Prime Generation and primality test using $2 x+1$ and Summation of a constant by: Mar Detic

Abstract: We introduce another way to enumerate primes up to N using $2 \mathrm{x}+1$ and the summation of a constant. By which can also be used for primality test of a given integer.

Definition:

For all x integer, where x is equal $2 a+1$ and a is equal to $\left(\frac{x-1}{2}\right)$. And the multiples of a prime can be written as $\left(\frac{x-1}{2}\right)$ adding to the summation of a constant c multiplied by 2 adding 1 ; thus $\left(\left(\frac{x-1}{2}\right)+\sum_{i=1}^{n} x\right) \times 2+1$, which means the congruence $\left(\left(\frac{x-1}{2}\right)+\sum_{i=1}^{n} x\right) \times 2+1 \equiv 0 \bmod x$.

By definition above we're gonna use the formulae:
Let $a=\left\{a_{1}, a_{2}, \ldots a_{n-1}\right\}$ a set of integers
n is a tuple (sequence)where:

$$
\left(\left(\left(a_{k}+\sum_{i=1}^{n} c\right) \times 2\right)+1\right) \leq a_{k}
$$

On prime generation(prime sieve)

Let say we are given an integer a:
a= 10
since we need to find all primes less than a well use the list $\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}, \ldots \mathbf{a}_{\mathbf{n}-1}\right\}$; thus $\{1,2,3,4,5,6,7,8,9\}$

X		3	5	7	---------	---------	---------	---------	---------	---------	--------
a_{k}		1	2	3	4	5	6	7	8	9	10
$a_{k}+\sum_{i=1}^{n} x$	$\mathrm{n}=1$	4	Here we skip since the functio n will give $7(2)+1=15$ which is > a	Here we skip since the functio n will give10 $10(2)+1=2$ 1 which is	Here we skip since 4 is on the a_{1}	Here we gonna skip since the function will add up if multiplied by 2 then added 1 is greater than a meaning instead of listing all $\left\{\mathrm{a}_{1, \ldots} \mathrm{a}_{\mathrm{n}-1}\right\}$ we can list only up $\frac{a_{k}}{2}$ since $\left(\left(\left(\frac{a_{k}}{2}\right) \times 2\right)+1\right)>a_{k}$					
	$\mathrm{n}=2$ so on	Here we skip since the functio n will give $7(2)+1=15$ which is > a					6ojljlpo hltoj59u h05ej'n 89’juuy				

Checking if $\quad a_{k} \neq\left(a_{k-(k-1)}+\sum_{i=1}^{n} x\right)$; if true x is prime

On primality test (trial division using the prime generation above)

example:
Given integer a, we check first if even or not.
$\mathrm{a}=100$
we'll gonna use the method from prime generation above but we'll gonna use the limit since we know that the largest factor of a number is the squareroot; so $\quad(a=\sqrt{a}) \Rightarrow\left(a_{k}=10\right)$

Checking if $a \bmod \left(\left(a_{k} \times 2\right)+1\right)$; if true a not is prime

As you can see above we started generating primes from 3 because:
if we consider 1 as prime:

$1 \Rightarrow \frac{1-1}{2} \Rightarrow \frac{0}{2}$	thus the x above will start at 0 then if we feed 0 to the $x+\sum_{i=1}^{n} p$ where x is 0 and p
is 1.	
$0+\sum_{i=1}^{n} 1$	this set will produce an integer a where $2 \mathrm{a}+1$ will produce all odd and even integer. So we can say this function is the prime of primes for all odd integer.

if we consider 2 as prime:

$2 \Rightarrow \frac{2-1}{2} \Rightarrow \frac{1}{2}$	thus the x above will start at $\frac{1}{2}$ then if we feed $\frac{1}{2}$ to the $X+\sum_{i=1}^{n} P$ where x is $\frac{1}{2}$ and p is 2.
$\frac{1}{2}+\sum_{i=1}^{n} 2$	this set will produce a where $2 \mathrm{a}+1$, we'll produce all even integer that if divide by 2 is equal to all odd integer.
Which be written as $2 \times\left(0+\sum_{i=1}^{n} 1\right)$ So we can say this function is the prime of primes for all even integer. So if we don't consider 1 as prime then so is 2 we can't consider as prime.	

note:
and the gaps of primes is bounded by how many multiple of primes between $\mathbf{2}$ given primes example:

Now to calculate the gaps; the formula is:
$2 \mathrm{x}+2$

Where x is equals (a-b)-1; where a is the larger prime and b is the smaller prime.

