Prime Generation and primality test using 2x+1 and Summation of a constant

by: Mar Detic

Abstract:

We introduce another way to enumerate primes up to N using 2x+1 and the summation of a constant. By which can also be used for primality test of a given integer.

Definition:

For all n integer, we can write n as $(\frac{n-1}{2})$; thus $(\frac{n-1}{2}) \Leftrightarrow 2x+1$. And the multiples of a prime can be written as $(\frac{p-1}{2})$ adding to the summation of a constant c, where c is a prime p; multiplied by 2 adding 1 thus $((\frac{p-1}{2})+\sum_{i=1}^{n}p)\times 2+1$; $((\frac{p-1}{2})+\sum_{i=1}^{n}p)\times 2+1\equiv 0 \mod p$.

By definition above we're gonna use the formulae:

$$2x+1$$
 and $\sum_{i=1}^{n} C$

then we'll gonna substitute:

$$2x+1 \Rightarrow 2a_n+1$$

$$\sum_{i=1}^{n} c \Rightarrow a_n + \sum_{i=1}^{n} c$$
where :
$$c=2a_n+1$$
in is a tuple (sequence) where:
$$a_n = \frac{1}{2} + \frac{1}{2}$$

$$(((a_n + \sum_{i=1}^n c) \times 2) + 1) \le a$$

On prime generation(prime sieve)

Let say we are given an integer a:

a= 10; since we need to find all primes less than a well use the list $\{a_1, a_2, \dots, a_{n-1}\}$; thus $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

let:

$$c = 2x + 1 = c = 2a_n + 1$$

and we're gonna use to find the multiple of c

 $a_n + \sum_{i=1}^n C_i$; to a limit where the function if multiplied by 2 adding 1 should be less than **a**

С		3	5	7							
a _n		1	2	3	4	5	6	7	8	9	10
$a_n + \sum_{i=1}^n c$	n=1	4	Here we skip since the functio n will give 7 7(2)+1=15 which is > a	Here we skip since the functio n will give10 10(2)+1=2 1 which is > a	Here we skip since 4 is on the a ₁	multiplie meanin	gonna ski ed by 2 the g instead 7 up $\frac{a_n}{2}$	en added i l of listin	1 is great	er than a _{1,} a _{n-1} } w	ve can
	n=2 so on	Here we skip since the functio n will give 7 7(2)+1=15 which is > a									

Checking if
$$a_n \neq (a_{n-(n-1)} + \sum_{i=1}^n C)$$
; if true c is prime

On primality test (trial division using the prime generation**)**

example: given integer a a=100

we'll gonna use the method from prime generation above but we'll gonna use the limit since we know that the largest factor of a number is the squareroot; so $(a = \sqrt{a}) \Rightarrow (a = 10)$

Checking if $a \mod c$; if true **a** not is prime

This method need to check first if a is even or odd by dividing 2.

As you can see above we started generating primes from 3 because:

if we consider 1 as prime:

$1 \Rightarrow \frac{1-1}{2} \Rightarrow \frac{0}{2}$	thus the x above will start at 0 then if we feed 0 to the $x + \sum_{i=1}^{n} p$ where x is 0 and p is 1.
$0 + \sum_{i=1}^{n} 1$	this set will produce an integer a where 2a+1 will produce all odd and even integer. So we can say this function is the prime of primes for all odd integer.

if we consider 2 as prime:

$2 \Rightarrow \frac{2-1}{2} \Rightarrow \frac{1}{2}$	thus the x above will start at $\frac{1}{2}$ then if we feed $\frac{1}{2}$ to the $x + \sum_{i=1}^{n} p$ where x is $\frac{1}{2}$ and p is 2.				
$\frac{1}{2} + \sum_{i=1}^{n} 2$	this set will produce a where 2a+1,we'll produce all even integer that if divide by 2 is equal to all odd integer. Which be written as $2 \times (0 + \sum_{i=1}^{n} 1)$, where n is only odd integer(including primes).				
	So we can say this function is the prime of primes for all even integer. So if we don't consider as prime then so is 2 we can't consider as prime.				

note:

and the gaps of primes is bounded by how many multiple of primes between 2 given primes

example: 89,97 gap is 8 (89-1)/2=44 (97-1)/2=48	44,{45,46,47}48 ; thus 3 is the gap	Now to calculate the gaps; the formula is: $2x+2$		
		Where x is equals (a-b)-1 ;where a is the larger prime and b is the smaller prime.		