$ with ω, a, b coprime, it implies that the conjecture (3.1) is verified.
** I-1-2-1-1-2-1-2- We suppose that $\omega \mid C^{l}$, using the same method as for the case $\omega \mid B^{n}$, we obtain identical results.
** I-1-2-1-1-2-2- Now $k^{\prime}=\omega^{2 m}$ and ω not a prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} a prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$, then $B^{n} C^{l}=$ $\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** I-1-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 . f m-n j} \Omega^{2 m}(3 b-4 a)$.
- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow$ $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, then $\omega_{1} \nmid(3 b) \Longrightarrow \omega_{1} \neq 3$ and $\omega_{1} \nmid b$. Hence, the conjecture (3.1) is verified.
- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, then the conjecture (3.1) is verified.
- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+$ $B^{n} \Longrightarrow \omega_{1} \mid C$ using, then $C=\omega_{1}^{h} . C_{1} \Longrightarrow \omega^{n \cdot j-2 m \cdot f+h \cdot l} B_{1}^{n} \cdot C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime, then the conjecture 3.1 is verified.
** I-1-2-1-1-2-2-2- As in the case $\omega_{1} \mid B^{n}$, we obtain identical results if $\omega_{1} \mid C^{l}$.
** I-1-2-1-2- If $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $k^{\prime}=p_{1}^{2}$.
${ }^{* *}$ I-1-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with $2 \nmid a^{\prime}$. Case to reject.
** I-1-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}$, p_{1} is written under the form $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p_{1}^{2}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=k^{\prime}(3 b-4 a)=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** I-1-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2|A \Longrightarrow 2| C$. From $B^{n} C^{l}=$ $2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$,
there is no contradiction with a, b coprime and the conjecture (3.1) is verified.
** I-1-2-1-2-2-2- We obtain identical results as above if $2 \mid C^{l}$.
** I-1-2-2- We suppose that k^{\prime}, a are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p_{1}^{2}$.
** I-1-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a k^{\prime} \Longrightarrow 3 \mid A$, but $3 \mid p$. As $p=A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{s} . g$ with $s=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid k^{\prime}$ that give $a=3^{\alpha} a_{1}, 3 \nmid a_{1}$ and $k^{\prime}=3^{\mu} p_{2}, 3 \nmid p_{2}$ with $A^{2 m}=4 a k^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{2} \Longrightarrow$ $\alpha+\mu=2$ im. As $p=3 p^{\prime}=3 b . k^{\prime}=3 b \cdot 3^{\mu} p_{2}=3^{\mu+1} . b . p_{2}$. The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the factor b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$, we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=k^{\prime}(4 b-3 a)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=$ $3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right), 3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l}$ that gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we obtain $\epsilon=h l=$ $\min (i m, j n)$. We have then the conditions:

$$
\begin{array}{r}
s=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{1.136}
\end{array}
$$

** $\mathrm{I}-1-2-2-1-1-\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (1.134) becomes:

$$
1+\mu=2 i m
$$

and the first equation 1.133 is written as :

$$
s=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $s=2 i m \Longrightarrow \beta=0 \Longrightarrow 3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation 1.135 gives $h l=i m$. The last equation (1.136) gives $n j+h l=\mu+1=2 i m \Longrightarrow i m=j n$, then $i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (3.1) is verified.
- If $s=2 j n$ or $s=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. Then as a, b are coprime, the conjecture (3.1) est is verified.
** $\mathrm{I}-1-2-2-1-2-\alpha>1 \Longrightarrow \alpha \geq 2$.
- If $s=2$ im $\Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ it gives $\alpha=1+\beta \geq$ $2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime and the conjecture (3.1) is not verified.
- If $s=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow \beta=1$. If $\beta=1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime and the conjecture (3.1) is not verified.
- If $s=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq 2 j n \Longrightarrow$ $i m \leq j n$, then $i m=j n$. As $s=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$ it gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the conjecture (3.1) is not verified.
** I-1-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $k^{\prime}=\omega^{\mu} p_{2}$ with $\omega \nmid p_{2}$. As $A^{2 m}=4 a k^{\prime}=4 \omega^{\alpha+\mu} . a_{1} \cdot p_{2} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$, $\omega \nmid A_{1}$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a)=\omega^{\mu} p_{2}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B^{n}=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=$ $C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b k^{\prime}=3 \omega^{\mu} b p_{2}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\right.$ $\left.\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)$ with $s=\min (2 i m, 2 j n, i m+j n)$. Then:
- If $s=\mu$, then $\omega \nmid b$ and the conjecture (3.1) is verified.
- If $s>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime and the conjecture (3.1) is not verified.
- If $s<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is the contradiction with the hypothesis and the conjecture (3.1) is not verified.

I-1-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then we obtain identical results as the case above I-1-2-2-2-1-.
** I-2- We suppose $k^{\prime}=1$: then $k^{\prime}=1 \Longrightarrow p=3 b$, then we have $A^{2 m}=4 a=$ $\left(2 a^{\prime}\right)^{2} \Longrightarrow A^{m}=2 a^{\prime}$, then $a=a^{\prime 2}$ is even and :

$$
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a
$$

and we have also:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{1.137}
\end{equation*}
$$

The left member of the equation (1.137) is a naturel number and also b, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form :

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two natural numbers coprime and $k_{2} \mid b \Longrightarrow b=k_{2} . k_{3}$.
** I-2-1- $k^{\prime}=1$ and $k_{3} \neq 1$: then $A^{2 m}+2 A^{m} B^{n}=k_{3} . k_{1}$. Let μ be a prime so that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$, but $2 \mid a$, it is a contradiction with a, b coprime. We suppose that $\mu \neq 2$ and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ I-2-1-1- $\mu \mid A^{m}$: If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$, the contradiction with a, b coprime.
** I-2-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right)$: If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid p \Longrightarrow p=\mu \cdot \mu^{\prime}$, then we obtain:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** I-2-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2above.
** I-2-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu\left|B^{n} \Longrightarrow \mu\right| B \\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

** I-2-1-2-2-1- $\mu \mid B^{n}$: If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2above.
** I-2-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=$ $3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then:

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write as:

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{1.138}
\end{equation*}
$$

then:

$$
3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m} \text { or } 3 \mid B^{n}
$$

** I-2-1-2-2-2-1- $3 \mid A^{m}$: If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3|4 a \Longrightarrow 3| a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime, then the contradiction and $3 \nmid A$.
** I-2-1-2-2-2-2-3| B^{m} : If $3\left|B^{n} \Longrightarrow 3\right| B$, but the equation (1.138) implies $3\left|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3\right|\left(A^{m}-B^{n}\right) \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A$. The last case above has given that $3 \nmid A$. Then case $3 \mid B^{m}$ is to reject.

Finally the hypothesis $k_{3} \neq 1$ is impossible.
${ }^{* *}$ I-2-2- Now, we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$, then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{1.139}
\end{equation*}
$$

with k_{1}, b coprime. We write 1.139 as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$
3 \times 4^{2} . a(b-a)=k_{1}^{2} \Longrightarrow k_{1}^{2}=3 \times 4^{2} \cdot a^{2}(b-a)
$$

it implies that :

$$
b-a=3 \alpha^{2} \Longrightarrow b=a^{2}+3 \alpha^{2} \Longrightarrow k_{1}=12 a^{\prime} \alpha
$$

As:

$$
k_{1}=12 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \alpha=a^{\prime}+B^{n}
$$

We consider now that $3 \mid(b-a)$ with $b=a^{\prime 2}+3 \alpha^{2}$. The case $\alpha=1$ gives $a^{\prime}+B^{n}=3$ that is impossible. We suppose $\alpha>1$, the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{1.140}
\end{equation*}
$$

with $X=a^{\prime}$ and $Y=\alpha$. But using a theorem on the solutions of the equation given by (1.140), b is written as (see theorem in [6]):

$$
b=2^{2 s} \times 3^{t} . p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime numbers verifying $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime numbers so that $q_{j} \equiv 5(\bmod 6)$, then :

- If $s \geq 1 \Longrightarrow 2 \mid b$, as $2 \mid a$, then the contradiction with a, b coprime.
- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3|(b-a) \Longrightarrow 3| a$, then the contradiction with a, b coprime.
** I-2-2-1- We suppose that b is written as:

$$
b=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $b \equiv$ $1(\bmod 6)$. We will verify then this condition.
** I-2-2-1-1- We present the table giving the value of $A^{m}+B^{n}=C^{l}$ modulo 6 in function of the value of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below after retiring the lines (respectively the colones) of $A^{m} \equiv 0(\bmod 6)$ and $A^{m} \equiv$ $3(\bmod 6)\left(\right.$ respectively of $B^{n} \equiv 0(\bmod 6)$ and $\left.B^{n} \equiv 3(\bmod 6)\right)$, they present cases with contradictions:

A^{m}, B^{n}	1	2	4	5
1	2	3	5	0
2	3	4	0	1
4	5	0	2	3
5	0	1	3	4

Table 2. Table of $C^{l}(\bmod 6)$
** I-2-2-1-1-1- For the case $C^{l} \equiv 0(\bmod 6)$ and $C^{l} \equiv 3(\bmod 6)$, we deduce that $3\left|C^{l} \Longrightarrow 3\right| C \Longrightarrow C=3^{h} C_{1}$, with $h \geq 1$ and $3 \nmid C_{1}$. It follows that $p-B^{n} C^{l}=3 b-3^{l h} C_{1}^{l} B^{n}=A^{2 m} \Longrightarrow 3\left|\left(A^{2 m}=4 a\right) \Longrightarrow 3\right| a \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-2- For the case $C^{l} \equiv 0(\bmod 6), C^{l} \equiv 2(\bmod 6)$ and $C^{l} \equiv$ $4(\bmod 6)$, we deduce that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. It follows that $p=3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{l h} C_{1}^{l} B^{n} \Longrightarrow 2|3 b \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** I-2-2-1-1-3- We consider the cases $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$ (respectively $\left.B^{n} \equiv 2(\bmod 6)\right)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows from $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-4- We consider the case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows that $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-5- We consider the case $A^{m} \equiv 2(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$: as $A^{m} \equiv 2(\bmod 6) \Longrightarrow A^{m} \equiv 2(\bmod 3)$, then A^{m} is not a square and also for B^{n}. Hence, we can write A^{m} and B^{n} as:

$$
\begin{array}{r}
A^{m}=a_{0} \cdot \mathscr{A}^{2} \\
B^{n}=b_{0} \mathscr{B}^{2}
\end{array}
$$

where a_{0} (respectively b_{0}) regroups the product of the prime numbers of A^{m} with exponent 1 (respectively of B^{n}) with not necessary $\left(a_{0}, \mathscr{A}\right)=1$
and $\left(b_{0}, \mathscr{B}\right)=1$. We have also $p=3 b=A^{2 m}+A^{m} B^{n}+B^{2 n}=$ $\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n} \Longrightarrow 3 \mid\left(b-A^{m} B^{n}\right) \Longrightarrow A^{m} B^{n} \equiv b(\bmod 3)$ but $b=a+3 \alpha^{2} \Longrightarrow b \equiv a \equiv a^{\prime 2}(\bmod 3)$, then $A^{m} B^{n} \equiv a^{\prime 2}(\bmod 3)$. But $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2 a^{\prime} \equiv 2(\bmod 6) \Longrightarrow 4 a^{\prime 2} \equiv 4(\bmod 6) \Longrightarrow a^{\prime 2} \equiv 1(\bmod 3)$. It follows that $A^{m} B^{n}$ is a square, let $A^{m} B^{n}=\mathscr{N}^{2}=\mathscr{A}^{2} \cdot \mathscr{B}^{2} \cdot a_{0} \cdot b_{0}$. We call $\mathscr{N}_{1}^{2}=a_{0} \cdot b_{0}$. Let p_{1} be a prime number so that $p_{1} \mid a_{0} \Longrightarrow a_{0}=p_{1} \cdot a_{1}$ with $p_{1} \nmid a_{1} . p_{1}\left|\mathscr{N}_{1}^{2} \Longrightarrow p_{1}\right| \mathscr{N}_{1} \Longrightarrow \mathscr{N}_{1}=p_{1}^{t} \mathscr{N}_{1}^{\prime}$ with $t \geq 1$ and $p_{1} \nmid \mathscr{N}_{1}^{\prime}$, then $p_{1}^{2 t-1} \mathscr{N}_{1}^{\prime 2}=a_{1} \cdot b_{0}$. As $2 t \geq 2 \Longrightarrow 2 t-1 \geq 1 \Longrightarrow p_{1} \mid a_{1} . b_{0}$ but $\left(p_{1}, a_{1}\right)=1$, then $p_{1}\left|b_{0} \Longrightarrow p_{1}\right| B^{n} \Longrightarrow p_{1} \mid B$. But $p_{1} \mid\left(A^{m}=2 a^{\prime}\right)$, and $p_{1} \neq 2$ because $p_{1} \mid B^{n}$ and B^{n} is odd, then the contradiction. Hence, $p_{1}\left|a^{\prime} \Longrightarrow p_{1}\right| a$. If $p_{1}=3$, from $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b coprime. Then $p_{1}>3$ a prime that divides A^{m} and B^{n}, then $p_{1}\left|(p=3 b) \Longrightarrow p_{1}\right| b$, it follows the contradiction with a, b coprime, knowing that $p=3 b \equiv 3(\bmod 6)$ and we choose the case $b \equiv 1(\bmod 6)$ of our interest.
** I-2-2-1-1-6- We consider the last case of the table above $A^{m} \equiv 4(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$. We return to the equation 1.140$)$ that b verifies :

$$
\begin{align*}
& b=X^{2}+3 Y^{2} \tag{1.141}\\
\text { with } \quad X= & a^{\prime} ; \quad Y=\alpha \\
\text { and } \quad & 3 \alpha=a^{\prime}+B^{n}
\end{align*}
$$

Suppose that it exists another solution of (1.141):

$$
b=X^{2}+3 Y^{3}=u^{2}+3 v^{2} \Longrightarrow 2 u \neq A^{m}, 3 v \neq a^{\prime}+B^{n}
$$

But $B^{n}=\frac{6 \alpha-A^{m}}{2}=3 \alpha-a^{\prime}$ and b verify also : $3 b=p=A^{2 m}+A^{m} B^{n}+B^{2 n}$, it is impossible that u, v verify:

$$
\begin{array}{r}
6 v=2 u+2 B^{n} \\
3 b=4 u^{2}+2 u B^{n}+B^{2 n}
\end{array}
$$

If we consider that : $6 v-2 u=6 \alpha-2 a^{\prime} \Longrightarrow u=3 v-3 \alpha+a^{\prime}$, then $b=$ $u^{2}+3 v^{2}=\left(3 v-3 \alpha+a^{\prime}\right)^{2}+3 v^{2}$, it gives:

$$
\begin{aligned}
2 v^{2}-B^{n} v+\alpha^{2}-a^{\prime} \alpha & =0 \\
2 v^{2}-B^{n} v-\frac{\left(a^{\prime}+B^{n}\right)\left(A^{m}-B^{n}\right)}{9} & =0
\end{aligned}
$$

The resolution of the last equation gives with taking the positive root (because $\left.A^{m}>B^{n}\right), v_{1}=\alpha$, then $u=a^{\prime}$. It follows that b in (1.141) has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As b is odd,
we applique one of Euler's theorems on the convenient numbers "numerus idoneus" as cited above (Case C-2-2-1-2). It follows that b is prime.

We have also $p=3 b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime 2}+B^{n} . C^{l} \Longrightarrow 9 \alpha^{2}-a^{2}=$ $B^{n} . C^{l}$, then $3 \alpha, a^{\prime} \in \mathbb{N}^{*}$ are solutions of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{1.142}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of 1.142 and $\tau(N)$ the number of ways to write the factors of N, then we announce the following result concerning the number of the solutions of 1.142) (see theorem 27.3 in [6]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

We recall that $A^{m} \equiv 0(\bmod 4)$. Concerning B^{n}, for $B^{n} \equiv 0(\bmod 4)$ or $B^{n} \equiv 2(\bmod 4)$, we find that $2\left|B^{n} \Longrightarrow 2\right| \alpha \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime. For the last case $B^{n} \equiv 3(\bmod 4) \Longrightarrow C^{l} \equiv 3(\bmod 4) \Longrightarrow$ $N=B^{n} C^{l} \equiv 1(\bmod 4) \Longrightarrow Q(N)=[\tau(N) / 2]>1$. But $Q(N)=1$, because the unknowns of 1.142) are also the unknowns of 1.141 and we have an unique solution of the two Diophantine equations, then the contradiction.

It follows that the condition $3 \mid(b-a)$ is a contradiction.

The study of the case 1.5 .8 is achieved.
1.5.9. Case $3 \mid p$ and $b \mid 4 p$: - The following cases have been soon studied:

* $3|p, b=2 \Longrightarrow b| 4 p$: case 1.5 .1
* $3|p, b=4 \Longrightarrow b| 4 p$: case 1.5 .2
* $3\left|p \Longrightarrow p=3 p^{\prime}, b\right| p^{\prime} \Longrightarrow p^{\prime}=b p ", p " \neq 1$: case 1.5.3
* $3|p, b=3 \Longrightarrow b| 4 p$: case 1.5 .4
* $3\left|p \Longrightarrow p=3 p^{\prime}, b=p^{\prime} \Longrightarrow b\right| 4 p$: case 1.5 .8
** J-1- Particular case: $b=12$. In fact $3 \mid p \Longrightarrow p=3 p^{\prime}$ and $4 p=12 p^{\prime}$. Taking $b=12$, we have $b \mid 4 p$. But $b<4 a<3 b$, that gives $12<4 a<36 \Longrightarrow 3<a<9$. As $2 \mid b$ and $3 \mid b$, the possible values of a are 5 and 7 .
** J-1-1- $a=5$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=$ $\left.\frac{5 b p^{\prime}}{3 b}=\frac{5 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=3 p "$ with $p \prime \in \mathbb{N}^{*}$, then $p=9 p \prime$, we obtain the
expressions:

$$
\begin{align*}
A^{2 m} & =5 p \tag{1.143}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =4 p \tag{1.144}
\end{align*}
$$

As $n, l \geq 3$, we deduce from the equation (1.144) that $2 \mid p " \Longrightarrow p "=2^{\alpha} p_{1}$ with $\alpha \geq 1$ and $2 \nmid p_{1}$. Then 1.143 becomes: $A^{2 m}=5 p "=5 \times 2^{\alpha} p_{1} \Longrightarrow$ $2 \mid A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. We have also $B^{n} C^{l}=2^{\alpha+2} p_{1} \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** J-1-1-1- We suppose that $2 \mid B^{n} \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=2^{\alpha+2-j n} p_{1}$:

- If $\alpha+2-j n>0 \Longrightarrow 2 \mid C^{l}$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ and the conjecture (3.1) is verified.
- If $\alpha+2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=p_{1}$. From $C^{=} 2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ that implies that $2 \mid p_{1}$, then the contradiction with $2 \nmid p_{1}$.
- If $\alpha+2-j n<0 \Longrightarrow 2^{j n-\alpha-2} B_{1}^{n} C^{l}=p_{1}$, it implies that $2 \mid p_{1}$, then the contradiction as above.
** J-1-1-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain the identical results.
** J-1-2- We suppose that $a=7$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{12 p^{\prime}}{3} \cdot \frac{7}{12}=\frac{7 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p=9 p \prime$, we obtain:

$$
\begin{aligned}
A^{2 m} & =7 p \\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =2 p
\end{aligned}
$$

The last equation implies that $2 \mid B^{n} C^{l}$. Using the same method as for the case J-1-1- above, we obtain the identical results.

We study now the general case. As $3 \mid p \Rightarrow p=3 p^{\prime}$ and $b \mid 4 p \Rightarrow \exists k_{1} \in \mathbb{N}^{*}$ and $4 p=12 p^{\prime}=k_{1} b$ 。
** J-2- $k_{1}=1$: If $k_{1}=1$ then $b=12 p^{\prime},\left(p^{\prime} \neq 1\right.$, if not $p=3 \ll$ $\left.A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{12 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} \cdot a}{12 p^{\prime}}=\frac{a}{3} \Rightarrow 3 \right\rvert\, a$ because $A^{2 m}$ is a natural number, then the contradiction with a, b coprime.
** J-3- $k_{1}=3:$ If $k_{1}=3$, then $b=4 p^{\prime}$ and $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{k_{1} \cdot a}{3}=a=$ $\left(A^{m}\right)^{2}=a^{\prime 2} \Longrightarrow A^{m}=a^{\prime}$. The term $A^{m} B^{n}$ gives $A^{m} B^{n}=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-\frac{a}{2}$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 p^{\prime} \sqrt{3} \sin \frac{2 \theta}{3} \tag{1.145}
\end{equation*}
$$

The left member of 1.145 is a natural number and also p^{\prime}, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form:

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{k_{3}}
$$

where k_{2}, k_{3} are two natural numbers and are coprime and $k_{3} \mid p^{\prime} \Longrightarrow p^{\prime}=k_{3} . k_{4}$.
** J-3-1- $k_{4} \neq 1$: We suppose that $k_{4} \neq 1$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{2} \cdot k_{4} \tag{1.146}
\end{equation*}
$$

Let μ be a prime natural number so that $\mu \mid k_{4}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-1-1- $\mu \mid A^{m}:$ If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu \mid a$. As $\mu\left|k_{4} \Longrightarrow \mu\right| p^{\prime} \Rightarrow \mu \mid\left(4 p^{\prime}=\right.$ $b)$. But a, b are coprime, then the contradiction.
** J-3-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right):$ If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n} . \mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain $p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)$. As $p=3 p^{\prime}$ and $\mu\left|p^{\prime} \Rightarrow \mu\right|\left(3 p^{\prime}\right) \Rightarrow \mu \mid p$, we can write : $\exists \mu^{\prime}$ and $p=\mu \mu^{\prime}$, then we arrive to:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** J-3-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
${ }^{* *}$ J-3-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

** J-3-1-2-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
** J-3-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{4} \Longrightarrow k_{4}=3 k_{4}^{\prime}$, and we have $p^{\prime}=$ $k_{3} k_{4}=3 k_{3} k_{4}^{\prime}$, it follows that $p=3 p^{\prime}=9 k_{3} k_{4}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+$ $3 A^{m} B^{n}$, then we obtain:

$$
9 k_{3} k_{4}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write : $3\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2}$, then : $3 \mid\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right) \Longrightarrow$ $3\left|A^{m} B^{n} \Longrightarrow 3\right| A^{m}$ or $3 \mid B^{n}$.
** J-3-1-2-2-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Rightarrow 3 \mid a$, but $3\left|p^{\prime} \Rightarrow 3\right|\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$, then the contradiction with a, b coprime and $3 \nmid A$.
** J-3-1-2-2-2-2-3| B^{n} : If $3 \mid B^{n}$ but $A^{m}=\mu t^{\prime}-2 B^{n}=3 t^{\prime}-2 B^{n} \Longrightarrow 3 \mid A^{m}$, it is in contradiction with $3 \nmid A$.

Then the hypothesis $k_{4} \neq 1$ is impossible.
${ }^{* *} \mathrm{~J}-3-2-k_{4}=1$: We suppose now that $k_{4}=1 \Longrightarrow p^{\prime}=k_{3} k_{4}=k_{3}$. Then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{p^{\prime}} \tag{1.147}
\end{equation*}
$$

with k_{2}, p^{\prime} coprime, we write 1.147 as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{2}}{p^{\prime}}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$ and $b=4 p^{\prime}$, we obtain:

$$
3 . a(b-a)=k_{2}^{2}
$$

As $A^{2 m}=a=a^{\prime 2}$, it implies that:

$$
3 \mid(b-a), \quad \text { and } \quad b-a=b-a^{\prime 2}=3 \alpha^{2}
$$

As $k_{2}=A^{m}\left(A^{m}+2 B^{n}\right)$ following the equation 1.146 and that $3 \mid k_{2} \Longrightarrow$ $3\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3\right| A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$, then the contradiction with a, b coprime.
** J-3-2-2- $3 \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \nmid A^{m}$ and $3 \nmid B^{n}$. As $k_{2}^{2}=9 a \alpha^{2}=9 a^{2} \alpha^{2} \Longrightarrow$ $k_{2}=3 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
3 \alpha=A^{m}+2 B^{n} \tag{1.148}
\end{equation*}
$$

As b can be written under the form $b=a^{\prime 2}+3 \alpha^{2}$, then the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=b \tag{1.149}
\end{equation*}
$$

As $b=4 p^{\prime}$, then :
** J-3-2-2-1- If x, y are even, then $2\left|a^{\prime} \Longrightarrow 2\right| a$, it is a contradiction with a, b coprime.
** J-3-2-2-2- If x, y are odd, then a^{\prime}, α are odd, it implies $A^{m}=a^{\prime} \equiv 1(\bmod 4)$ or $A^{m} \equiv 3(\bmod 4)$. If u, v verify 1.149 , then $b=u^{2}+3 v^{2}$, with $u \neq a^{\prime}$ and $v \neq \alpha$, then u, v do not verify (1.148): $3 v \neq u+2 B^{n}$, if not, $u=3 v-2 B^{n} \Longrightarrow b=\left(3 v-2 B^{n}\right)^{2}+3 v^{2}=a^{\prime 2}+3 \alpha$, the resolution of the obtained equation of second degree in v gives the positive root $v_{1}=\alpha$, then $u=3 \alpha-2 B^{n}=a^{\prime}$, then the uniqueness of the representation of b by the equation 1.149 .
** J-3-2-2-2-1- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even and $B^{n}=2 B^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=a^{\prime 2}+2 a^{\prime} B^{\prime}+4 B^{\prime 2}=\left(a^{\prime}+B^{\prime}\right)^{2}+3 B^{\prime 2}=3 p^{\prime} \Longrightarrow 3 \mid\left(a^{\prime}+B^{\prime}\right) \Longrightarrow a^{\prime}+B^{\prime}=3 B " \\
p^{\prime}=B^{\prime 2}+3 B^{\prime 2} \Longrightarrow b=4 p^{\prime}=\left(2 B^{\prime}\right)^{2}+3(2 B ")^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

that gives $2 B^{\prime}=B^{n}=a^{\prime}=A^{m}$, then the contradiction with $A^{m}>B^{n}$.
** J-3-2-2-2-2- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even and $C^{l}=2 C^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=C^{2 l}-C^{l} B^{n}+B^{2 n}=4 C^{\prime 2}-2 C^{\prime} B^{n}+B^{2 n}=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}=3 p^{\prime} \\
\Longrightarrow 3 \mid\left(C^{\prime}-B^{n}\right) \Longrightarrow C^{\prime}-B^{n}=3 C^{\prime \prime} \\
p^{\prime}=C^{\prime 2}+3 C^{\prime \prime} \Longrightarrow b=4 p^{\prime}=\left(2 C^{\prime}\right)^{2}+3\left(2 C^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

We obtain $2 C^{\prime}=C^{l}=a^{\prime}=A^{m}$, then the contradiction.
** J-3-2-2-2-3- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-4- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see $\mathrm{J}-3-2-2-2-2-$.
** J-3-2-2-2-5- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-6- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even, see $\mathrm{J}-3-2-2-2-2-$.
** J-3-2-2-2-7- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-8- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see $\mathrm{J}-3-2-2-2-2$.

We have achieved the study of the case J-3-2-2- given contradictions.
** J-4- We suppose that $k_{1} \neq 3$ and $3 \mid k_{1} \Longrightarrow k_{1}=3 k_{1}^{\prime}$ with $k_{1}^{\prime} \neq 1$, then $4 p=12 p^{\prime}=k_{1} b=3 k_{1}^{\prime} b \Rightarrow 4 p^{\prime}=k_{1}^{\prime} b . \quad A^{2 m}$ can be written as $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{3 k_{1}^{\prime} b}{3} \frac{a}{b}=k_{1}^{\prime} a$ and $B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{k_{1}^{\prime}}{4}(3 b-4 a)$. As $B^{n} C^{l}$ is a natural number, we must have $4 \mid(3 b-4 a)$ or $4 \mid k_{1}^{\prime}$ or [2| k_{1}^{\prime} and $\left.2 \mid(3 b-4 a)\right]$.
** J-4-1- We suppose that $4 \mid(3 b-4 a)$.
** J-4-1-1- We suppose that $3 b-4 a=4 \Longrightarrow 4|b \Longrightarrow 2| b$. Then, we have:

$$
\begin{aligned}
& A^{2 m}=k_{1}^{\prime} a \\
& B^{n} C^{l}=k_{1}^{\prime}
\end{aligned}
$$

** J-4-1-1-1- If k_{1}^{\prime} is prime, from $B^{n} C^{l}=k_{1}^{\prime}$, it is impossible.
** J-4-1-1-2- We suppose that $k_{1}^{\prime}>1$ is not prime. Let ω be a prime natural number so that $\omega \mid k_{1}^{\prime}$.
** J-4-1-1-2-1- We suppose that $k_{1}^{\prime}=\omega^{s}$, with $s \geq 6$. Then we have :

$$
\begin{align*}
& A^{2 m}=\omega^{s} \cdot a \tag{1.150}\\
& B^{n} C^{l}=\omega^{s} \tag{1.151}
\end{align*}
$$

${ }^{* *} \mathrm{~J}-4-1-1-2-1-1$ - We suppose that $\omega=2$. If a, k_{1}^{\prime} are not coprime, then $2 \mid a$, as $2 \mid b$, it is the contradiction with a, b coprime.
** J-4-1-1-2-1-2- We suppose $\omega=2$ and a, k_{1}^{\prime} are coprime, then $2 \nmid a$. From 1.151, we deduce that $B=C=2$ and $n+l=s$, and $A^{2 m}=2^{s}$.a, but $A^{m}=2^{l}-2^{n} \Longrightarrow A^{2 m}=\left(2^{l}-2^{n}\right)^{2}=2^{2 l}+2^{2 n}-2\left(2^{l+n}\right)=2^{2 l}+2^{2 n}-2 \times 2^{s}=$ $2^{s} . a \Longrightarrow 2^{2 l}+2^{2 n}=2^{s}(a+2)$. If $l=n$, we obtain $a=0$ then the contradiction. If $l \neq n$, as $A^{m}=2^{l}-2^{n}>0 \Longrightarrow n<l \Longrightarrow 2 n<s$, then $2^{2 n}\left(1+2^{2 l-2 n}-2^{s+1-2 n}\right)=2^{n} 2^{l} . a$. We call $l=n+n_{1} \Longrightarrow 1+2^{2 l-2 n}-2^{s+1-2 n}=$ $2^{n_{1}} . a$, but the left term is odd and the right member is even, then the contradiction. Then the case $\omega=2$ is impossible.
** J-4-1-1-2-1-3- We suppose that $k_{1}^{\prime}=\omega^{s}$ with $\omega \neq 2$:
** J-4-1-1-2-1-3-1- Suppose that a, k_{1}^{\prime} are not coprime, then $\omega \mid a \Longrightarrow a=\omega^{t} . a_{1}$ and $t \nmid a_{1}$. Then, we have:

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \tag{1.153}
\end{array}
$$

From 1.153, we deduce that $B^{n}=\omega^{n}, C^{n}=\omega^{l}, s=n+l$ and $A^{m}=\omega^{l}-\omega^{n}>$ $0 \Longrightarrow l>n$. We have also $A^{2 m}=\omega^{s+t} \cdot a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}=\omega^{2 l}+\omega^{2 n}-2 \times \omega^{s}$. As $\omega \neq 2 \Longrightarrow \omega$ is odd, then $A^{2 m}=\omega^{s+t} . a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2\left|a_{1} \Longrightarrow 2\right| a$, it is in contradiction with a, b coprime, then this case is impossible.
** J-4-1-1-2-1-3-2- Suppose that a, k_{1}^{\prime} are coprime, with :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot a \tag{1.154}\\
B^{n} C^{l}=\omega^{s} \tag{1.155}
\end{gather*}
$$

From 1.155, we deduce that $B^{n}=\omega^{n}, C^{l}=\omega^{l}$ and $s=n+l$. As $\omega \neq 2 \Longrightarrow \omega$ is odd and $A^{2 m}=\omega^{s} . a=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2 \mid a$. It follows the contradiction with a, b coprime and this case is impossible.
** J-4-1-1-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$. We have :

$$
\begin{gathered}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2}
\end{gathered}
$$

** J-4-1-1-2-2-1- If k_{2} is prime, from the last equation above, $\omega=k_{2}$, it is in contradiction with $\omega \nmid k_{2}$. Then this case is impossible.
** J-4-1-1-2-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$ and k_{2} not a prime. Then, we have:

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{1.156}
\end{gather*}
$$

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then $\omega \nmid a$. As $A^{2 m}=\omega^{s} . k_{2} \cdot a \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s=2 \mathrm{im}$. From (1.156), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-1-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then :

$$
B_{1}^{n} C^{l}=\omega^{2 i m-j n} k_{2}
$$

- If $2 i m-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, as $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-j n<0 \Longrightarrow \omega^{j n-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.

[^5]** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then $\omega \mid a \Longrightarrow a=$ $\omega^{t} . a_{1}$ and $\omega \nmid a_{1}$. So we have :
\[

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{1.158}
\end{array}
$$
\]

As $A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s+t=2$ im. From 1.158), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then:

$$
B_{1}^{n} C^{l}=\omega^{2 i m-t-j n} k_{2}
$$

- If $2 i m-t-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m-t-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, As $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-t-j n<0 \Longrightarrow \omega^{j n+t-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-2-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.
** J-4-1-2- $3 b-4 a \neq 4$ and $4 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=4^{s} \Omega$ with $s \geq 1$ and $4 \nmid \Omega$. We obtain:

$$
\begin{array}{r}
A^{2 m}=k_{1}^{\prime} a \\
B^{n} C^{l}=4^{s-1} k_{1}^{\prime} \Omega \tag{1.160}
\end{array}
$$

** J-4-1-2-1- We suppose that $k_{1}^{\prime}=2$. From 1.159), we deduce that $2 \mid a$. As $4|(3 b-4 a) \Longrightarrow 2| b$, then the contradiction with a, b coprime and this case is impossible.
** J-4-1-2-2- We suppose that $k_{1}^{\prime}=3$. From 1.159 we deduce that $3^{3} \mid A^{2 m}$. From 1.160, it follows that $3^{3} \mid B^{n}$ or $3^{3} \mid C^{l}$. In the last two cases, we obtain $3^{3} \mid p$. But $4 p=3 k_{1}^{\prime} b=9 b \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime. Then this case is impossible.
** J-4-1-2-3- We suppose that k_{1}^{\prime} is prime ≥ 5 :
** J-4-1-2-3-1- Suppose that k_{1}^{\prime} and a are coprime. The equation 1.159 gives $\left(A^{m}\right)^{2}=k_{1}^{\prime} \cdot a$, that is impossible with $k_{1}^{\prime} \nmid a$. Then this case is impossible.
${ }^{* *}$ J-4-1-2-3-2-Suppose that k_{1}^{\prime} and a are not coprime. Let $k_{1}^{\prime} \mid a \Longrightarrow a=k_{1}^{\prime \alpha} a_{1}$ with $\alpha \geq 1$ and $k_{1}^{\prime} \nmid a_{1}$. The equation 1.159 is written as:

$$
A^{2 m}=k_{1}^{\prime} a=k_{1}^{\prime \alpha+1} a_{1}
$$

The last equation gives $k_{1}^{\prime}\left|A^{2 m} \Longrightarrow k_{1}^{\prime}\right| A \Longrightarrow A=k_{1}^{\prime} . A_{1}$, with $k_{1}^{\prime} \nmid A_{1}$. If $2 i . m \neq(\alpha+1)$, it is impossible. We suppose that $2 i . m=\alpha+1$, then $k_{1}^{\prime} \mid A^{m}$. We return to the equation 1.160 . If k_{1}^{\prime} and Ω are coprime, it is impossible. We suppose that k_{1}^{\prime} and Ω are not coprime, then $k_{1}^{\prime} \mid \Omega$ and the exponent of k_{1}^{\prime} in Ω is so the equation 1.160 is satisfying. We deduce easily that $k_{1}^{\prime} \mid B^{n}$. Then $k_{1}^{\prime 2} \mid\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, but $4 p=3 k_{1}^{\prime} b \Longrightarrow k_{1}^{\prime} \mid b$, then the contradiction with a, b coprime.
** J-4-1-2-4- We suppose that $k_{1}^{\prime} \geq 4$ is not a prime.
** J-4-1-2-4-1- Supposons que $k_{1}^{\prime}=4$, we have then $A^{2 m}=4 a$ and $B^{n} C^{l}=3 b-4 a=3 p^{\prime}-4 a$. This case was studied in the paragraph 1.5.8 case $^{* *}$ I-2-.
** J-4-1-2-4-2- We suppose that $k_{1}^{\prime}>4$ is not a prime.
** J-4-1-2-4-2-1- We suppose that a, k_{1}^{\prime} are coprime. From the expression $A^{2 m}=k_{1}^{\prime} \cdot a$, we deduce that $a=a_{1}^{2}$ and $k_{1}^{\prime}=k_{1}{ }_{1}^{2}$. It gives :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot k "_{1} \\
B^{n} C^{l}=4^{s-1} k_{1}^{2} . \Omega
\end{array}
$$

Let ω be a prime so that $\omega \mid k "_{1}$ and $k "_{1}=\omega^{t} . k "_{2}$ with $\omega \nmid k "_{2}$. The last two equations become :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot \omega^{t} \cdot k_{2} \\
B^{n} C^{l}=4^{s-1} \omega^{2 t} \cdot k_{2}^{2} \cdot \Omega \tag{1.162}
\end{array}
$$

From 1.161, $\omega\left|A^{m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}$ and $i m=t$. From (1.162, we obtain $\omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j}$. B_{1} with $\omega \nmid B_{1}$. From 1.161, we have $B_{1}^{n} C^{l}=\omega^{2 t-j . n} 4^{s-1} . k "_{2} . \Omega$.
** J-4-1-2-4-2-1-1-1- If $\omega=2$ and $2 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s-j . n-2} k{ }^{\prime}{ }_{2} . \Omega$:

- If $2 t+2 s-j n-2 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-2 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture 3.1 is verified.
** J-4-1-2-4-2-1-1-2- If $\omega=2$ and if $2 \mid \Omega \Longrightarrow \Omega=2 . \Omega_{1}$ because $4 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s+1-j \cdot n-2} k{ }^{\prime \prime}{ }_{2}^{2} \Omega_{1}$:
- If $2 t+2 s-j n-3 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-3 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture 3.1 is verified.
** J-4-1-2-4-2-1-1-3- If $\omega \neq 2$, we have $B_{1}^{n} C^{l}=\omega^{2 t-j . n} 4^{s-1} . k{ }_{2}^{2} . \Omega$:
-If $2 t-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$ it is in contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$. -If $2 t-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$ and the conjecture 3.1 is verified.
** J-4-1-2-4-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$. Using the same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.
** J-4-1-2-4-2-2- We suppose that a, k_{1}^{\prime} are not coprime. Let ω be a prime so that $\omega \mid a$ and $\omega \mid k_{1}^{\prime}$. We write:

$$
\begin{gathered}
a=\omega^{\alpha} \cdot a_{1} \\
k_{1}^{\prime}=\omega^{\mu} \cdot k_{1}
\end{gathered}
$$

with $a_{1}, k{ }_{1}$ coprime. The expression of $A^{2 m}$ becomes $A^{2 m}=\omega^{\alpha+\mu} \cdot a_{1} \cdot k "{ }_{1}$. The term $B^{n} C^{l}$ becomes:

$$
\begin{equation*}
B^{n} C^{l}=4^{s-1} \cdot \omega^{\mu} \cdot k^{\prime \prime}{ }_{1} \cdot \Omega \tag{1.163}
\end{equation*}
$$

** J-4-1-2-4-2-2-1- If $\omega=2 \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime, this case is impossible.
** J-4-1-2-4-2-2-2- If $\omega \geq 3$, we have $\omega \mid a$. If $\omega \mid b$ then the contradiction with a, b coprime. We suppose that $\omega \nmid b$. From the expression of $A^{2 m}$, we obtain $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}, i \geq 1$ and $2 i . m=\alpha+\mu$. From (1.163), we deduce that $\omega \mid B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$ and $j \geq 1$. Then, $B_{1}^{n} C^{l}=4^{s-1} \omega^{\mu-j n} . k^{"}{ }_{1} \cdot \Omega$:

* $\omega \nmid \Omega$:
- If $\mu-j n \geq 1$, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$, there is no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $\mu-j n \leq 0$, then $\omega \nmid C^{l}$ and it is a contradiction with $C^{l}=$ $\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$. Then this case is impossible.
* $\omega \mid \Omega$: we write $\Omega=\omega^{\beta} . \Omega_{1}$ with $\beta \geq 1$ and $\omega \nmid \Omega_{1}$. As $3 b-4 a=4^{s} . \Omega=$ $4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 a+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1}=4 \omega^{\alpha} \cdot a_{1}+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 \omega\left(\omega^{\alpha-1} \cdot a_{1}+\right.$ $\left.4^{s-1} . \omega^{\beta-1} \cdot \Omega_{1}\right)$. If $\omega=3$ and $\beta=1$, we obtain $b=4\left(3^{\alpha-1} a_{1}+4^{s-1} \Omega_{1}\right)$ and $B_{1}^{n} C^{l}=4^{s-1} 3^{\mu+1-j n} . k^{\prime \prime}{ }_{1} \Omega_{1}$.
- If $\mu-j n+1 \geq 1$, then $3 \mid C^{l}$ and the conjecture (3.1) is verified.
- If $\mu-j n+1 \leq 0$, then $3 \nmid C^{l}$ and it is the contradiction with $C^{l}=3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}$.

Now, if $\beta \geq 2$ and $\alpha=i m \geq 3$, we obtain $3 b=4 \omega^{2}\left(\omega^{\alpha-2} a_{1}+4^{s-1} \omega^{\beta-2} \Omega_{1}\right)$. If $\omega=3$ or not, then $\omega \mid b$, but $\omega \mid a$, then the contradiction with a, b coprime.

J-4-1-2-4-2-2-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$ and $h \geq 1$. then, $B^{n} C_{1}^{l}=4^{s-1} \omega^{\mu-h l} . k{ }_{1} . \Omega$. Using the same method as above, we obtain identical results.

J-4-2- We suppose that $4 \mid k_{1}^{\prime}$.
$\mathrm{J}-4-2-1-k_{1}^{\prime}=4 \Longrightarrow 4 p=3 k_{1}^{\prime} b=12 b \Longrightarrow p=3 b=3 p^{\prime}$, this case has been studied (see case I-2- paragraph 1.5.8).
** J-4-2-2- $k_{1}^{\prime}>4$ with $4 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1}$ and $s \geq 1,4 \nmid k{ }^{\prime}{ }_{1}$. Then, we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k{ }_{1} a=2^{2 s} k{ }^{\prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k{ }_{1}(3 b-4 a)=2^{2 s-2} k{ }_{1}{ }_{1}(3 b-4 a)
\end{array}
$$

** J-4-2-2-1- We suppose that $s=1$ and $k_{1}^{\prime}=4 k{ }^{\prime \prime}{ }_{1}$ with $k{ }^{\prime \prime}{ }_{1}>1$, so $p=3 p^{\prime}$ and $p^{\prime}=k{ }^{\prime \prime}{ }_{1} b$, this is the case 1.5 .3 already studied.
${ }^{* *}$ J-4-2-2-2- We suppose that $s>1$, then $k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1} \Longrightarrow 4 p=3 \times 4^{s} k{ }^{\prime \prime}{ }_{1} b$ and we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k{ }^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{"}{ }_{1}(3 b-4 a) \tag{1.165}
\end{array}
$$

** J-4-2-2-2-1- We suppose that $2 \nmid\left(k "_{1} . a\right) \Longrightarrow 2 \nmid k "_{1}$ and $2 \nmid a$. As $\left(A^{m}\right)^{2}=\left(2^{s}\right)^{2} .\left(k^{\prime \prime}{ }_{1} . a\right)$, we call $d^{2}=k_{1} .{ }_{1} . a$, then $A^{m}=2^{s} . d \Longrightarrow 2 \mid A^{m} \Longrightarrow$ $2 \mid A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and $i \geq 1$, then: $2^{i m} A_{1}^{m}=2^{s} . d \Longrightarrow s=i m$. From the equation 1.165$)$, we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. The equation 1.165 becomes:

$$
B_{1}^{n} C^{l}=2^{2 s-j n-2} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 i m-j n-2} k_{1}{ }_{1}(3 b-4 a)
$$

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m-j n-2 \geq 1$, then $2 \mid C^{l}$, there is no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\mu} \mid(3 b-4 a), \mu \geq 1$:
- If $2 i m+\mu-j n-2 \geq 1$, then $2 \mid C^{l}$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m+\mu-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.

J-4-2-2-2-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2- We suppose that $2 \mid\left(k{ }_{1} . a\right)$:
** J-4-2-2-2-2-1- We suppose that $k{ }^{1}{ }_{1}$ and a are coprime:
** J-4-2-2-2-2-1-1- We suppose that $2 \nmid a$ and $2 \mid k "_{1} \Longrightarrow k "_{1}=2^{2 \mu} \cdot k "_{2}$ and $a=a_{1}^{2}$, then the equations 1.1641 .165 become:

$$
\begin{array}{r}
A^{2 m}=4^{s} \cdot 2^{2 \mu} k{ }_{2}^{2} a_{1}^{2} \Longrightarrow A^{m}=2^{s+\mu} \cdot k{ }_{2} \cdot a_{1} \tag{1.166}\\
B^{n} C^{l}=4^{s-1} 2^{2 \mu} k^{\prime \prime}{ }_{2}^{2}(3 b-4 a)=2^{2 s+2 \mu-2} k_{2}{ }_{2}^{2}(3 b-4 a)
\end{array}
$$

The equation 1.166 gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation 1.167 , we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} \cdot B_{1}, 2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{2 s+2 \mu-j n-2} k_{2}^{\prime}{ }_{2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m+2 \mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 i m+2 \mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$ so that a, b remain coprime:
- If $2 i m+2 \mu+\alpha-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 3.1 is verified.
- If $2 i m+2 \mu+\alpha-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-2-1-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-1-2- We suppose that $2 \nmid k "_{1}$ and $2 \mid a \Longrightarrow a=2^{2 \mu} . a_{1}^{2}$ and $k "_{1}=k "_{2}^{2}$, then the equations 1.1641 .165 become:

$$
\begin{gather*}
A^{2 m}=4^{s} \cdot 2^{2 \mu} a_{1}^{2} k{ }_{2}^{\prime 2} \Longrightarrow A^{m}=2^{s+\mu} \cdot a_{1} \cdot k{ }_{2} \tag{1.168}\\
B^{n} C^{l}=4^{s-1} k_{2}^{\prime}{ }_{2}^{(3 b-4 a)=2^{2 s-2} k_{2}^{\prime}{ }_{2}^{2}(3 b-4 a)} \tag{1.169}
\end{gather*}
$$

The equation 1.168 gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation 1.169 , we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s-j n-2} k_{2}^{\prime 2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a) \Longrightarrow 2 \nmid b$:
- If $2 i m-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 3.1 is verified.
- If $2 i m-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$, in this case a, b are not coprime, then the contradiction.
** J-4-2-2-2-2-1-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-2- We suppose that $k "_{1}$ and a are not coprime $2 \mid a$ and $2 \mid k{ }_{1}$. Let $a=2^{t} . a_{1}$ and $k "_{1}=2^{\mu} k "_{2}$ and $2 \nmid a_{1}$ and $2 \nmid k "_{2}$. From 1.164 , we have $\mu+t=2 \lambda$ and $a_{1} . k "_{2}=\omega^{2}$. The equations 1.164 1.165 become:
$(1.170)^{2 m}=4^{s} k{ }^{\prime \prime}{ }_{1} a=2^{2 s} \cdot 2^{\mu} k{ }^{\prime \prime} \cdot 2^{t} \cdot a_{1}=2^{2 s+2 \lambda} \cdot \omega^{2} \Longrightarrow A^{m}=2^{s+\lambda} \cdot \omega$

$$
\begin{equation*}
B^{n} C^{l}=4^{s-1} 2^{\mu} k "_{2}(3 b-4 a)=2^{2 s+\mu-2} k "_{2}(3 b-4 a) \tag{1.171}
\end{equation*}
$$

From (1.170) we have $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. From $1.171 \mid, 2 s+\mu-2 \geq 1$, we deduce that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s+\mu-j n-2} k^{"}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 s+\mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 s+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a)$, for one value $\alpha \geq 1$. As $2 \mid a$, then $2^{\alpha}|(3 b-4 a) \Longrightarrow 2|(3 b-4 a) \Longrightarrow 2|(3 b) \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** J-4-2-2-2-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-3- $2 \mid k_{1}^{\prime}$ and $2 \mid(3 b-4 a)$: then we obtain $2 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=2^{t} . k^{\prime \prime}{ }_{1}$ with $t \geq 1$ and $2 \nmid k{ }^{\prime \prime}, 2 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=2^{\mu} . d$ with $\mu \geq 1$ and $2 \nmid d$. We have also
$2 \mid b$. If $2 \mid a$, it is a contradition with a, b coprime.

We suppose, in the following, that $2 \nmid a$. The equations 1.1641 .165 become:

$$
\begin{array}{r}
A^{2 m}=2^{t} \cdot k "_{1} \cdot a=\left(A^{m}\right)^{2} \\
B^{n} C^{l}=2^{t-1} k_{1}{ }_{1} \cdot 2^{\mu-1} d=2^{t+\mu-2} k_{1} \cdot d \tag{1.173}
\end{array}
$$

From 1.172 , we deduce that the exponent t is even, let $t=2 \lambda$. Then we call $\omega^{2}=k_{1}{ }_{1} \cdot a$, it gives $A^{m}=2^{\lambda} . \omega \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$. From (1.173), we have $2 \lambda+\mu-2 \geq 1$, then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$:
** J-4-3-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. Then we obtain $B_{1}^{n} C^{l}=2^{2 \lambda+\mu-j n-2} . k^{\prime \prime}{ }_{1} . d$.

- If $2 \lambda+\mu-j n-2 \geq 1 \Rightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1) is verified.
- If $2 s+t+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-3-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. With the same method used above, we obtain identical results.

The Main Theorem is proved.

1.6. Numerical Examples

1.6.1. Example 1: - We consider the example : $6^{3}+3^{3}=3^{5}$ with $A^{m}=$ $6^{3}, B^{n}=3^{3}$ and $C^{l}=3^{5}$. With the notations used in the paper, we obtain:

$$
\begin{array}{cl}
p=3^{6} \times 73, \quad q=8 \times 3^{11}, & \bar{\Delta}=4 \times 3^{18}\left(3^{7} \times 4^{2}-73^{3}\right)<0 \\
\rho=\frac{3^{8} \times 73 \sqrt{73}}{\sqrt{3}}, & \cos \theta=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{1.174}
\end{array}
$$

As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 2^{4}}{73}=\frac{a}{b} \Longrightarrow a=3 \times 2^{4}, b=73$; then we obtain:

$$
\begin{equation*}
\cos \frac{\theta}{3}=\frac{4 \sqrt{3}}{\sqrt{73}}, \quad p=3^{6} . b \tag{1.175}
\end{equation*}
$$

We verify easily the equation 1.174 to calculate $\cos \theta$ using 1.175 . For this example, we can use the two conditions from (1.64) as $3|a, b| 4 p$ and $3 \mid p$. The cases 1.4 .4 and 1.5 .3 are respectively used. For the case 1.4 .4 it is the case B-2-2-1- that was used and the conjecture (3.1) is verified. Concerning the case 1.5.3, it is the case G-2-2-1- that was used and the conjecture (3.1) is verified.
1.6.2. Example 2: - The second example is: $7^{4}+7^{3}=14^{3}$. We take $A^{m}=7^{4}, B^{n}=7^{3}$ and $C^{l}=14^{3}$. We obtain $p=57 \times 7^{6}=3 \times 19 \times 7^{6}, \quad q=$ $8 \times 7^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=27 \times 4 \times 7^{18}\left(16 \times 49-19^{3}\right)=-27 \times 4 \times 7^{18} \times 6075<$ $0, \quad \rho=19 \times 7^{9} \times \sqrt{19}, \quad \cos \theta=-\frac{4 \times 7}{19 \sqrt{19}}$. As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=$ $\frac{3 A^{2 m}}{4 p}=\frac{7^{2}}{4 \times 19}=\frac{a}{b} \Longrightarrow a=7^{2}, b=4 \times 19$, then $\cos \frac{\theta}{3}=\frac{7}{2 \sqrt{19}}$ and we have the two principal conditions $3 \mid p$ and $b \mid(4 p)$. The calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{7}{2 \sqrt{19}}\right)^{3}-3 \frac{7}{2 \sqrt{19}}=-\frac{4 \times 7}{19 \sqrt{19}}
$$

Then, we obtain $3\left|p \Rightarrow p=3 p^{\prime}, b\right|(4 p)$ with $b \neq 2,4$ then $12 p^{\prime}=k_{1} b=3 \times 7^{6} b$. It concerns the paragraph 1.5 .9 of the second hypothesis. As $k_{1}=3 \times 7^{6}=3 k_{1}^{\prime}$ with $k_{1}^{\prime}=7^{6} \neq 1$. It is the case J-4-1-2-4-2-2- with the condition $4 \mid(3 b-4 a)$. So we verify :

$$
3 b-4 a=3 \times 4 \times 19-4 \times 7^{2}=32 \Longrightarrow 4 \mid(3 b-4 a)
$$

with $A^{2 m}=7^{8}=7^{6} \times 7^{2}=k_{1}^{\prime}$.a and k_{1}^{\prime} not a prime, with a and k_{1}^{\prime} not coprime with $\omega=7 \nmid \Omega(=2)$. We find that the conjecture (3.1) is verified with a common factor equal to 7 (prime and divisor of $k_{1}^{\prime}=7^{6}$).
1.6.3. Example 3: - The third example is: $19^{4}+38^{3}=57^{3}$ with $A^{m}=19^{4}, B^{n}=38^{3}$ and $C^{l}=57^{3}$. We obtain $p=19^{6} \times 577, \quad q=$ $8 \times 27 \times 19^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=4 \times 19^{18}\left(27^{3} \times 16 \times 19^{2}-577^{3}\right)<0, \quad \rho=$ $\frac{19^{9} \times 577 \sqrt{577}}{3 \sqrt{3}}, \quad \cos \theta=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}} . \quad$ As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow$ $\cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 19^{2}}{4 \times 577}=\frac{a}{b} \Longrightarrow a=3 \times 19^{2}, b=4 \times 577$, then $\cos \frac{\theta}{3}=\frac{19 \sqrt{3}}{2 \sqrt{577}}$ and we have the first hypothesis $3 \mid a$ and $b \mid(4 p)$. Here again,
the calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:
$\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{19 \sqrt{3}}{2 \sqrt{577}}\right)^{3}-3 \frac{19 \sqrt{3}}{2 \sqrt{577}}=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}$
Then, we obtain $3\left|a \Rightarrow a=3 a^{\prime}=3 \times 19^{2}, b\right|(4 p)$ with $b \neq 2,4$ and $b=4 p^{\prime}$ with $p=k p^{\prime}$ soit $p^{\prime}=577$ and $k=19^{6}$. This concerns the paragraph 1.4.8 of the first hypothesis. It is the case E-2-2-2-2-1- with $\omega=19, a^{\prime}, \omega$ not coprime and $\omega=19 \nmid\left(p^{\prime}-a^{\prime}\right)=\left(577-19^{2}\right)$ with $s-j n=6-1 \times 3=3 \geq 1$, and the conjecture 3.1 is verified.

1.7. Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases, using elementary number theory and the results of some theorems about Diophantine equations. We have confirmed the method by three numerical examples. In conclusion, we can announce the theorem:

Theorem 1.3. - Let A, B, C, m, n, and l be positive natural numbers with $m, n, l>2$. If :

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.176}
\end{equation*}
$$

then A, B, and C have a common factor.

Acknowledgements. My acknowledgements to Professor Thong Nguyen Quang Do for indicating me the book of D.A. Cox cited below in References.

BIBLIOGRAPHY

[1] E.D. Bolker, Elementary Number Theory: An Algebraic Approach. W.A. Benjamin, Inc., New-York, (1970) 195 pages.
[2] D.A. Cox, Primes of the form : $x^{2}+n y^{2}$, Fermat, class field theory and complex multiplication. A Wiley-Interscience Publication, John Wiley \& Sons Inc., New-York, (1989) 363 pages.
[3] G. Frei, Leonhard Euler's convenient numbers. The Mathematical Intelligencer, Vol. 7, $n^{\circ} 3$, (1985) pp.55-58 and 64.
[4] D.R. Mauldin, A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of $A M S$, Vol 44, $n^{\circ} 11$, (1977) pp 14361437.
[5] B.M. Stewart, Theory of Numbers, Second edition. The Macmillan Compagny, New-York, (1964) 390 pages.

CHAPTER 2

TOWARDS A SOLUTION OF THE RIEMANN HYPOTHESIS

Abstract. - In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) $s=\sigma+$ it of the zeta function, defined by:

$$
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)>1
$$

have real part $\sigma=\frac{1}{2}$.
We give a proof that $\sigma=\frac{1}{2}$ using an equivalent statement of the Riemann Hypothesis concerning the Dirichlet η function.

Résumé. - En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture suivante, dite Hypothèse de Riemann: Les zéros non triviaux $s=\sigma+$ it de la fonction zeta définie par:

$$
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { pour } \quad \Re(s)>1
$$

ont comme parties réelles $\sigma=\frac{1}{2}$.
On donne une démonstration que $\sigma=\frac{1}{2}$ en utilisant une proposition équivalente de l'Hypothèse de Riemann.

2.1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:

Conjecture 2.1. - . Let $\zeta(s)$ be the complex function of the complex variable $s=\sigma+$ it defined by the analytic continuation of the function:

$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

over the whole complex plane, with the exception of $s=1$. Then the nontrivial zeros of $\zeta(s)=0$ are written as :

$$
s=\frac{1}{2}+i t
$$

In this paper, our idea is to start from an equivalent statement of the Riemann Hypothesis, namely the one concerning the Dirichlet η function. The latter is related to Riemann's ζ function where we do not need to manipulate any expression of $\zeta(s)$ in the critical band $0<\Re(s)<1$. In our calculations, we will use the definition of the limit of real sequences. We arrive to give a proof that $\sigma=\frac{1}{2}$ except at most for a finite number of zeros.
2.1.1. The function ζ. - We denote $s=\sigma+i t$ the complex variable of \mathbb{C}. For $\Re(s)=\sigma>1$, let ζ_{1} be the function defined by :

$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

We know that with the previous definition, the function ζ_{1} is an analytical function of s. Denote by $\zeta(s)$ the function obtained by the analytic continuation of $\zeta_{1}(s)$ to the whole complex plane, minus the point $s=1$, then we recall the following theorem [2]:

Theorem 2.2. - . The function $\zeta(s)$ satisfies the following:

1. $\zeta(s)$ has no zero for $\Re(s)>1$;
2. the only pole of $\zeta(s)$ is at $s=1$; it has residue 1 and is simple;
3. $\zeta(s)$ has trivial zeros at $s=-2,-4, \ldots$;
4. the nontrivial zeros lie inside the region $0 \leq \Re(s) \leq 1$ (called the critical strip) and are symmetric about both the vertical line $\Re(s)=\frac{1}{2}$ and the real axis $\Im(s)=0$.

The vertical line $\Re(s)=\frac{1}{2}$ is called the critical line. We have also the theorem (see page 16, [3]):

Theorem 2.3. - . For all $t \in \mathbb{R}, \zeta(1+i t) \neq 0$.

It is also known that the zeros of $\zeta(s)$ inside the critical strip are all complex numbers $\neq 0$ (see page 30 in [3]). Then, we take the critical strip as the region defined as $0<\Re(s)<1$.

The Riemann Hypothesis is formulated as:

Conjecture 2.4. - . (The Riemann Hypothesis,[2]) All nontrivial zeros of $\zeta(s)$ lie on the critical line $\Re(s)=\frac{1}{2}$.

In addition to the properties cited by the theorem 2.2 above, the function $\zeta(s)$ satisfies the functional relation [2] called also the reflection functional equation for $s \in \mathbb{C} \backslash\{0,1\}$:

$$
\begin{equation*}
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \frac{s \pi}{2} \Gamma(s) \zeta(s) \tag{2.1}
\end{equation*}
$$

where $\Gamma(s)$ is the gamma function defined only for $\Re(s)>0$, given by the formula :

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t
$$

So, instead of using the functional given by (2.1), we will use the one presented by G.H. Hardy [3] namely Dirichlet's eta function [2]:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s)
$$

The function eta is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0[2]$.
2.1.2. A Equivalent statement to the Riemann Hypothesis. Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet function eta which is stated as follows [2]:

Equivalence 2.5. - . The Riemann Hypothesis is equivalent to the statement that all zeros of the Dirichlet eta function :

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \sigma>1 \tag{2.2}
\end{equation*}
$$

that fall in the critical strip $0<\Re(s)<1$ lie on the critical line $\Re(s)=$ $\frac{1}{2}$.

The series 2.2 is convergent, and represents $\left(1-2^{1-s}\right) \zeta(s)$ for $\Re(s)=\sigma>0$ ([3], pages 20-21). We can rewrite:

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \Re(s)=\sigma>0 \tag{2.3}
\end{equation*}
$$

$\eta(s)$ is a complex number, it can be written as :

$$
\begin{equation*}
\eta(s)=\rho \cdot e^{i \alpha} \Longrightarrow \rho^{2}=\eta(s) \cdot \overline{\eta(s)} \tag{2.4}
\end{equation*}
$$

and $\eta(s)=0 \Longleftrightarrow \rho=0$.

2.2. Proof that the zeros of $\eta(s)$ are on the critical line $\Re(s)=\frac{1}{2}$

Proof. - . We denote $s=\sigma+i t$ with $0<\sigma<1$. We consider one zero of the function $\eta(s)$ that falls in critical strip and we write it as $s=\sigma+i t$, then we obtain $0<\sigma<1$ and $\eta(s)=0 \Longrightarrow\left(1-2^{1-s}\right) \zeta(s)=0$. Let us denote $\zeta(s)=A+i B$, and $\theta=t \log 2$, then :
$\left(1-2^{1-s}\right) \zeta(s)=\left[A\left(1-2^{1-\sigma} \cos \theta\right)-2^{1-\sigma} B \sin \theta\right]+i\left[B\left(1-2^{1-\sigma} \cos \theta\right)+2^{1-\sigma} A \sin \theta\right]$
$\left(1-2^{1-s}\right) \zeta(s)=0$ gives the system:

$$
\begin{aligned}
& A\left(1-2^{1-\sigma} \cos \theta\right)-2^{1-\sigma} B \sin \theta=0 \\
& B\left(1-2^{1-\sigma} \cos \theta\right)+2^{1-\sigma} A \sin \theta=0
\end{aligned}
$$

As the functions \sin and \cos are not equal to 0 simultaneously, we suppose for example that $\sin \theta \neq 0$, the first equation of the system gives $B=$ $\frac{A\left(1-2^{1-\sigma} \cos \theta\right)}{2^{1-\sigma} \sin \theta}$, the second equation is written as :

$$
\frac{A\left(1-2^{1-\sigma} \cos \theta\right)}{2^{1-\sigma} \sin \theta}\left(1-2^{1-\sigma} \cos \theta\right)+2^{1-\sigma} A \sin \theta=0 \Longrightarrow A=0
$$

2.2. PROOF THAT THE ZEROS OF $\eta(s)$ ARE ON THE CRITICAL LINE $\Re(s)=\frac{1}{2} \quad \mathbf{8 1}$

Then, $B=0 \Longrightarrow \zeta(s)=0$, it follows that:

$$
s \text { is one zero of } \eta(s) \text { that falls in the critical strip, is also one zero of } \zeta(s)
$$

Conversely, if s is a zero of $\zeta(s)$ in the critical strip, let $\zeta(s)=A+i B=0 \Longrightarrow$ $\eta(s)=\left(1-2^{1-s}\right) \zeta(s)=0$, then s is also one zero of $\eta(s)$ in the critical strip. We can write:
s is one zero of $\zeta(s)$ that falls in the critical strip, is also one zero of $\eta(s)$
Let us write the function η :

$$
\begin{aligned}
& \eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-s \log n}=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-(\sigma+i t) \log n}= \\
&=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \log n} \cdot e^{-i t \log n} \\
&=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \operatorname{Logn}(\cos (t \log n)-i \sin (t \log n))}
\end{aligned}
$$

The function η is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0$, but not absolutely convergent. Let s be one zero of the function eta, then :

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=0
$$

or:

$$
\forall \epsilon^{\prime}>0 \quad \exists n_{0}, \forall \mathscr{N}>n_{0},\left|\sum_{n=1}^{\mathscr{N}} \frac{(-1)^{n-1}}{n^{s}}\right|<\epsilon^{\prime}
$$

We definite the sequence of functions $\left(\left(\eta_{n}\right)_{n \in \mathbb{N}^{*}}(s)\right)$ as:

$$
\eta_{n}(s)=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{s}}=\sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}-i \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}
$$

with $s=\sigma+i t$ and $t \neq 0$.
Let s be one zero of η that lies in the critical strip, then $\eta(s)=0$, with $0<\sigma<1$. It follows that we can write $\lim _{n \longrightarrow+\infty} \eta_{n}(s)=0=\eta(s)$. We
2.2. PROOF THAT THE ZEROS OF $\eta(s)$ ARE ON THE CRITICAL LINE $\Re(s)=\frac{1}{2} \quad \mathbf{8 2}$
obtain:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}=0 \\
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}=0
\end{aligned}
$$

Using the definition of the limit of a sequence, we can write:
(2.7) $\forall \epsilon_{1}>0 \quad \exists n_{r}, \forall N>n_{r} \quad\left|\Re\left(\eta(s)_{N}\right)\right|<\epsilon_{1} \Longrightarrow\left|\Re\left(\eta(s)_{N}\right)\right|^{2}<\epsilon_{1}^{2}$
(2.8) $\forall \epsilon_{2}>0 \quad \exists n_{i}, \forall N>n_{i} \quad\left|\Im\left(\eta(s)_{N}\right)\right|<\epsilon_{2} \Longrightarrow\left|\Im\left(\eta(s)_{N}\right)\right|^{2}<\epsilon_{2}^{2}$

Then:

$$
\begin{aligned}
& 0<\sum_{k=1}^{N} \frac{\cos ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \cos (t \log k) \cdot \cos \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{1}^{2} \\
& 0<\sum_{k=1}^{N} \frac{\sin ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \sin (t \log k) \cdot \sin \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{2}^{2}
\end{aligned}
$$

Taking $\epsilon=\epsilon_{1}=\epsilon_{2}$ and $N>\max \left(n_{r}, n_{i}\right)$, we get by making the sum member to member of the last two inequalities:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2} \tag{2.9}
\end{equation*}
$$

We can write the above equation as:

$$
\begin{equation*}
0<\rho_{N}^{2}<2 \epsilon^{2} \tag{2.10}
\end{equation*}
$$

or $\rho(s)=0$.
2.2.1. Case $\sigma=\frac{1}{2} \Longrightarrow 2 \sigma=1$. - We suppose that $\sigma=\frac{1}{2} \Longrightarrow 2 \sigma=1$. Let's start by recalling Hardy's theorem (1914) ([2], page 24):

Theorem 2.6. - . There are infinitely many zeros of $\zeta(s)$ on the critical line.

From the propositions (2.5-2.6), it follows the proposition :
Proposition 2.7. - . There are infinitely many zeros of $\eta(s)$ on the critical line.

Let $s_{j}=\frac{1}{2}+i t_{j}$ one of the zeros of the function $\eta(s)$ on the critical line, so $\eta\left(s_{j}\right)=0$. The equation (2.9) is written for s_{j} :

$$
0<\sum_{k=1}^{N} \frac{1}{k}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

If $N \longrightarrow+\infty$, the series $\sum_{k=1}^{N} \frac{1}{k}$ is divergent and becomes infinite. then:

$$
\sum_{k=1}^{+\infty} \frac{1}{k} \leq 2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

Hence, we obtain the following result:

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}=-\infty \tag{2.11}
\end{equation*}
$$

if not, we will have a contradiction with the fact that :

$$
\lim _{N \longrightarrow+\infty} \sum_{k=1}^{N}(-1)^{k-1} \frac{1}{k^{s_{j}}}=0 \Longleftrightarrow \eta(s) \text { is convergent for } s_{j}=\frac{1}{2}+i t_{j}
$$

As $t_{j}>0$, and that there is an infinity of zeros on the critical line, then the result of the formula given by (2.11) is independent of t_{j}. We return now to $s=\sigma+i t$ one zero of $\eta(s)$ on the critical, let $\eta(s)=0$. We take $\sigma=\frac{1}{2}$. Starting from the definition of the limit of sequences, applied above, we obtain:

$$
\sum_{k=1}^{+\infty} \frac{1}{k} \leq 2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

with any contradiction. From the proposition (2.5), it follows that $\zeta(s)=$ $\zeta\left(\frac{1}{2}+i t\right)=0$. There are therefore zeros of $\zeta(s)$ on the critical line $\Re(s)=\frac{1}{2}$.
2.2.2. Case $0<\Re(s)<\frac{1}{2}$. -
2.2.2.1. Case there is no zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$. Using, for this case, point 4 of theorem (2.2), we deduce that the function $\eta(s)$ has no zeros with $s=\sigma+$ it and $\frac{1}{2}<\sigma<1$. Then, from the proposition 2.5, it follows that the function $\zeta(s)$ has all its nontrivial zeros only on the critical line $\Re(s)=\sigma=\frac{1}{2}$ and the Riemann Hypothesis is true.
2.2.2.2. Case where there are zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$. Suppose that there exists $s=\sigma+$ it one zero of $\eta(s)$ or $\eta(s)=0 \Longrightarrow \rho^{2}(s)=0$ with $0<\sigma<\frac{1}{2} \Longrightarrow s$ lies inside the critical band. We write the equation (2.9):

$$
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}
$$

But $2 \sigma<1$, it follows that $\lim _{N} \longrightarrow+\infty \sum_{k=1}^{N} \frac{1}{k^{2 \sigma}} \longrightarrow+\infty$ and then, we obtain :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}=-\infty \tag{2.12}
\end{equation*}
$$

Again, the above result is independent of t.
2.2.3. Case $\frac{1}{2}<\Re(s)<1$. - Let $s=\sigma+i t$ be the zero of $\eta(s)$ in $0<$ $\Re(s)<\frac{1}{2}$, object of the previous paragraph. According to point 4 of theorem 2.2, the complex number $s^{\prime}=1-\sigma+i t=\sigma^{\prime}+i t^{\prime}$ with $\sigma^{\prime}=1-\sigma, t^{\prime}=t$ and $\frac{1}{2}<\sigma^{\prime}<1$, is also a zero of the function $\eta(s)$ in the band $\frac{1}{2}<\Re(s)<1$, that is $\eta\left(s^{\prime}\right)=0 \Longrightarrow \rho\left(s^{\prime}\right)=0$. By applying 2.9), we get:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}<2 \epsilon^{2} \tag{2.13}
\end{equation*}
$$

As $0<\sigma<\frac{1}{2} \Longrightarrow 2>2 \sigma^{\prime}=2(1-\sigma)>1$, then the series $\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}$ is convergent to a positive constant not null $C\left(\sigma^{\prime}\right)$. As $1 / k^{2}<1 / k^{2 \sigma^{\prime}}$, then :

$$
0<\frac{\pi^{2}}{6}=\sum_{k=1}^{+\infty} \frac{1}{k^{2}} \leq \sum_{k=1}^{+\infty} \frac{1}{k^{2 \sigma^{\prime}}}=C\left(\sigma^{\prime}\right)
$$

From the equation (2.13), it follows that :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}>-\infty \tag{2.14}
\end{equation*}
$$

Then, we have the 2 following cases:
1)- There exists an infinity of complex numbers $s_{l}=\sigma_{l}+i t_{l}$ with $\left.\sigma_{l} \in\right] 0,1 / 2[$ such that $\eta\left(s_{l}\right)=0$. For each s_{l}^{\prime}, the left member of the equation (2.14) above is finite and depends of σ_{l}^{\prime} and t_{l}^{\prime}, but the right member is a function only of σ_{l}^{\prime}. Hence the contradiction, therefore, the function $\eta(s)$ has all its zeros on the critical line $\sigma=\frac{1}{2}$. It follows that the Riemann hypothesis is verified.
$2)$ - There is at most a single zero $s_{0}=\sigma_{0}+i t_{0}$ of $\eta(s)$ with $\left.\sigma_{0} \in\right] 0,1 / 2\left[, t_{0}>0\right.$ such that $\eta\left(s_{0}\right)=0$. Let us call this zero isolated zero that we denote by $(I Z)$. Therefore, the interval $] 1 / 2,1\left[\right.$ contains a single zero $s_{0}^{\prime}=1-\sigma_{0}+i t_{0}$. Since the critical line contains an infinity of zeros of $\zeta(s)=0$, it follows that all the nontrivial zeros of $\zeta(s)$ are on the critical line $\sigma=\frac{1}{2}$, except the 4 zeros relative to $(I Z)$. Here too, we deduce that the Riemann Hypothesis holds except at most for the $(I Z)$ in the critical band.

2.3. Conclusion

In summary: for our proofs, we made use of Dirichlet's $\eta(s)$ function:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad s=\sigma+i t
$$

on the critical band $0<\Re(s)<1$, in obtaining:

- $\eta(s)$ vanishes for $0<\sigma=\Re(s)=\frac{1}{2}$;
- $\eta(s)$ does not vanish for $0<\sigma=\Re(s)<\frac{1}{2}$ and $\frac{1}{2}<\sigma=\Re(s)<1$ except at most for the (IZ) (with its symmetrical) inside the critical band.

Consequently, all the zeros of $\eta(s)$ inside the critical band $0<\Re(s)<1$ vanish on the critical line $\Re(s)=\frac{1}{2}$ except at most at (IZ) (with its symmetrical). Applying the equivalent proposition to the Riemann Hypothesis 3.1, all the nontrivial zeros of the function $\zeta(s)$ lie on the critical line $\Re(s)=\frac{1}{2}$ except at most at (IZ) (with its symmetrical) inside the critical band. The
proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:
Theorem 2.8. - . All nontrivial zeros of the function $\zeta(s)$ with $s=$ $\sigma+$ it lie on the vertical line $\Re(s)=\frac{1}{2}$, except for at most four zeros of respective affixes $\left(\sigma_{0}, t_{0}\right),\left(1-\sigma_{0}, t_{0}\right),\left(\sigma_{0},-t_{0}\right),\left(1-\sigma_{0},-t_{0}\right)$, belonging to the critical band.

BIBLIOGRAPHY

[1] Bombieri E.:, The Riemann Hypothesis, In The millennium prize problems. J. Carlson, A. Jaffe, and A. Wiles Editors. Published by The American Mathematical Society, Providence, RI, for The Clay Mathematics Institute, Cambridge, MA. (2006), 107-124.
[2] Borwein P., Choi S., Rooney B. and Weirathmueller A.: The Riemann hypothesis - a resource for the afficionado and virtuoso alike. 1st Ed. CMS Books in Mathematics. Springer-Verlag New York. 588p. (2008)
[3] Titchmarsh E.C., Heath-Brown D.R.: The theory of the Riemann zetafunction. 2sd Ed. revised by D.R. Heath-Brown. Oxford University Press, New York. 418p. (1986)

CHAPTER 3

IS THE $a b c$ CONJECTURE TRUE?

Abstract

$\boldsymbol{A} \boldsymbol{b} \boldsymbol{s t r a c t} .-$ In this paper, we consider the $a b c$ conjecture. In the first part, we give the proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$ that constitutes the key to resolve the $a b c$ conjecture. The proof of the $a b c$ conjecture is given in the second part of the paper, supposing that the $a b c$ conjecture is false, we arrive in a contradiction.

Résumé. - Dans cet article, nous considérons la conjecture abc. Dans la première partie, nous donnons la preuve de la conjecture $c<\operatorname{rad}^{1.63}(a b c)$ qui constitue la clé pour résoudre la conjecture $a b c$. Dans la deuxième partie de l'article, la preuve de la conjecture $a b c$ est donnée en supposant qu'elle est fausse, nous arrivons à une contradiction.

3.1. Introduction and notations

Let a be a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{3.1}
\end{equation*}
$$

We denote:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{3.2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [8]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 3.1. - (abc Conjecture): For each $\epsilon>0$, there exists $K(\epsilon)$ such that if a, b, c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{3.3}
\end{equation*}
$$

where K is a constant depending only of ϵ.
We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [5]. It concerned the best example given by E. Reyssat [5:

$$
\begin{equation*}
2+3^{10} .109=23^{5} \Longrightarrow c<r a d^{1.629912}(a b c) \tag{3.4}
\end{equation*}
$$

A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. In 2012, A. Nitaj [4] proposed the following conjecture:

Conjecture 3.2. - Let a, b, c be positive integers relatively prime with $c=a+b$, then:

$$
\begin{array}{r}
c<\operatorname{rad}^{1.63}(a b c) \\
a b c<\operatorname{rad}^{4.42}(a b c) \tag{3.6}
\end{array}
$$

Firstly, we will give the proof of the conjecture given by (3.5) that constitutes the key to obtain the proof of the $a b c$ conjecture. Secondly, we present in section three of the paper the proof that the $a b c$ conjecture is true.

3.2. A Proof of the conjecture $c<r a d^{1.63}(a b c)$, case $c=a+b$

Let a, b, c be positive integers, relatively prime, with $c=a+b, b<a$ and $R=\operatorname{rad}(a b c), c=\prod_{j^{\prime} \in J^{\prime}} c_{j^{\prime}}^{\beta_{j^{\prime}}}, \beta_{j^{\prime}} \geq 1$.

In a previous paper [1], we have given, for the case $c=a+1$, the proof that $c<\operatorname{rad}^{1.63}(a c)$. In the following, we will give the proof for the case $c=a+b$.

Proof. - If $c<\operatorname{rad}(a b c)$, then we obtain:

$$
c<\operatorname{rad}(a b c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (3.5) is satisfied.

If $c=\operatorname{rad}(a b c)$, then a, b, c are not coprime, case to reject. In the following, we suppose that $c>\operatorname{rad}(a b c)$ and a, b and c are not prime numbers.

$$
\begin{equation*}
c=a+b=\mu_{a} r a d(a)+\mu_{b} r a d(b) \stackrel{?}{<} \operatorname{rad}^{1.63}(a b c) \tag{3.7}
\end{equation*}
$$

3.2.1. $\mu_{a} \leq \operatorname{rad}^{0.63}(a)$. - We obtain :
$c=a+b<2 a \leq 2 \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$
Then (3.7) is satisfied.
3.2.2. $\mu_{c} \leq \operatorname{rad}^{0.63}(c)$. - We obtain :

$$
c=\mu_{c} \operatorname{rad}(c) \leq \operatorname{rad}^{1.63}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (3.7) is satisfied.
3.2.3. $\mu_{a}>\operatorname{rad}^{0.63}(a)$ and $\mu_{c}>\operatorname{rad}^{0.63}(c)$. -
3.2.3.1. Case: $\operatorname{rad}^{0.63}(c)<\mu_{c} \leq \operatorname{rad}^{1.63}(c)$ and $\operatorname{rad}^{0.63}(a)<\mu_{a} \leq \operatorname{rad}^{1.63}(a)$: -

We can write:

$$
\left.\begin{array}{rl}
\mu_{c} \leq \operatorname{rad}^{1.63}(c) \Longrightarrow c & \leq \operatorname{rad}^{2.63}(c) \\
\mu_{a} \leq \operatorname{rad}^{1.63}(a) \Longrightarrow a & \leq \operatorname{rad}^{2.63}(a)
\end{array}\right\} \Longrightarrow a c \leq \operatorname{rad}^{2.63}(a c) \Longrightarrow a^{2}<a c \leq \operatorname{rad}^{2.63}(a c)
$$

3.2.3.2. Case: $\mu_{c}>\operatorname{rad}^{1.63}(c)$ or $\mu_{a}>\operatorname{rad}^{1.63}(a)$. - I- We suppose that $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a} \leq \operatorname{rad}^{2}(a)$:

I-1- Case $\operatorname{rad}(a)<\operatorname{rad}(c)$: In this case $a=\mu_{a} \cdot \operatorname{rad}(a) \leq \operatorname{rad}^{3}(a) \leq$ $\operatorname{rad}^{1.63}(a) \operatorname{rad}^{1.37}(a)<$
$\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow$
$c<R^{1.63}$.
I-2- Case $\operatorname{rad}(c)<\operatorname{rad}(a)<\operatorname{rad}^{\frac{1.63}{1.37}}(c):$ As $a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(a)<$ $\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c) \Longrightarrow c<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<R^{1.63} \Longrightarrow$
$c<R^{1.63}$.

I-3- Case $\operatorname{rad}^{\frac{1.63}{1.37}}(c)<\operatorname{rad}(a)$:

I-3-1- We suppose $c \leq \operatorname{rad}^{3.26}(c)$, we obtain:

$$
\begin{gathered}
c \leq \operatorname{rad}^{3.26}(c) \Longrightarrow c \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(c) \Longrightarrow \\
c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}(a)^{1.37}<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}(a)^{1.63} \cdot \operatorname{rad}^{1.63}(b)=R^{1.63} \Longrightarrow c<R^{1.63}
\end{gathered}
$$

I-3-2- We suppose $c>\operatorname{rad}^{3.26}(c) \Longrightarrow \mu_{c}>\operatorname{rad}^{2.26}(c)$. We consider the case $\mu_{a}=\operatorname{rad}^{2}(a) \Longrightarrow a=\operatorname{rad}^{3}(a)$. Then, we obtain that $X=\operatorname{rad}(a)$ is a solution in positive integers of the equation:

$$
\begin{equation*}
X^{3}+1=c-b+1=c^{\prime} \tag{3.8}
\end{equation*}
$$

But it is the case $c^{\prime}=1+a$. If $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right)$ with $n \geq 4$, we obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{n}\left(c^{\prime}\right)-\operatorname{rad}^{3}(a)=1 \tag{3.9}
\end{equation*}
$$

But the solutions of the equation (3.9) are [2] : $\left(\operatorname{rad}\left(c^{\prime}\right)=3, n=2, \operatorname{rad}(a)=\right.$ +2), it follows the contradiction with $n \geq 4$ and the case $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right), n \geq 4$ is to reject.

In the following, we will study the cases $\mu_{c}^{\prime}=A \cdot \operatorname{rad}^{n}\left(c^{\prime}\right)$ with $\operatorname{rad}\left(c^{\prime}\right) \nmid A, n \geq$ 0 . The above equation (3.8) can be written as :

$$
\begin{equation*}
(X+1)\left(X^{2}-X+1\right)=c^{\prime} \tag{3.10}
\end{equation*}
$$

Let δ any divisor of c^{\prime}, then:

$$
\begin{array}{r}
X+1=\delta \tag{3.11}\\
X^{2}-X+1=\frac{c^{\prime}}{\delta}=c^{\prime \prime}=\delta^{2}-3 X
\end{array}
$$

We recall that $\operatorname{rad}(a)>\operatorname{rad}{ }^{\frac{1.63}{1.37}}(c)$.
I-3-2-1- We suppose $\delta=l . \operatorname{rad}\left(c^{\prime}\right)$. We have $\delta=l . \operatorname{rad}\left(c^{\prime}\right)<c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right) \Longrightarrow$ $l<\mu_{c}^{\prime}$. As δ is a divisor of c^{\prime}, then l is a divisor of μ_{c}^{\prime}, we write $\mu_{c}^{\prime}=l . m$. From $\mu_{c}^{\prime}=l\left(\delta^{2}-3 X\right)$, we obtain:

$$
m=l^{2} r a d^{2}\left(c^{\prime}\right)-3 \operatorname{rad}(a) \Longrightarrow 3 \operatorname{rad}(a)=l^{2} r a d^{2}\left(c^{\prime}\right)-m
$$

A- Case $3 \mid m \Longrightarrow m=3 m^{\prime}, m^{\prime}>1$: As $\mu_{c}^{\prime}=m l=3 m^{\prime} l \Longrightarrow 3 \mid \operatorname{rad}\left(c^{\prime}\right)$ and $\left(\operatorname{rad}\left(c^{\prime}\right), m^{\prime}\right)$ not coprime. We obtain:

$$
\operatorname{rad}(a)=l^{2} r a d\left(c^{\prime}\right) \cdot \frac{\operatorname{rad}\left(c^{\prime}\right)}{3}-m^{\prime}
$$

It follows that a,c' are not coprime, then the contradiction.
B - Case $m=3 \Longrightarrow \mu_{c}^{\prime}=3 l \Longrightarrow c^{\prime}=3 \operatorname{lrad}\left(c^{\prime}\right)=3 \delta=\delta\left(\delta^{2}-3 X\right) \Longrightarrow \delta^{2}=$ $3(1+X)=3 \delta \Longrightarrow \delta=\operatorname{lrad}\left(c^{\prime}\right)=3$, then the contradiction.

I-3-2-2- We suppose $\delta=l \cdot \operatorname{rad}^{2}\left(c^{\prime}\right), l \geq 2$. If $\left.n=0 \Rightarrow c^{\prime \prime}=\frac{A}{l \operatorname{rad}\left(c^{\prime}\right)} \Rightarrow \operatorname{rad}\left(c^{\prime}\right) \right\rvert\, A$, then the contradiction with the hypothesis above $\operatorname{rad}\left(c^{\prime}\right) \nmid A$. In the following, we suppose that $n>0$. If $\operatorname{lrad}\left(c^{\prime}\right) \nmid \mu_{c^{\prime}}$ then the case is to reject. We suppose $\operatorname{lrad}\left(c^{\prime}\right) \mid \mu_{c^{\prime}} \Longrightarrow \mu_{c^{\prime}}=\operatorname{m.lrad}\left(c^{\prime}\right)$, then $\frac{c^{\prime}}{\delta}=m=\delta^{2}-3 \operatorname{rad}(a)$.

C - Case $m=1=c^{\prime} / \delta \Longrightarrow \delta^{2}-3 \operatorname{rad}(a)=1 \Longrightarrow(\delta-1)(\delta+1)=3 \operatorname{rad}(a)=$ $\operatorname{rad}(a)(\delta+1) \Longrightarrow \delta=2=l \cdot \operatorname{rad}^{2}\left(c^{\prime}\right)$, then the contradiction.

D - Case $m=3$, we obtain $3(1+\operatorname{rad}(a))=\delta^{2}=3 \delta \Longrightarrow \delta=3=\operatorname{lrad}^{2}\left(c^{\prime}\right)$. Then the contradiction.

E - Case $m \neq 1,3$, we obtain: $\operatorname{3rad}(a)=l^{2} r a d^{4}\left(c^{\prime}\right)-m \Longrightarrow \operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. Then the contradiction.

I-3-2-3- We suppose $\delta=l \cdot \operatorname{rad}^{n}\left(c^{\prime}\right), l \geq 2$ with $n \geq 3$. From $c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right)=$ $\operatorname{lrad}^{n}\left(c^{\prime}\right)\left(\delta^{2}-3 \operatorname{rad}(a)\right)$, we denote $m=\delta^{2}-3 \operatorname{rad}(a)=\delta^{2}-3 X$.

F - As seen above (paragraphs C,D), the cases $m=1$ and $m=3$ give contradictions, it follows the reject of these cases.

G - Case $m \neq 1,3$. Let q be a prime that divides m, it follows $q \mid \mu_{c}^{\prime} \Longrightarrow q=$ $c_{j_{0}^{\prime}}^{\prime} \Longrightarrow c_{j_{0}^{\prime}}^{\prime}\left|\delta^{2} \Longrightarrow c_{j_{0}^{\prime}}^{\prime}\right| 3 \operatorname{rad}(a)$. Then $\operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. It follows the contradiction.

I-3-2-4- We suppose $\delta=\prod_{j \in J_{1}} c_{j}^{\beta_{j}}, \beta_{j} \geq 1$ with at least one $j_{0} \in J_{1}$ with $\beta_{j_{0}} \geq 2, \operatorname{rad}\left(c^{\prime}\right) \nmid \delta$. We can write:

$$
\begin{equation*}
\delta=\mu_{\delta} \cdot \operatorname{rad}(\delta), \quad \operatorname{rad}\left(c^{\prime}\right)=m \cdot \operatorname{rad}(\delta), \quad m>1, \quad\left(m, \mu_{\delta}\right)=1 \tag{3.13}
\end{equation*}
$$

Then, we obtain:

$$
c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right)=\mu_{c}^{\prime} \cdot \operatorname{m} \cdot \operatorname{rad}(\delta)=\delta\left(\delta^{2}-3 X\right)=\mu_{\delta} \cdot \operatorname{rad}(\delta)\left(\delta^{2}-3 X\right) \Longrightarrow
$$

$$
\begin{equation*}
m \cdot \mu_{c}^{\prime}=\mu_{\delta}\left(\delta^{2}-3 X\right) \tag{3.14}
\end{equation*}
$$

- If $\mu_{c}^{\prime}=\mu_{\delta} \Longrightarrow m=\delta^{2}-3 X=\left(\mu_{c}^{\prime} \cdot \operatorname{rad}(\delta)\right)^{2}-3 X$. As $\delta<\delta^{2}-3 X \Longrightarrow m>$ $\delta \Longrightarrow \operatorname{rad}\left(c^{\prime}\right)>m>\mu_{c}^{\prime} \cdot \operatorname{rad}(\delta)>\operatorname{rad}^{3}\left(c^{\prime}\right)$ because $\mu_{c}^{\prime}>\operatorname{rad}^{2.26}\left(c^{\prime}\right)$, it follows $\operatorname{rad}\left(c^{\prime}\right)>\operatorname{rad}^{2}\left(c^{\prime}\right)$. Then the contradiction.
- We suppose $\mu_{c}^{\prime}<\mu_{\delta}$. As $\operatorname{rad}(a)=\mu_{\delta} \operatorname{rad}(\delta)-1$, we obtain:
$\operatorname{rad}(a)>\mu_{c}^{\prime} \cdot \operatorname{rad}(\delta)-1>0 \Longrightarrow \operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow$ $c^{\prime}>\operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow 1>\operatorname{rad}(\delta)-\frac{\operatorname{rad}\left(c^{\prime}\right)}{c^{\prime}}>0, \quad \operatorname{rad}(\delta) \geq 2$

$$
\begin{equation*}
\Longrightarrow \text { The contradiction } \tag{3.15}
\end{equation*}
$$

- We suppose $\mu_{\delta}<\mu_{c}^{\prime}$. In this case, from the equation (3.14) and as $\left(m, \mu_{\delta}\right)=$ 1, it follows we can write:

$$
\begin{array}{r}
\mu_{c}^{\prime}=\mu_{1} \cdot \mu_{2}, \quad \mu_{1}, \mu_{2}>1 \\
c^{\prime}=\mu_{c}^{\prime} r a d\left(c^{\prime}\right)=\mu_{1} \cdot \mu_{2} \cdot \operatorname{rad}(\delta) \cdot m=\delta \cdot\left(\delta^{2}-3 X\right) \tag{3.17}
\end{array}
$$

** We suppose $\left(\mu_{1}, \mu_{2}\right) \neq 1$, then $\exists c_{j_{0}}^{\prime}$ so that $c_{j_{0}}^{\prime} \mid \mu_{1}$ and $c_{j_{0}}^{\prime} \mid \mu_{2}$. But $\mu_{\delta}=$ $\mu_{2} \Rightarrow c_{j_{0}}^{\prime 2} \mid \delta$. From $3 X=\delta^{2}-m \mu_{1} \Longrightarrow c_{j_{0}}^{\prime}\left|3 X \Longrightarrow c_{j_{0}}^{\prime}\right| X$ or $c_{j_{0}}^{\prime}=3$.

- If $c_{j_{0}}^{\prime} \mid X$, it follows the contradiction with $\left(c^{\prime}, a\right)=1$.
- If $c_{j_{0}}^{\prime}=3$. We have $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1) \Longrightarrow \delta^{2}-3 \delta+3-m . \mu_{1}=0$.

As $3 \mid \mu_{1} \Longrightarrow \mu_{1}=3^{k} \mu_{1}^{\prime}, 3 \nmid \mu_{1}^{\prime}, k \geq 1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)=0 \tag{3.19}
\end{equation*}
$$

- We consider the case $k>1 \Longrightarrow 3 \nmid\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$. Let us recall the Eisenstein criterion [7]:

Theorem 3.3. - (Eisenstein Criterion) Let $f=a_{0}+\cdots+a_{n} X^{n}$ be a polynomial $\in \mathbb{Z}[X]$. We suppose that $\exists p$ a prime number so that $p \nmid a_{n}, p \mid a_{i}, \quad(0 \leq i \leq n-1)$, and $p^{2} \nmid a_{0}$, then f is irreducible in \mathbb{Q}.

We apply Eisenstein criterion to the polynomial $R(Z)$ given by:

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right) \tag{3.20}
\end{equation*}
$$

then:

$$
-3 \nmid 1,-3|(-3),-3| 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right), \text { and }-3^{2} \nmid 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right) .
$$

It follows that the polynomial $R(Z)$ is irreducible in \mathbb{Q}, then, the contradiction with $R(\delta)=0$.

- We consider the case $k=1$, then $\mu_{1}=3 \mu_{1}^{\prime}$ and $\left(\mu_{1}^{\prime}, 3\right)=1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-m \mu_{1}^{\prime}\right)=0 \tag{3.21}
\end{equation*}
$$

* If $3 \nmid\left(1-m \cdot \mu_{1}^{\prime}\right)$, we apply the same Eisenstein criterion to the polynomial $R^{\prime}(Z)$ given by:

$$
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)
$$

and we find a contradiction with $R^{\prime}(\delta)=0$.

* We consider that $3 \mid\left(1-m \cdot \mu_{1}^{\prime}\right) \Longrightarrow m \mu_{1}^{\prime}-1=3^{i} . h, i \geq 1,3 \nmid h, h \in \mathbb{N}^{*} . \delta$ is an integer root of the polynomial $R^{\prime}(Z)$:
(3.22)
$R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)=0 \Rightarrow$ the discriminant of $R^{\prime}(Z)$ is $: \Delta=3^{2}+3^{i+1} \times 4 . h$
As the root δ is an integer, it follows that $\Delta=l^{2}>0$ with l a positive integer.
We obtain:

$$
\begin{array}{r}
\Delta=3^{2}\left(1+3^{i-1} \times 4 h\right)=l^{2} \\
\Longrightarrow 1+3^{i-1} \times 4 h=q^{2}>1, q \in \mathbb{N}^{*} \tag{3.24}
\end{array}
$$

We can write the equation 3.21 as :

$$
\begin{gather*}
\delta(\delta-3)=3^{i+1} \cdot h \Longrightarrow 3^{3} \mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=3^{i+1} \cdot h \Longrightarrow \tag{3.25}\\
\mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=h \tag{3.26}
\end{gather*}
$$

We obtain $i=2$ and $q^{2}=1+12 h=1+4 \mu_{1}^{\prime} \operatorname{rad}(\delta)\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$. Then, q satisfies :

$$
\begin{gather*}
q^{2}-1=12 h \Rightarrow \frac{(q-1)}{2} \cdot \frac{(q+1)}{2}=3 h=\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right) \cdot \mu_{1}^{\prime} \operatorname{rad}(\delta) \Rightarrow \tag{3.27}\\
q-1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)-2 \tag{3.28}\\
q+1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta) \tag{3.29}
\end{gather*}
$$

It follows that $(q=x, 1=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.30}
\end{equation*}
$$

with $N=12 h>0$. Let $Q(N)$ be the number of the solutions of 3.30) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation 3.30 (see theorem 27.3 in [6]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.

Let $\left(\alpha^{\prime}, m^{\prime}\right), \alpha^{\prime}, m^{\prime} \in \mathbb{N}^{*}$ be another pair, solution of the equation 3.30, then $\alpha^{\prime 2}-m^{\prime 2}=x^{2}-y^{2}=N=12 h$, but $q=x$ and $1=y$ satisfy the equation 3.29) given by $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, it follows α^{\prime}, m^{\prime} verify also $\alpha^{\prime}+m^{\prime}=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, that gives $\alpha^{\prime}-m^{\prime}=2\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $\alpha^{\prime}=x=q=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$ and $m^{\prime}=y=1$. So, we have given the proof of the uniqueness of the solutions of the equation 3.30 with the condition $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$. As $N=12 h \equiv 0(\bmod 4) \Longrightarrow Q(N)=[\tau(N / 4) / 2]=[\tau(3 h) / 2]$, the expression of $3 h=\mu_{1}^{\prime} \cdot \operatorname{rad}(\delta) \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $Q(N)=[\tau(3 h) / 2]>1$. But $Q(N)=1$, then the contradiction and the case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$ is to reject.
** We suppose that $\left(\mu_{1}, \mu_{2}\right)=1$.

From the equation $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1)$, we obtain that δ is a root of the following polynomial :

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3-m \cdot \mu_{1}=0 \tag{3.31}
\end{equation*}
$$

The discriminant of $R(Z)$ is:

$$
\begin{equation*}
\Delta=9-4\left(3-m \cdot \mu_{1}\right)=4 m \cdot \mu_{1}-3=q^{2} \quad \text { with } q \in \mathbb{N}^{*} \quad \text { as } \delta \in \mathbb{N}^{*} \tag{3.32}
\end{equation*}
$$

- We suppose that $2 \mid m \mu_{1} \Longrightarrow c^{\prime}$ is even. Then $q^{2} \equiv 5(\bmod 8)$, it gives a contradiction because a square is $\equiv 0,1$ or $4(\bmod 8)$.
- We suppose c^{\prime} an odd integer, then a is even. It follows $a=\operatorname{rad}^{3}(a) \equiv$ $0(\bmod 8) \Longrightarrow c^{\prime} \equiv 1(\bmod 8)$. As $c^{\prime}=\delta^{2}-3 X . \delta$, we obtain $\delta^{2}-3 X . \delta \equiv$ $1(\bmod 8)$. If $\delta^{2} \equiv 1(\bmod 8) \Longrightarrow-3 X . \delta \equiv 0(\bmod 8) \Longrightarrow 8|X . \delta \Longrightarrow 4| \delta \Longrightarrow c^{\prime}$ is even. Then, the contradiction. If $\delta^{2} \equiv 4(\bmod 8) \Longrightarrow \delta \equiv 2(\bmod 8)$ or $\delta \equiv 6(\bmod 8)$. In the two cases, we obtain $2 \mid \delta$. Then, the contradiction with c^{\prime} an odd integer.

It follows that the case $c>\operatorname{rad}^{3.26}(c)$ and $a=\operatorname{rad}^{3}(a)$ is impossible.

I-3-3- We suppose $c>\operatorname{rad}^{3.26}(c)$ and large, then $c=\operatorname{rad}^{3}(c)+h, h>\operatorname{rad}^{3}(c)$, h a positive integer and $\mu_{a}<\operatorname{rad}^{2}(a) \Longrightarrow a+l=\operatorname{rad}^{3}(a), l>0$. Then we obtain :

$$
\begin{equation*}
\operatorname{rad}^{3}(c)+h=\operatorname{rad}^{3}(a)-l+b \Longrightarrow \operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b>0 \tag{3.33}
\end{equation*}
$$

as $\operatorname{rad}(a)>\operatorname{rad}{ }^{\frac{1.63}{1.37}}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b=m>0 \tag{3.34}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{3.35}
\end{equation*}
$$

To resolve the above equation, we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by:

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{3.36}
\end{equation*}
$$

The discriminant of $G(t)$ is $\Delta=m^{2}+4 r a d^{3}(a c)=\alpha^{2}, \quad \alpha>0$. The two real roots of (3.36) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{3.37}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the expression of the discriminant Δ, it follows that ($\alpha=x, m=y$) is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.38}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. From the expression of Δ above, we remark that α and m verify the following equations:

$$
\begin{align*}
x+y & =2 u^{3}=2 \operatorname{rad}^{3}(a) \tag{3.39}\\
x-y & =-2 v^{3}=2 \operatorname{rad}^{3}(c) \tag{3.40}\\
\text { then } \quad x^{2}-y^{2}=N & =4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{3.41}
\end{align*}
$$

Let $Q(N)$ be the number of the solutions of (3.38) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$), we obtain a contradiction.

It follows that the cases $\mu_{a} \leq \operatorname{rad}^{2}(a)$ and $c>\operatorname{rad}^{3.26}(c)$ are impossible.
II- We suppose that $\operatorname{rad}^{1.63}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$:
II-1- Case $\operatorname{rad}(c)<\operatorname{rad}(a):$ As $c \leq \operatorname{rad}^{3}(c)=\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow$ $c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(a)<\operatorname{rad}^{1.63}(a c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.

II-2- Case $\operatorname{rad}(a)<\operatorname{rad}(c)<\operatorname{rad}^{\frac{1.63}{1.37}}(a): \operatorname{As} c \leq \operatorname{rad}^{3}(c) \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow$

$$
c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63} .
$$

II-3- Case $\operatorname{rad}{ }^{\frac{1.63}{1.37}}(a)<\operatorname{rad}(c)$:
II-3-1- We suppose $\operatorname{rad}^{2.63}(a)<a \leq \operatorname{rad}^{3.26}(a) \Longrightarrow a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(a) \Longrightarrow$ $a<\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c=a+b<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<$ $\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63} \Longrightarrow c<R^{1.63}$.

II-3-2- We suppose $a>\operatorname{rad}^{3.26}(a)$ and $\mu_{c} \leq \operatorname{rad}^{2}(c)$. Using the same method as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a, c), we arrive at a contradiction. It follows that the case $\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $a>\operatorname{rad}^{3.26}(a)$ is impossible.

Finally, we have finished the study of the case $\operatorname{rad}^{1.63}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$.
3.2.3.3. Case $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$. - Taking into account the cases studied above, it remains to see the following two cases:
$-\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$,

- $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c)$.

III-1- We suppose $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a) \Longrightarrow c>\operatorname{rad}^{3}(c)$ and $a>\operatorname{rad}^{2.63}(a)$. We can write $c=\operatorname{rad}^{3}(c)+h$ and $a=\operatorname{rad}^{3}(a)+l$ with h a positive integer and $l \in \mathbb{Z}$.

III-1-1- We suppose $\operatorname{rad}(c)<\operatorname{rad}(a)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h-l-b=m>0 \tag{3.42}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, from the above equation, X is a real root of the polynomial:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{3.43}
\end{equation*}
$$

As above, to resolve $\sqrt{3.43}$, we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by :

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{3.44}
\end{equation*}
$$

The discriminant of $G(t)$ is:

$$
\begin{equation*}
\Delta=m^{2}+4 r a d^{3}(a c)=\alpha^{2}, \quad \alpha>0 \tag{3.45}
\end{equation*}
$$

The two real roots of (3.44) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{3.46}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the equation (3.45), it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.47}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. From the equations (3.46, we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{3}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{3.50}
\end{array}
$$

Let $Q(N)$ be the number of the solutions of 3.47) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph I-3-2-4- (case $3 \mid\left(1-m . \mu_{1}^{\prime}\right)$), we obtain a contradiction.

III-1-2- We suppose $\operatorname{rad}(a)<\operatorname{rad}(c)$. We obtain the equation:

$$
\begin{equation*}
r a d^{3}(c)-\operatorname{rad}^{3}(a)=b+l-h=m>0 \tag{3.51}
\end{equation*}
$$

Using the same calculations as in III-1-1-, we find a contradiction.
It follows that the case $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$ is impossible.

III-2- We suppose $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c) \Longrightarrow a>\operatorname{rad}^{3}(a)$ and $c>\operatorname{rad}^{2.63}(c)$. We can write $a=\operatorname{rad}^{3}(a)+h$ and $c=\operatorname{rad}^{3}(c)+l$ with h a positive integer and $l \in \mathbb{Z}$.

The calculations are similar to those in case III-1-. We obtain the same results namely the cases of III-2- to be rejected.

It follows that the case $\mu_{c}>\operatorname{rad} d^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{2}(a)$ is impossible.
We can state the following important theorem:
Theorem 3.4. - Let a, b, c positive integers relatively prime with $c=$ $a+b$, then $c<\operatorname{rad}^{1.63}(a b c)$.

3.3. The Proof of the abc conjecture

We note $R=\operatorname{rad}(a b c)$ in the case $c=a+b$ or $R=\operatorname{rad}(a c)$ in the case $c=a+1$. We recall the following proposition [4]:

Proposition 3.5. - Let $\epsilon \longrightarrow K(\epsilon)$ the application verifying the $a b c$ conjecture, then:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} K(\epsilon)=+\infty \tag{3.52}
\end{equation*}
$$

3.3.1. Case $: \epsilon \geq 0.63$. - As $c<R^{1.63}$ is true, we have $\forall \epsilon \geq 0.63$:

$$
\begin{equation*}
c<R^{1.63} \leq R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad \text { with } K(\epsilon)=e^{\frac{1}{0.63^{2}}}, \epsilon \geq 0.63 \tag{3.53}
\end{equation*}
$$

Then the $a b c$ conjecture is true.
3.3.2. Case: $\epsilon<0.63$. -
3.3.2.1. Case: $c>R$. From the statement of the $a b c$ conjecture 3.1 we want to give a proof that $c<K(\epsilon) R^{1+\epsilon} \Longleftrightarrow \log c<\log K(\epsilon)+(1+$ $\epsilon) \log R \Longleftrightarrow \log K(\epsilon)+(1+\epsilon) \log R-\log c>0$. For our proof, we proceed by contradiction of the abc conjecture, so we assume that the conjecture is false: (3.54)
$\left.\exists \epsilon_{0} \in\right] 0,0.63\left[, \forall K(\epsilon)>0, \quad \exists c_{0}=a_{0}+b_{0} \quad\right.$ so that $c_{0}>K\left(\epsilon_{0}\right) R_{0}^{1+\epsilon_{0}} \Longrightarrow c_{0}$ not a prime
We choose the constant $K(\epsilon)$ as $K(\epsilon)=e^{\frac{1}{\epsilon^{2}}}$. Let $Y_{c_{0}}(\epsilon)=\frac{1}{\epsilon^{2}}+(1+$ $\left.\epsilon) \log R_{0}-\log _{0}, \epsilon \in\right] 0,0.63[$. From the above explications, if we will obtain $\forall \epsilon \in] 0,0.63\left[, Y_{c_{0}}(\epsilon)>0 \Longrightarrow Y_{c_{0}}\left(\epsilon_{0}\right)>0\right.$, then the contradiction with (3.54).

About the function $Y_{c_{0}}$, we have $\lim _{\epsilon \longrightarrow 0.63} Y_{c_{0}}(\epsilon)=1 / 0.63^{2}+\log \left(R_{0}^{1.63} / c_{0}\right)>$ 0 and $\lim _{\epsilon \longrightarrow 0} Y_{c_{0}}(\epsilon)=+\infty$. The function $Y_{c_{0}}(\epsilon)$ has a derivative for $\forall \epsilon \in$] $0,0.63$ [, we obtain with $R_{0}>2977$:

$$
\begin{equation*}
\left.Y_{c_{0}}^{\prime}(\epsilon)=-\frac{2}{\epsilon^{3}}+\log R_{0}=\frac{\epsilon^{3} \log R_{0}-2}{\epsilon^{3}} \Rightarrow Y_{c_{0}}^{\prime}(\epsilon)=0 \Rightarrow \epsilon=\epsilon^{\prime}=\sqrt[3]{\frac{2}{\log R_{0}}} \in\right] 0,0.63[\tag{3.55}
\end{equation*}
$$

Discussion:

- If $Y_{c_{0}}\left(\epsilon^{\prime}\right) \geq 0$, it follows that $\left.\forall \epsilon \in\right] 0,0.63\left[, Y_{c_{0}}(\epsilon) \geq 0\right.$, then the contradiction with $Y_{c_{0}}\left(\epsilon_{0}\right)<0 \Longrightarrow c_{0}>K\left(\epsilon_{0}\right) R_{0}^{1+\epsilon_{0}}$. Hence the $a b c$ conjecture is true for
$\epsilon \in] 0,0.63[$.
- If $Y_{c_{0}}\left(\epsilon^{\prime}\right)<0 \Longrightarrow \exists \epsilon_{1}, \epsilon_{2}$ satisfying $0<\epsilon_{1}<\epsilon^{\prime}<\epsilon_{2}<0.63$, so that $Y_{c_{0}}\left(\epsilon_{1}\right)=Y_{c_{0}}\left(\epsilon_{2}\right)=0$. Then we obtain $c_{0}=K\left(\epsilon_{1}\right) R_{0}^{1+\epsilon_{1}}=K\left(\epsilon_{2}\right) R_{0}^{1+\epsilon_{2}}$. We recall the following definition:

Definition 3.6. - The number ξ is called algebraic number if there is at least one polynomial:

$$
\begin{equation*}
l(x)=l_{0}+l_{1} x+\cdots+a_{m} x^{m}, \quad a_{m} \neq 0 \tag{3.56}
\end{equation*}
$$

with integral coefficients such that $l(\xi)=0$, and it is called transcendental if no such polynomial exists.

We consider the equality $c_{0}=K\left(\epsilon_{1}\right) R_{0}^{1+\epsilon_{1}} \Longrightarrow \frac{c_{0}}{R}=\frac{\mu_{c}}{\operatorname{rad}(a b)}=e^{\frac{1}{\epsilon_{1}^{2}}} R_{0}^{\epsilon_{1}}$.
i) - We suppose that $\epsilon_{1}=\beta_{1}$ is an algebraic number then $\beta_{0}=1 / \epsilon_{1}^{2}$ and $R_{0}=\alpha_{1}$ are also algebraic numbers. We obtain:

$$
\begin{equation*}
\frac{\mu_{c}}{\operatorname{rad}(a b)}=e^{\frac{1}{\epsilon_{1}^{2}}} R_{0}^{\epsilon_{1}}=e^{\beta_{0}} \cdot \alpha_{1}^{\beta_{1}} \tag{3.57}
\end{equation*}
$$

From the theorem (see theorem 3, page 196 in [9]):

Theorem 3.7. - $e^{\beta_{0}} \alpha_{1}^{\beta_{1}} \ldots \alpha_{n}^{\beta_{n}}$ is transcendental for any nonzero algebraic numbers $\alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \ldots, \beta_{n}$.
we deduce that the right member $e^{\beta_{0}} . \alpha_{1}^{\beta_{1}}$ of 3.57) is transcendental, but the term $\frac{\mu_{c}}{\operatorname{rad}(a b)}$ is an algebraic number, then the contradiction and the $a b c$ conjecture is true.
ii) - We suppose that ϵ_{1} is transcendental, in this case there is also a contradiction, and the $a b c$ conjecture is true.

Remark 3.8. - - We obtain also that $K(\epsilon)>1$ if $\epsilon \in] 0,0.63[$. If not, we consider the example $9=8+1$ with $9>2 \times 3$, we take $\epsilon=0.2$, then $c<K(0.2) R^{1+.02}<1 . R^{1.2}$. But $c=9>6^{1.2} \approx 8.58$, then the contradiction and $K(\epsilon)>1, \forall \epsilon \in] 0,0.63[$.
3.3.2.2. Case: $c<R$. - In this case, we can write :

$$
\begin{equation*}
c<R<R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \quad \text { with } K(\epsilon)>1,0<\epsilon<0.63 \tag{3.58}
\end{equation*}
$$

The constant $K(\epsilon)$ is taken as for the case $c>R$ above, and the $a b c$ conjecture is true.

Then the proof of the $a b c$ conjecture is finished for all $\epsilon>0$.

3.4. Conclusion

We have given an elementary proof of the $a b c$ conjecture. We can announce the important theorem:

Theorem 3.9. - For each $\epsilon>0$, there exists $K(\epsilon)>0$ such that if a, b, c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\epsilon) \cdot r^{2} d^{1+\epsilon}(a b c) \tag{3.59}
\end{equation*}
$$

where K is a constant depending of ϵ.

Acknowledgments. The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proofs proposed of the abc conjecture.

BIBLIOGRAPHY

[1] A. Ben Hadj Salem, Progress in The Proof of The Conjecture $c<$ $\operatorname{rad}^{1.63}(a b c)$ - Case : $c=a+1$. Submitted to the Lithuanian Mathematical Journal. December 2020, 10 pages. 2020.
[2] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's Conjecture. Journal für die Reine und Angewandte Mathematik, Vol. 2004, Issue 572, pp 167-195, 2004.
[3] P. Mihăilescu, Around ABC. European Mathematical Society Newsletter, \mathbf{N}° 93, Sept. pp 29-34. 2014.
[4] A. Nitaj, Aspects expérimentaux de la conjecture abc. Séminaire de Théorie des Nombres de Paris(1993-1994), London Math. Soc. Lecture Note Ser., Vol n ${ }^{\circ}$ 235. Cambridge Univ. Press, pp 145-156. 1996.
[5] B. De Smit, https://www.math.leidenuniv.nl/ desmit/abc/. [last accessed December 2020].
[6] B.M. Stewart, Theory of Numbers. $2^{\text {sd }}$ edition, The Macmillan Compagny, N.Y., pp 196-197. 1964.
[7] C. Touibi, Algèbre Générale (in French). Cérès Editions, Tunis, pp 108-109. 1996.
[8] M. Waldschmidt, On the abc Conjecture and some of its consequences, presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
[9] A. Baker, 1971. Effective Methods in Diophantine Problems. Proceedings of Symposia in Pure Mathematics, Vol. XX, 1969 Number Theory Institute. AMS, pp 195-205. 1971.

LIST OF FIGURES

1 Photo of the Author (2011). .. 3
1 The table of variations. ... 12

LIST OF TABLES

1 Table of $p(\bmod 6)$. 29
2 Table of $C^{l}(\bmod 6)$ 56

[^0]: Abstract. - This monograph presents the proofs of 3 important conjectures in the field of Number theory:

 - The Beal's conjecture.
 - The Riemann Hypothesis.
 - The $a b c$ conjecture.

[^1]: $\boldsymbol{A b s t r a c t}$. - This monograph presents the proofs of 3 important conjectures in the field of Number theory:

 - The Beal's conjecture.
 - The Riemann Hypothesis.
 - The $a b c$ conjecture.

 We give in detail all the proofs.
 Résumé. - Cette monographie présente les preuves de 3 conjectures importantes dans le domaine de la théorie des nombres à savoir:

 - La conjecture de Beal.
 - L'Hypothèse de Riemann.
 - La conjecture abc.

[^2]: ** B-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n \cdot j-2 m} B_{1}^{n} \cdot C^{l}=b-4 a^{\prime}$. As $\omega \mid C$ using $C^{l}=A^{m}+B^{n}$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} \cdot C_{1}^{l}=b-4 a^{\prime}$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction that $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. Then if $n . j-2 m+h . l>0$ and $\omega \mid\left(b-4 a^{\prime}\right)$ with ω, a, b coprime and the conjecture (3.1) is verified.

[^3]: ** D-2-1-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right)$:

 - If $s-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, and no contradiction with $C^{l}=2^{i m} A_{1}^{m}+$ $2^{j n} B_{1}^{n}$, and the conjecture 3.1 is verified.

[^4]: ${ }^{* *}$ I-1-1-1- If $k^{\prime}\left|B^{n} \Longrightarrow k^{\prime}\right| B \Longrightarrow B=k^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $k^{\prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $k^{\prime} \mid a$, then $k^{\prime} \mid 3 b \Longrightarrow k^{\prime}=3$ or $k^{\prime} \mid b$.

[^5]: ** J-4-1-1-2-2-2-1-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.

