Prime Generation and primality test using 2x+1 and Summation of a constant

by: Mar Detic

Abstract:

We introduce another way to enumerate primes up to N using 2x+1 and the summation of a constant. By which can also be used for primality test of a given integer.

Definition:

For all x integer, where x is equal to 2a+1 and a is equal to $(\frac{x-1}{2})$. And the multiples of a prime can be written as $(\frac{x-1}{2})$ adding to the summation of a constant c multiplied by 2 adding 1; where c is equal to x; thus $((\frac{x-1}{2})+\sum_{i=1}^{n}x)\times 2+1$, which means the congruence $((\frac{x-1}{2})+\sum_{i=1}^{n}x)\times 2+1\equiv 0 \mod x$.

By definition above we're gonna use the formulae: Let a ={ $a_1, a_2, ..., a_{k-1}$ } a set of integers

n is a tuple (sequence)where:

$$((a_k + \sum_{i=1}^n c) \times 2) + 1) \le a_k$$

On prime generation(prime sieve)

Let say we are given an integer **a**:

a= 10

since we need to find all primes less than a well use the list $\{a_1, a_2, \dots, a_{k-1}\}$; thus $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

x		3	5	7							
a _k		1	2	3	4	5	6	7	8	9	10
$a_k + \sum_{i=1}^n x$	n=1	4	7 7(2)+1=15	n will give10	Here we skip since 4 is on the a ₁	Here we multiplie meaning list only	d by 2 the g instead	en added 1 l of listir	l is greate	er than a _{1,} a _{n-1} } w	ve can
	n=2 so on	Here we skip since the functio n will give 7 7(2)+1=15 which is > a									

Checking if $a_k \neq (a_{k-(k-1)} + \sum_{i=1}^n x)$; if true x is prime

On primality test (trial division using the prime generation above**)**

example: Given integer a, we check first if even or not. a=100

we'll gonna use the method from prime generation above but we'll gonna use the limit since we know that the largest factor of a number is the squareroot; so $(a=\sqrt{a})\Rightarrow(a_k=10)$

Checking if $a \mod((a_k \times 2) + 1)$; if true **a** not is prime

As you can see above we started generating primes from 3 because:

if we consider 1 as prime:

$1 \Rightarrow \frac{1-1}{2} \Rightarrow \frac{0}{2}$	thus the x above will start at 0 then if we feed 0 to the $a_k + \sum_{i=1}^n X$ where a_k is 0 and x is 1.
$0 + \sum_{i=1}^{n} 1$	this set will produce an integer a where 2a+1 will produce all odd and even integer. So we can say this function is the prime of primes for all odd integer.

if we consider 2 as prime:

$2 \Rightarrow \frac{2-1}{2} \Rightarrow \frac{1}{2}$	thus the x above will start at $\frac{1}{2}$ then if we feed $\frac{1}{2}$ to the w $a_k + \sum_{i=1}^n X$ here x is $\frac{1}{2}$ and p is 2.
$\frac{1}{2} + \sum_{i=1}^{n} 2$	this set will produce a where 2a+1,we'll produce all even integer that if divide by 2 is equal to all odd integer. Which be written as $2 \times (0 + \sum_{i=1}^{n} 1)$, where n is only odd integer(including primes).
	So we can say this function is the prime of primes for all even integer. So if we don't consider 1 as prime then so is 2 we can't consider as prime.

note:

and the gaps of primes is bounded by how many multiple of primes between 2 given primes example: 89,97 gap is 8

(89-1)/2=44 (97-1)/2=48

44,{45,46,47}48 ; thus 3 is the gap

Now to calculate the gaps; the formula is:

2x+2

Where x is equals $(\frac{a-1}{2} - \frac{b-1}{2}) - 1$ and a is the bigger prime and b is the smaller prime.