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Abstract In this paper an elementary proof of Green-Tao theorem is going to be presented. The proof represents an

extension of the proof of the Polignac's conjecture (or twin prime, or Sophie Germain primes conjecture). It will be

shown that arithmetic progressions that consist of prime numbers  and that are of the length  k (k is natural number),

could be obtained through k-stage recursive type sieve process, and that their number is infinite.

1 Introduction

The  Green-Tao  theorem  states  that  the  sequence  of  prime  numbers  contains  arbitrarily  long

arithmetic  progressions  [1].  This  means  that  for  every  natural  number  k exists  arithmetic

progression of  primes with  k terms.  In  [1]  it  has been  shown that  exists  infinitely many such

sequences.

Here, an elementary proof of that theorem is going to be presented. The proof is based on extension

of recently proposed proofs of the Sophie Germain prime conjecture,  twin prime conjecture or

Polignac's  conjecture [2, 3, 4].  The major difference is that  in  the case of Green- Tao theorem

recursion has the depth that is equal to the length of the arithmetic progression, while the depth of

the recursion in the case of Polignac's or Sophie Germain conjecture  is 2. 

Basically, three groups of differences between prime numbers exists (here we ignore number 2): the

prime numbers that are 6f far apart,  6f-2 far apart and 6f-4 far apart, f ϵ N. In the text that follows

we mark the prime numbers in the form 6f – 1 as mps primes and prime numbers in the form 6f +1

as mpl primes, f ϵ N. The gaps of the size 6f could be related to the prime pairs in both  (mps, mps)

and (mpl, mpl) form. The gaps in the form 6f - 2 can only be related to the pair of primes in (mpl,



mps) form, while gaps in the form 6f - 4 can only be related to the pair of primes in (mps, mpl)

form. In other words there is not a single prime in mpl form that has consecutive prime that is  6f - 4

apart, and there is not a single prime in  mps form that has consecutive prime 6f - 2 apart. That

means that all arithmetic progression longer than 2 have primes that are 6f far apart (for 2 terms it is

proved in [3] and [4]). 

It will be shown that exist lower bound for the number of  arithmetic progressions with k (k  ϵ N)

terms that  are smaller than some natural number  n,  n ϵ  N, and that will be used to show that for

every  k exists  infinite  number  of  such progressions.  To be precise,  when in  this  paper is  said

number of progressions that are smaller than n, it is considered that the first term of the progression

is smaller than n. 

Remark 1: In this paper any infinite series in the form c1·l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 An elementary proof of the Green-Tao theorem

It is well known that all prime numbers can be expressed in one of the following forms 

psk = 6k - 1

plk = 6k + 1, k ϵ N.

As it was already explained, we will call numbers  psk - numbers in  mps form and numbers  plk  -

numbers in mpl form. 

As it was already explained in the introduction, if we want to have an arithmetic progression that

has more than two terms, the difference between two consecutive terms must be in the form 6f, f ϵ

N. It is very simple to understand, that if we want to have more than 4 terms, the difference must be

divisible by 5. The only exception to this rule is the quintuplet (5, 11, 17, 23, 29) since the 5 is the



only prime number that is divisible by 5. In all other cases if the difference between consecutive

terms is not divisible by 5, one of the 5 consecutive terms has to be divisible by 5, which means

that it is a composite number. This rule can be easily extended to all other primes – if we want to

have progression that has at least 11 terms, difference has to be divisible by all primes that are

smaller  or  equal  to  11,  difference  has  to  be  multiple  of  primorial(11)  =  11#;  or  if  we  want

progression that has at least 97 terms, difference has to be multiple of   97#. In general case if we

want to have a progression of at least k terms, we are going to use a difference that is multiple of

p#, where p is the smallest prime number that is not smaller than k. What is also clear is the fact

that if first number of the progression is in mps form all other members are going to be in mps form.

Also, if the first member of a progression is in mpl form, all other members of a progression are in

mpl form.  In  the  text  that  follows we  are  going  to  analyze  only progressions  in  mps form –

progressions in mpl form can be done analogously.

In order to prove that exist an infinite number of such progressions, we are going to create k stages

recursive type process.

If we start with all natural numbers, the procedure looks as follows:

STAGE 1: Remove all composite numbers. So, only prime numbers are left. If we denote with

π(n) number of prime numbers smaller than n, the following equation holds [5] 

π(n)≈
n

ln (n)
.

From [5] we also know that following holds

π(n)>
n

ln (n)
, n⩾ 17. (1)

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger



than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (2)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (2) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1+1)( j1+1) ,

where i
1
, j

1
 ϵ N. Now, it is easy to see that the following equation holds

m=
i1 j1+i 1+ j 1

2
.

In order to have m ϵ N, it is easy to check that i
1
 and j

1
 have to be in the forms

i
1
 = 2i and j

1
 = 2j,

where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j = (2i + 1) j + i. (3)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers  that  cannot be represented by (2) will  stay.  This process is  equivalent  to  the sieve of

Sundaram [6].

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other



prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that if  we want to have an arithmetic progression in which the difference

between consecutive terms is d = p(f)#, the difference between first term of the progression and all

other terms of the progression is the following series D = (d, 2d, 3d, …, (k-1)d), and d is selected

according to the previous analysis (p(f) is  fth prime number that is not smaller than k). So, we are

going to search for the prime numbers that have feature to have colleague primes at distances D. In

order to do that in this step we are going to remove all primes that do not have a bigger colleague

prime at distance d. If we mark prime with 2n+1, the colleague must be in the form 2n + 1 + d, n ϵ

N.  Now, we should implement a second stage in which we are going to remove: 

A. number 2 (since 2 can make only two term progressions), but this has no impact on the analysis,

B. the primes in mpl form – it is trivial to see that it can be done by one thread that is defined by 3 –

so in this step it is going to be removed, approximately (having in mind that the number of  mps

primes is a bit bigger than the number of mpl primes), one half of the numbers that are left after step

A, 

C. now all odd numbers in the form 2m + 1 that have bigger colleague d apart, that is in the form

2m + 1 + d, m ϵ N and that is composite. If we make analysis similar to one in STAGE 1, it is simple

to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i - d/2. (4)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent primes in  mps form that have prime bigger colleagues that are  d apart. What has to be

noticed is that thread in (4) that is defined by prime number 3 (for i = 1) is not going to remove any

number from the numbers left, since it will remove same numbers as the thread defined by 3 used in

STAGE 1, since 3 divides d/2.  Same holds for all threads defined by the primes that divide d/2.

Since the methods that are applied in the first and the second stage are similar, it can be intuitively

concluded  that  the  number  of  numbers  left  after  the  second  “Sundaram”  sieve,  should  be



comparable to gt2(n) defined by the following equation (n ϵ N)

gt2 (n)=
π(n)

ln (π(n) )
>

n

(ln(n))
2 . (5)

The gt2(n) would be obtained in the case when second stage sieve would produce the same amount

of numbers removed with each thread, like the original Sundaram sieve. However, the assumption is

not correct and formula requires some compensation terms since the second “Sundaram” sieve is

applied on an incomplete set, that is depleted by previously implemented Sundaram sieve. Actually,

gt2(n) represents a lower bound for the number of primes that have a prime colleague that is d apart

and that are smaller than some number n and that are left after stage 2.  In order to understand why

it is so, we are going to analyze stages 1 and 2 in more detail. 

It is not difficult to be seen that m in (3) and (4) is represented by the threads that are defined by odd

prime numbers (see Appendix A). Now, we are going to compare sieves in stages 1 and 2. Starting

point in the second stage is point B (the number of numbers left is number of primes; 2 is ignored).

Table 1 Comparison of the stages 1 and 2 for a few threads defined by smallest primes

Step Stage 1 Step Stage 2

1 Remove even numbers (except 2)
amount of numbers left  1/2

1 Remove the rest of  mpl primes  
amount of numbers left 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 2/3

2 Remove numbers defined by thread
defined by p(f+1); amount of numbers

left (p(f+1)-2)/(p(f+1)-1)

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 4/5

3 Remove numbers defined by thread
defined by p(f+2); amount of numbers

left (p(f+2)-2)/(p(f+2)-1)

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 6/7

4 Remove numbers defined by thread
defined by p(f+3); amount of numbers

left (p(f+3)-2)/(p(f+3)-1)

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 10/11

5 Remove numbers defined by thread
defined by p(f+4); amount of numbers

left (p(f+4)-2)/(p(f+4)-1)

6 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 12/13

6 Remove numbers defined by thread
defined by p(f+5); amount of numbers

left (p(f+5)-2)/(p(f+5)-1)



From Table 1 it can be seen that, in every step, except step 1, threads in the second stage will leave

bigger percentage of numbers than the corresponding threads in the first stage. Of course it holds

for all other threads of interest (not only those presented in Table 1). This is going to be analyzed in

Appendix B. Based on analysis of (4), it is known that threads defined by primes that are smaller or

equal to prime  p(f) will not remove any number in this and any subsequent stages. Only threads

defined by primes that are bigger or equal to prime p(f+1) will remove some additional numbers. It

can be noticed that threads defined by the same number in the first and the second stage will not

remove the same percentage of numbers. The reason is obvious – consider for instance the thread

defined by 3: in the first stage it will remove 1/3 of the numbers left, but in the second stage it will

remove ½ of the numbers left, since the thread defined by 3 in stage 1 has already removed one

third of the numbers (odd numbers divisible by 3 in observation space). So, only odd numbers (in

observational space) that give residual 1 and -1 when they are divided by 3 are left, and there are

approximately same number of numbers that give residual  -1 and numbers that give residual 1,

when the number is  divided by 3.  Same way of reasoning can be applied for all  other threads

defined by same prime in different stages. 

So, from previous paragraph we know that bigger number of numbers is left in every step of stage 2

then in the stage 1 (except 1st step). From that, we can conclude that after every step bigger than 1,

part of the numbers that is left in stage 2 is bigger than number of numbers left in the stage 1 (that is

also noticeable if we consider amount of numbers left after removal of all numbers generated by

threads that are defined by all prime numbers smaller than some natural number). Let us mark the

number of primes that have prime colleague d apart ( D1-primes) smaller than some natural number

n with π
D1

(n).  From previous analysis we can safely conclude that the following equation holds for

some n big enough (having in mind (1))

πD1(n) >gt2 (n) .

Having in mind (1), by some elementary calculation it can be realized that n that is big enough is n



≥ 73.  

Since it it easy to show that  following holds

lim
n→ ∞

gt2(n)= lim
n→ ∞

π(n)
ln (π(n) )

=∞ ,

we can safely conclude that the number of D1-primes is infinite. 

STAGE 3: 

In this stage, from primes left after the STAGE 2, we are going to remove all primes  that  do not

have a prime colleague that is 2d apart, or all primes in the form 2n + 1, that do not have a bigger

prime colleague in the form 2n + 1 + 2d,  n ϵ N.  So, in this stage we are going to  remove  all

primes in the form 2m + 1 such that  2m + 1 + 2d,  m ϵ N are composite.  If we make the same

analysis like in previous stages, it is simple to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i - d. (6)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent primes that have prime colleagues at distances  d and 2d. What has to be noticed is that

threads in (6) that are defined by primes that divide d, will not remove any number in this stage.

Since the methods that are applied in the first and the third stage are similar, it can be intuitively

concluded  that  the  number  of  numbers  left  after  the  second  “Sundaram”  sieve,  should  be

comparable to gt3(n) defined by the following equation (n ϵ N)

gt3 (n)=
πD1(n)

ln (πD1(n) )
>

π(n)

ln(π (n))(ln (π(n) )− ln (ln (π(n) )))
>

n

(ln(n))
3 . (7)

The gt3(n) would be obtained in the case when third stage sieve would produce the same amount of

numbers removed with each thread, like the original Sundaram sieve. However, the assumption is

not correct and formula requires some compensation terms since the second “Sundaram” sieve is

applied on an incomplete set, that is depleted by previously implemented Sundaram sieve. Actually,

gt3(n) represents a lower bound for the number of D2-primes that have a prime colleagues that are



d and 2d apart and that are smaller than some number n and that are left after stage 3. 

Again, we are going briefly to compare sieves in stages 1 and 3. 

Table 2 Comparison of the stages 1 and 3 for a few threads defined by smallest primes

Step Stage 1 Step Stage 3

1 Remove even numbers (except 2)
amount of numbers left  1/2

1 Remove numbers defined by thread
defined by p(f+1); amount of numbers

left (p(f+1)-3)/(p(f+1)-2)

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 2/3

2 Remove numbers defined by thread
defined by p(f+2); amount of numbers

left (p(f+2)-3)/(p(f+2)-2)

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 4/5

3 Remove numbers defined by thread
defined by p(f+3); amount of numbers

left (p(f+3)-3)/(p(f+3)-2)

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 6/7

4 Remove numbers defined by thread
defined by p(f+4); amount of numbers

left (p(f+4)-3)/(p(f+4)-2)

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 10/11

5 Remove numbers defined by thread
defined by p(f+5); amount of numbers

left (p(f+5)-3)/(p(f+5)-2)

6 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 12/13

6 Remove numbers defined by thread
defined by p(f+6); amount of numbers

left (p(f+6)-3)/(p(f+6)-2)

Like in the STAGE 2, we will state that in Table 2,  in every step, except may be step 1, threads in

the second stage will leave bigger percentage of numbers than the corresponding threads in the first

stage (this is explained in Appendix B). Of course it holds for all other threads of interest (not only

those presented in Table 2).

Let  us mark the number of  D2-primes smaller than some natural  number  n with π
D2

(n).   From

previous analysis we can safely conclude that the following equation holds for some n big enough

(having in mind (1))

πD2(n) >gt3(n) .

Since it it easy to show that  following holds



lim
n→ ∞

gt3(n) > lim
n→ ∞

n

(ln (n ) )
3
=∞ ,

we can safely conclude that the number of D2-primes is infinite. 

…

STAGE k. 

In this stage, from primes left after the STAGE k-1, we are going to remove all primes  that  do not

have a colleague prime that is (k-1)d apart, or all primes 2n + 1, that do not have bigger prime

colleague in the form 2n + 1 + (k-1)d, n ϵ N.  So, in this stage we are going to remove  all primes

in the form 2m + 1 such that  2m + 1 + (k-1)d, m ϵ N is composite. If we make the same analysis

like in the previous stages, it is simple to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i – (k – 1)d/2. (8)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent primes in  mps form that have prime bigger colleagues that are  D apart. What has to be

noticed in (8) is that threads defined by primes that divide (k-1)d/2 will not remove numbers in this

stage.

Since the methods that are applied in the first and the  kth stage are similar, it  can be intuitively

concluded  that  the  number  of  numbers  left  after  the  kth  stage  “Sundaram”  sieve,  should  be

comparable to  gtk(n) defined by the following equation (n ϵ N,  π
D-1

(n)  denotes the number of

primes smaller than n, left after stage k-1)

gtk (n)=
πD− 1(n)

ln (πD− 1(n) )
>

n

(ln(n))
k . (9)

The gtk(n) would be obtained in the case when k stage sieve would produce the same amount of

numbers removed with each thread, like the original Sundaram sieve. However, the assumption is

not correct and formula requires some compensation terms since the second “Sundaram” sieve is

applied on an incomplete set, that is depleted by previously implemented Sundaram sieve. Actually,



gtk(n) represents a lower bound for the number of D-primes that have prime colleagues that are D

apart and that are smaller than some number n and that are left after stage k. 

Let  us  mark  the  number  of  D-primes  smaller  than  some natural  number  n with  π
D
(n).   From

previous analysis we can safely conclude that the following equation holds for some n big enough

(having in mind (1))

πD(n)>gtk (n) .

Since it it easy to show that  following holds

lim
n→ ∞

gtk (n)> lim
n→ ∞

n

( ln (n ))
k
=∞ ,

we can safely conclude that the number of D-primes is infinite. That completes the proof. What has

to be said is that actually one more step should be performed and number of arithmetic progression

with  k+1  terms  and  same  difference  should  be  calculated  and  subtracted  from the  number  of

arithmetic progressions with k elements. However, this can be ignored for large n, since the number

of progressions of length k+1 is very small comparing to the number of progressions with k terms

(and same difference) for n big enough.

Number of arithmetic progressions smaller than some natural number n is going to be analyzed in

the next version of this paper. Here we will just say that similar analysis like in the case of the

Polignac's conjecture can be done with some additional analysis that is results of the depth of the

recursion that has to be applied in the case of Green-Tao theorem.
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APPENDIX A.

Here it is going to be proved that m in (3) is represented by threads defined by odd prime numbers.

Now, the form of  (3) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 

Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From



examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the the thread defined by

one of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assume

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or

m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (4), (6) and (8).

Note: It is not difficult to understand that after implementation of stage 1, the number of numbers in

residual classes of some specific prime number are equal. In other words, after implementation of

stage 1, for example, all numbers divisible by 3 (except 3, but it does not affect the analysis) are

removed. However, the number of numbers in the forms 3k + 1 and 3k + 2 (alternatively, 3k – 1)

are equal.  The reason is that the thread defined by any other prime number (bigger than 2) will

remove the same number of numbers from the numbers in the form  3k + 1 and from the numbers in

the form 3k + 2. It is simple to understand that, for instance, thread defined by number 5, is going



to remove 1/5 of the numbers in form  3k + 1 and  1/5 of the numbers in form 3k + 2. This can be

proved by elementary calculation. That will hold for all other primes and for all other residual

classes.

APPENDIX B.

Here we are going to analyze two sequences that consist of prime numbers, that have same length k,

k ϵ N. The first sequence S2 consists of  numbers

p(1), p(2), …, p(k),

while the second sequence Ss consists of the prime  numbers

p(s+1), p(s+2), …, p(s+k), where  s ϵ N.  

Now we are going to form two new sequences :

pd(1) = p(2) – p(1), pd(2) = p(3) – p(1) , …, pd(k-1) = p(k) – p(1) and

psd(1) = p(s+2) – p(s+1), psd(2) = p(s+3) – p(s+1) , …, psd(k-1) = p(s+k) – p(s+1).

Here we are going to prove that for all s ϵ N, the following set of inequalities holds

pd(1) < psd(1)

pd(2) < psd(2)

…

pd(k-1) < psd(k-1).

So, the difference from between every term in the sequence and the first term in the sequence is

always smaller for the sequence of primes S2 that starts with two than any other sequence Ss that

starts with some other prime number. The reasons for that are quite simple 

– only the sequence S2 contains one even prime, and difference between first and second term

in the  sequence is  one.  In  all  other  sequences the minimal  difference  between first  and

second term is 2.



– only the sequence S2 contain the second, third and forth term that are 1, 3 and 5 apart from

the first term. In all other sequences Ss the second, third and forth term are at least 2, 6, and

8 apart from the first term.  

– and so on … For every additional term you can prove by direct comparison that rth term in

the S2 sequence is at smaller distance from the first term in the sequence S2 than in any

other sequence Ss. Also, it can be proved by choosing the starting term in the sequence Ss,

and than start the Eratosthen sieve procedure and compare the sequences that are obtained.

Here we will also say that if we create sequence Ss-α,  α <  s, where  s marks the first prime in

sequence Ss, the sequence psd of this new sequence will not be changed. It is trivial to prove.

Having all this in mind we can easily prove that for all  k > 1 and d ≥ 0, the following inequality

holds

p(1+d )− 1
p (1+d )

⩽
p (k+d )− α

p(k+d )− α+1
,

since 

p (1+d ) p (k+d )− p (1+d )α+p (1+d )− p (k+d )+α− 1⩽ p(1+d ) p(k+d )− α p(1+d ) ,

or

p (1+d )⩽ p (k+d )− α+1 ,

and equality sign is possible only for the case d = 0 and p(k+d)-α+1 = 2, or when the first term of

the sequence Ss is shifted to coincide with 2.

Having in mind what was previously said, it is clear that statements after Tables 1 and 2 were true.


