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Abstract: Here we have shown a heuristic and approximate solution to the unsolved oppermann’s conjecture. Firstly 

we have generated a formula to calculate the approximate number of multiples of a prime number 𝑝𝑛 less than or 

equal to a number 𝑘 which are not the multiples of the prime numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛−1 and 𝑝𝑛 < 𝑘. Then we have 

generated another formula to calculate the number of prime numbers less than or equal to a number 𝑘 if the prime 

numbers less than √𝑛 are given where √𝑛 ≤ 𝑘 ≤ 𝑛 . By using these formulas and the main concept of these formulas 

we have presented our solution.  
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1. Introduction 
Oppermann's conjecture is an unsolved problem in mathematics on the distribution of prime numbers. It is closely 

related to but stronger than Legendre's conjecture, Andrica's conjecture, and Brocard's conjecture. It is named after 

Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in March 1877.  

Conjecture 1.1 (Oppermann’s conjecture): For every integer 𝑛 > 1, there is at least one prime number between 

𝑛(𝑛 − 1) and 𝑛2, and at least another prime between 𝑛2 and 𝑛(𝑛 + 1). 

Here in this paper we have shown a heuristic and approximate solution to the unsolved oppermann’s conjecture. We 

have generated a formula to calculate the approximate number of multiples of a prime number 𝑝𝑛 less than or equal 

to a number 𝑘 which are not the multiples of the prime numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛−1 and 𝑝𝑛 < 𝑘. The formula is as 

follows, 

𝑘

𝑝𝑛
∏ (1 −

1

𝑝𝑟
)

𝑛(𝑝)−1

𝑟=1

 

Here 𝑛(𝑝) is the number of prime numbers. By using this formula we have generated another formula to calculate the 

number of primes less than or equal to a number 𝑘 if the prime numbers less than or equal to √𝑛 are given where 

√𝑛 ≤ 𝑘 ≤ 𝑛. Suppose, the number of prime numbers less than or equal to √𝑛 is 𝑞 > 1 and the qth prime is 𝑝𝑞 . So, 

the number of prime numbers less than or equal to 𝑘 will be 

𝜋(𝑘) = 𝑛(𝑝) − 1 + 𝑘 ∏ (1 −
1

𝑝𝑟
)

𝑛(𝑝)<√𝑛

𝑟=1

 

By using this formula we can show that approximately there exists at least one prime number between  𝑛(𝑛 − 1) and 

𝑛2and another prime number between 𝑛2 and 𝑛(𝑛 + 1). By using the same method we can show that there exists at 

least one prime between 𝑛 and 2𝑛 where 𝑛 > 1 which is known as Bertrand’s postulate. As we know that Bertrand’s 

postulate is correct, so we can say that our heuristic and approximate solution to the oppermann’s conjecture is logical 

and it does make sense.  
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2. Generating the formula to calculate the approximate number of multiples 

of a prime number 𝒑𝒏 less than or equal to a number 𝒌 which are not the 

multiples of the prime numbers 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒏−𝟏  and 𝒑𝒏 < 𝒌  and the 

prime counting formula 
Suppose, there are some prime numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 where 𝑝𝑛 < 𝑘. Now we have to calculate the approximate 

number of multiples of a prime number 𝑝𝑛 less than or equal to a number 𝑘 which are not the multiples of the prime 

numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛−1 . Suppose, there are two prime numbers 𝑝1 and 𝑝2 . Now we have to calculate the 

approximate number of multiples of 𝑝2 less than or equal to 𝑘 which are not the multiples of 𝑝1. Now, the approximate 

number of multiples of 𝑝1 and 𝑝2will be respectively  

 
𝑘

𝑝1
 ,

𝑘

𝑝2
 

 

Now suppose, 𝐴 = {x: x, multiples of p1} and 𝐵 = {x: x, multiples of p2}. So, the approximate number of multiples 

of 𝑝2 less than or equal to 𝑘 which are not the multiples of 𝑝1 will be 

 

𝑛(𝐵) − 𝑛(𝐴 ∩ 𝐵) =
𝐾

𝑃1
−

𝐾

𝑃1𝑃2
=

𝐾(𝑃1 − 1)

𝑃1𝑃2
 

 

Again suppose, there are three prime numbers 𝑝1, 𝑝2 and 𝑝3. Now, the approximate number of multiples of 𝑝1, 𝑝2 and 

𝑝3will be respectively 

𝑘

𝑝1
 ,

𝑘

𝑝2
 ,

𝑘

𝑝3
 

 

Now suppose, 𝐴 = {x: x, multiples of p1}  , 𝐵 = {x: x, multiples of p2}  and 𝐶 = {x: x, multiples of p3} . So, the 

approximate number of multiples of 𝑝3 less than or equal to 𝑘 which are not the multiples of 𝑝1 and 𝑝2 will be 

 

𝑛(𝐶) − 𝑛(𝐴 ∩ 𝐶) − 𝑛(𝐵 ∩ 𝐶) + 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 

 

=
𝑘

𝑝3
−

𝐾

𝑃1𝑃3
−

𝐾

𝑃2𝑃3
+

𝐾

𝑃1𝑃2𝑃3
= 𝐾 (

𝑃1𝑃2 − 𝑃2 − 𝑃1 + 1

𝑃1𝑃2𝑃3
) =

𝐾(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2𝑃3
 

 

Again suppose, there are four prime numbers 𝑝1, 𝑝2 , 𝑝3  and 𝑝4 . Now, the approximate number of multiples of 

𝑝1, 𝑝2, 𝑝3 and 𝑝4will be respectively 

𝑘

𝑝1
 ,

𝑘

𝑝2
 ,

𝑘

𝑝3
 ,

𝑘

𝑝4
 

 

Now suppose, 𝐴 = {x: x, multiples of p1}  , 𝐵 = {x: x, multiples of p2},  𝐶 = {x: x, multiples of p3} and 𝐷 =
{x: x, multiples of p4}. So, the approximate number of multiples of 𝑝4  less than or equal to 𝑘 which are not the 

multiples of 𝑝1 , 𝑝2 and 𝑝3will be 

 

𝑛(𝐷) − 𝑛(𝐴 ∩ 𝐷) − 𝑛(𝐵 ∩ 𝐷) − 𝑛(𝐶 ∩ 𝐷) + 𝑛(𝐴 ∩ 𝐵 ∩ 𝐷) + 𝑛(𝐴 ∩ 𝐶 ∩ 𝐷) + 𝑛(𝐵 ∩ 𝐶 ∩ 𝐷) − 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷) 

 

=
𝑘

𝑝4
−

𝐾

𝑃1𝑃4
−

𝐾

𝑃2𝑃4
−

𝐾

𝑃3𝑃4
+

𝐾

𝑃1𝑃2𝑃4
+

𝐾

𝑃1𝑃3𝑃4
+

𝐾

𝑃2𝑃3𝑃4
−

𝐾

𝑃1𝑃2𝑃3𝑃4
 

 

= 𝐾 (
𝑃1𝑃2𝑃3 − 𝑃2𝑃3 − 𝑃1𝑃3 − 𝑃1𝑃2 + 𝑃3 + 𝑃2 + 𝑃1 − 1

𝑃1𝑃2𝑃3𝑃4
) 

 



 
 

 

 

= 𝐾 {
𝑃2𝑃3(𝑃2 − 1) − 𝑃3(𝑃2 − 1) − 𝑃2(𝑃2 − 1) + (𝑃2 − 1)

𝑃1𝑃2𝑃3𝑃4
} 

 

= 𝐾 {
(𝑃2 − 1)(𝑃2𝑃3 − 𝑃3 − 𝑃2 + 1)

𝑃1𝑃2𝑃3𝑃4
} 

 

=
𝐾(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1)

𝑃1𝑃2𝑃3𝑃4
 

 

We can see, here we get a beautiful pattern. Now, suppose the number of prime numbers is n and prime numbers are 

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 where 𝑝𝑛 < 𝑘. According to the pattern, the approximate number of multiples of 𝑝𝑛 less than or equal 

to 𝑘 which are not the multiples of 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛−1 will be  

 

𝐾(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1) … (𝑝𝑛−1 − 1)

𝑃1𝑃2𝑃3𝑃4 … 𝑝𝑛
 

 

=
𝑘

𝑝𝑛
(1 −

1

𝑃1
) (1 −

1

𝑃2
) (1 −

1

𝑃3
) … (1 −

1

𝑃𝑛−1
) 

 

Definition 1.1: We call 𝑛(𝑝) is the number of prime numbers. 

So, we can write the formula to calculate the approximate number of multiples of a prime number 𝑝𝑛 less than or equal 

to a number 𝑘 which are not the multiples of the prime numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛−1 and 𝑝𝑛 < 𝑘, 

𝑘

𝑝𝑛
∏ (1 −

1

𝑝𝑟
)

𝑛(𝑝)−1

𝑟=1

 

Now, we have to generate a formula to calculate the number of prime numbers less than or equal to a number 𝑘 if the 

prime numbers less than or equal to √𝑛 are given where √𝑛 ≤ 𝑘 ≤ 𝑛 . Suppose, the number of prime numbers less 

than or equal to √𝑛 is 𝑞 and the prime numbers are 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑞 . According to the trial division method, if we 

want to deduce weather a number n is prime, we have to just test for the prime factors up to √𝑛. So, if we want to 

deduce weather a number k is prime where √𝑛 ≤ 𝑘 ≤ 𝑛, it is enough to test for the prime factors up to √𝑛. That means 

all the composite numbers from 2 to 𝑘 will be the multiples of the prime numbers less than or equal to √𝑛. Again, if 

𝑘 is an integer, then we can write, 

𝑘 = 1 + number of prime numbers ≤ 𝑘 + number of composite numbers ≤ 𝑘 

 As we know, 1 is not a prime number and also not a composite number. Now we can write,  

The number of prime numbers less than or equal to k will be 

 

𝜋(𝑘) = 𝑘 − 1 − number of composite multiples of 𝑝1

− number of composite multiples of p2 whice are not the multiples of p1

− number of composite multiples of p3 whice are not the multiples of p1, p2 − ⋯
− number of composite multiples of pq whice are not the multiples of p1, p2, … , 𝑝𝑞−1 

 

= 𝑘 − 1 −
𝑘

𝑝1
+ 1 −

𝐾(𝑃1 − 1)

𝑃1𝑃2
+ 1 −

𝐾(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2𝑃3
+ 1 − ⋯ −

𝐾(𝑃1 − 1)(𝑃2 − 1) … (𝑝𝑞−1 − 1)

𝑃1𝑃2𝑃3𝑃4 … 𝑝𝑞
+ 1 

Now we can write, 

𝜋(𝑘) = 𝑘 − 1 + 𝑛(𝑝) −
𝑘

𝑝1
− 𝑘 ∑

∏ (𝑝𝑎 − 1)𝑟
𝑎=1

∏ 𝑝𝑎
𝑟+1
𝑎=1

𝑛(𝑝)−1

𝑟=1

 

 



 
 

 

 

This formula can be used in small range of positive integers, because the operation is very complicated. But we can 

derive a easy form of this formula. Suppose, there is one prime number 𝑝1 less than or equal to √𝑛. So, 

 

𝜋(𝑘) = 𝑘 − 1 + 𝑛(𝑝) −
𝑘

𝑝1
 

 

Again suppose, there are two prime numbers 𝑝1 and 𝑝2 less than or equal to √𝑛. So, 

 

𝜋(𝑘) = 𝑘 − 1 + 𝑛(𝑝) −
𝑘

𝑝1

−
𝐾(𝑃1 − 1)

𝑃1𝑃2

 

 

= 𝑘 − 1 + 𝑛(𝑝) − 𝑘 {
1

𝑝1
+ (

(𝑃1 − 1)

𝑃1
−

(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2
)} 

 

= 𝑘 − 1 + 𝑛(𝑝) − 𝑘 (
1 + 𝑃1 − 1

𝑝1

−
(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2

) 

 

= 𝑘 − 1 + 𝑛(𝑝) − 𝑘 (1 −
(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2
) 

 

= 𝑛(𝑝) − 1 + 𝑘
(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2
= 𝑛(𝑝) − 1 + 𝑘 (1 −

1

𝑃1
) (1 −

1

𝑃2
) 

 

Again suppose, there are three prime numbers 𝑝1, 𝑝2 and 𝑝3 less than or equal to √𝑛. So, 

 

𝜋(𝑘) = 𝑘 − 1 + 𝑛(𝑝) −
𝑘

𝑝1

−
𝐾(𝑃1 − 1)

𝑃1𝑃2

−
𝐾(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2𝑃3

 

 

= 𝑘 − 1 + 𝑛(𝑝) − 𝑘 {
1

𝑝1
+

(𝑃1 − 1)

𝑃1𝑃2
+ (

(𝑃1 − 1)(𝑃2 − 1)

𝑃1𝑃2
−

(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1)

𝑃1𝑃2𝑃3
)} 

 

= 𝑘 − 1 + 𝑛(𝑝) − 𝑘 (
𝑃2 + 𝑃1 − 1 + 𝑃1𝑃2 − 𝑃1 − 𝑃2 + 1

𝑃1𝑃2

−
(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1)

𝑃1𝑃2𝑃3

) 

 

= 𝑛(𝑝) − 1 + 𝑘
(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1)

𝑃1𝑃2𝑃3
= 𝑛(𝑝) − 1 + 𝑘 (1 −

1

𝑃1
) (1 −

1

𝑃2
) (1 −

1

𝑃3
) 

 

Again suppose, there are three prime numbers 𝑝1, 𝑝2,𝑝3 and 𝑝4 less than √𝑛. By using the same method we can show 

that, 

𝜋(𝑘) = 𝑛(𝑝) − 1 + 𝑘
(𝑃1 − 1)(𝑃2 − 1)(𝑃3 − 1)(𝑃4 − 1)

𝑃1𝑃2𝑃3𝑝4
= 𝑛(𝑝) − 1 + 𝑘 (1 −

1

𝑃1
) (1 −

1

𝑃2
) (1 −

1

𝑃3
) (1 −

1

𝑃4
) 

 

We can see, here we get a nice pattern when the number of prime numbers less than or equal to √𝑛 is greater than 1. 

Suppose, the number of prime numbers less than or equal to √𝑛 is 𝑞 > 1 and the prime numbers are 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑞 . 

Let 𝑛(𝑝) is the number of prime numbers less than or equal to √𝑛. So, the number of prime numbers less than or equal 

to 𝑘 will be 



 
 

 

 

𝜋(𝑘) = 𝑛(𝑝) − 1 + 𝑘 ∏ (1 −
1

𝑝𝑟
)

𝑛(𝑝)<√𝑛

𝑟=1

 

 

The operation is still very complicated. But this formula will give us better approximation than the other prime 

counting functions like prime number theorem. 

 

3. The heuristic and approximate solution to the oppermann’s conjecture 
Now we have to prove that there approximately exists at least one prime between 𝑛(𝑛 − 1) and 𝑛2, and at least another 

prime between 𝑛2 and 𝑛(𝑛 + 1) where 𝑛 > 1. We can see that when 𝑛 = 2,3,4  the oppermann’s conjecture is true. 

Now, we just have to show that this conjecture can be true when 𝑛 > 4. Firstly we will show that there approximately 

exists at least one prime between 𝑛(𝑛 − 1) and 𝑛2.  

Suppose, the number of prime numbers less than 𝑛(𝑛 − 1) is 𝑞 and the qth prime number is 𝑝𝑞 . Now, we can write, 

𝑛(𝑛 − 1) = 𝑝𝑞 + 𝑥 where 𝑥 is a positive integer. So, 𝑛2 = 𝑝𝑞 + 𝑥 + 𝑛. Again, 

 

𝑛(𝑛 − 1) < 𝑛2 < {𝑛(𝑛 − 1)}2 when 𝑛 > 4 

So, according to our formula, 

𝜋(𝑛2) − 𝜋(𝑛2 − 𝑛) = 𝑞 − 1 + 𝑛2 ∏ (1 −
1

𝑝𝑟
)

𝑞

𝑟=1

− 𝑞 

 

= −1 +
(𝑝𝑞 + 𝑥 + 𝑛)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞
 

 

= −1 + (1 +
𝑥

𝑝𝑞
+

𝑛

𝑝𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
 

 

Here, (𝑝1 − 1) = 1, (𝑝2 − 1) > 𝑃1,(𝑝3 − 1) > 𝑃2,…, (𝑝𝑞 − 1) > 𝑃𝑞−1. So, 

 

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 1 

Again, 

(𝑝1 − 1)(𝑝2 − 1)

𝑃1
<

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1)

𝑃1𝑃2
< ⋯ <

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
 

 

Again, when 𝑛 = 4, the prime numbers less than 4(4 − 1) are 2,3,5,7,11. That means 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5 ,  𝑝4 =
7, 𝑝5 = 11. Here, 

(2 − 1)(3 − 1)(5 − 1)(7 − 1)(11 − 1)

2 × 3 × 5 × 7
> 2 

So, when 𝑛 > 4, 

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 2 

Again, 

(1 +
𝑥

𝑝𝑞

+
𝑛

𝑝𝑞

) > 1 

So, 



 
 

 

 

(1 +
𝑥

𝑝𝑞
+

𝑛

𝑝𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 2 

 

⇒ −1 + (1 +
𝑥

𝑝𝑞
+

𝑛

𝑝𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 1 

 

Again suppose, the number of prime numbers less than 𝑛2 is 𝑞 and the qth prime number is 𝑝𝑞 . Now, we can write, 

𝑛2 = 𝑝𝑞 + 𝑥 where 𝑥 is a positive integer. So, 𝑛(𝑛 + 1) = 𝑝𝑞 + 𝑥 +√𝑝𝑞 + 𝑥. Again,  

 

𝑛2 <  𝑛(𝑛 + 1) < 𝑛4  when 𝑛 > 4 

So, according to our formula, 

𝜋(𝑛2 + 𝑛) − 𝜋(𝑛2) = 𝑞 − 1 + (𝑛2 + 𝑛) ∏ (1 −
1

𝑝𝑟
)

𝑞

𝑟=1

− 𝑞 

 

= −1 +
(𝑝𝑞 + 𝑥 + √𝑝𝑞 + 𝑥)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞
 

 

= −1 + (1 +
𝑥

𝑃𝑞
+

√𝑝𝑞 + 𝑥

𝑃𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
 

 

So, when 𝑛 > 4, 

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 2 

Again, 

(1 +
𝑥

𝑃𝑞
+

√𝑝𝑞 + 𝑥

𝑃𝑞
) > 1 

So, 

(1 +
𝑥

𝑃𝑞
+

√𝑝𝑞 + 𝑥

𝑃𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 2 

 

⇒ −1 + (1 +
𝑥

𝑃𝑞
+

√𝑝𝑞 + 𝑥

𝑃𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 1 

 

So, the number of prime numbers between 𝑛(𝑛 − 1) and 𝑛2 and 𝑛2 and 𝑛(𝑛 + 1) are approximately greater than 1. 

That’s why we can say there approximately exists at least one prime between 𝑛(𝑛 − 1) and 𝑛2, and at least another 

prime between 𝑛2 and 𝑛(𝑛 + 1) where 𝑛 > 1. Another interesting thing we can see here that if we increase the value 

of n, the number of prime numbers between 𝑛(𝑛 − 1) and 𝑛2 and 𝑛2 and 𝑛(𝑛 + 1) will also increase. 

 

4. Applying the same method in case of Bertrand’s postulate 
Theorem 1.1 (Bertrand’s postulate): For every 𝑛 > 1 there is always at least one prime 𝑝 such that 𝑛 < 𝑝 < 2𝑛. 

We can see, when 𝑛 = 2,3 bertrand’s postulate is true. Now, we have to prove that there exists at least one prime 

between 𝑛 and 2𝑛 when 𝑛 > 3, because we can use our prime counting formula when the given number of primes is 

greater than 1. Suppose, the number of prime numbers less than or equal to 𝑛 is 𝑞 and the qth prime number is 𝑝𝑞 . 

Now, we can write, 𝑛 = 𝑝𝑞 + 𝑥 where 𝑥 ≥ 0. So, 2𝑛 = 2𝑝𝑞 + 2𝑥. Again, 

 

𝑛 < 2𝑛 < 𝑛2   when 𝑛 > 3 



 
 

 

 

 

So, according to our formula, 

 

𝜋(2𝑛) − 𝜋(𝑛) = 𝑞 − 1 + 2𝑛 ∏ (1 −
1

𝑝𝑟
)

𝑞

𝑟=1

− 𝑞 

 

= −1 +
(2𝑝𝑞 + 2𝑥)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞
 

 

= −1 + (2 +
2𝑥

𝑃𝑞
)

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
 

We have shown that, 

(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1
> 1 

And, 

(2 +
2𝑥

𝑃𝑞
) ≥ 2 

So, 

−1 + (2 +
2𝑥

𝑃𝑞

)
(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑞 − 1)

𝑃1𝑃2𝑃3 … 𝑃𝑞−1

≥ 1 

 

So, the number of prime numbers between 𝑛 and 2𝑛 are approximately greater than or equal to 1. As we know that 

Bertrand’s postulate is correct and we can prove it in many ways, so we can say that our heuristic and approximate 

solution to the oppermann’s conjecture is logical and it does make sense.  

  

5. Conclusion  
In this paper we didn’t provide any proper solution to the oppermann’s conjecture. But this heuristic and approximate 
solution shows us that the oppermann’s conjecture can be true. We think this paper will help us to think about this 

conjecture from a new perspective and also help us to find a proper solution.  
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