Prime Generation and primality test using $2 x+1$ and Summation of a constant by: Mar Detic

Abstract

: We introduce another way to enumerate primes up to N using $2 \mathrm{x}+1$ and the summation of a constant. By which can also be used for primality test of a given integer.

Definition:
For all n integer, we can write n as $\left(\frac{n-1}{2}\right)$; thus $\left(\frac{n-1}{2}\right) \Leftrightarrow 2 x+1$. And the multiples of a prime can be written as $\left(\frac{p-1}{2}\right)$ adding to the summation of a constant c , where c is a prime p ; multiplied by 2 adding 1 thus $\left(\left(\frac{p-1}{2}\right)+\sum_{i=1}^{n} p\right) \times 2+1 \quad ; \quad\left(\left(\frac{p-1}{2}\right)+\sum_{i=1}^{n} p\right) \times 2+1 \equiv 0 \bmod p$.

By definition above we're gonna use the formulae:

$$
2 x+1 \text { and } \sum_{i=1}^{n} c
$$

then we'll gonna substitute:

$$
\begin{gathered}
2 x+1 \Rightarrow 2 a_{n}+1 \\
\sum_{i=1}^{n} c \Rightarrow a_{n}+\sum_{i=1}^{n} c \\
\text { where : } \\
c=2 a_{n}+1 \\
\text { n is a tuple (sequence)where: } \\
\left(\left(\left(a_{n}+\sum_{i=1}^{n} c\right) \times 2\right)+1\right) \leq a
\end{gathered}
$$

On prime generation(prime sieve)

Let say we are given an integer a:
$a=10$; since we need to find all primes less than a well use the list $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{\mathbf{n}-1}\right\}$; thus $\{1,2,3,4,5,6,7,8,9\}$
let:

$$
c=2 x+1=c=2 a_{n}+1
$$

and we're gonna use to find the multiple of c
$a_{n}+\sum_{i=1}^{n} c$; to a limit where the function if multiplied by 2 adding 1 should be less than a

C		3	5	7	---------	---------	---------	---------	---------	---------	---------
$\mathbf{a}_{\mathbf{n}}$		1	2	3	4	5	6	7	8	9	10
$a_{n}+\sum_{i=1}^{n} c$	$\mathrm{n}=1$	4	Here we skip since the functio n will give $7(2)+1=15$ which is >	Here we skip since the functio n will give10 $10(2)+1=2$ 1 which is	Here we skip since 4 is on the a_{1}	Here we gonna skip since the function will add up if multiplied by 2 then added 1 is greater than a meaning instead of listing all $\left\{\mathrm{a}_{1, \ldots} \mathrm{a}_{\mathrm{n}-1}\right\}$ we can list only up $\frac{a_{n}}{2}$ since $\left(\left(\left(\frac{a_{n}}{2}\right) \times 2\right)+1\right)>a_{n}$					
	$\begin{aligned} & \mathrm{n}=2 \\ & \text { so on } \end{aligned}$	Here we skip since the functio n will give $7(2)+1=15$ which is > a									

Checking if $a_{n} \neq\left(a_{n-(n-1)}+\sum_{i=1}^{n} c\right)$; if true c is prime

On primality test (trial division using the prime generation)

example: given integer a
$a=100$
we'll gonna use the method from prime generation above but we'll gonna use the limit since we know that the largest factor of a number is the squareroot; so $(a=\sqrt{a}) \Rightarrow(a=10)$

Checking if $a \bmod C$; if true a not is prime

This method need to check first if a is even or odd by dividing 2 .

As you can see above we started generating primes from 3 because:
if we consider 1 as prime:

$1 \Rightarrow \frac{1-1}{2} \Rightarrow \frac{0}{2}$	thus the x above will start at 0 then if we feed 0 to the $X+\sum_{i=1}^{n} p$ where x is 0 and p
is 1.	
$0+\sum_{i=1}^{n} 1$	this set will produce an integer a where $2 \mathrm{a}+1$ will produce all odd and even integer. So we can say this function is the prime of primes for all odd integer.

if we consider 2 as prime:

$2 \Rightarrow \frac{2-1}{2} \Rightarrow \frac{1}{2}$	thus the x above will start at $\frac{1}{2}$ and p is 2.
$\frac{1}{2}+\sum_{i=1}^{n} 2$	this set will produce a where $2 \mathrm{a}+1$,we'll produce all even integer that if divide by 2 is equal to $\frac{1}{2}$ all odd integer.
Which be written as $2 \times\left(0+\sum_{i=1}^{n} 1\right)$ where x is $\frac{1}{2}$	
So we can say this function is the prime of primes for all even integer. So if we don't consider 1	
as prime then so is 2 we can't consider as prime.	

note:
and the gaps of primes is bounded by how many multiple of primes between $\mathbf{2}$ given primes
example:
89,97 gap is 8
(89-1)/2=44
$(97-1) / 2=48$
$44,\{45,46,47\} 48$; thus 3 is the gap

Now to calculate the gaps; the formula is:

$2 \mathrm{x}+2$

Where x is equals (a-b)-1; where a is the larger prime and b is the smaller prime.

