On Goldbach conjecture
by: Mar Detic
May2021
Abstract:
on Goldbach conjecture stating that every number > greater than 2 is the sum of 3 primes, and even integers is sum of 2 primes.
$\forall n \in \mathbb{Z}$, let assume n (including primes) can be written as ($\mathrm{n}-1$) +1
let assume:
($n-1$) +1 is the sumof the primes
P_{n} are the set of prime numbers, thus $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{\mathrm{n}+1}\right\}$
H is the height (quantity of primes; thus number of addends)
By using the definition above we can formulate:
$\left(\mathrm{P}_{1}-1\right)+\left(\mathrm{P}_{2}-1\right)+\mathrm{H}=(\mathrm{n}-1)+1$
example 1 (even integer sum):
$\mathrm{P}_{1}=7$
$\mathrm{P}_{2}=11$
$(7-1)+(11-1)+2=17+1$
$6+10+2=17+1$
$6+10+2-1=17$
$6+10+1=17$
$17=17$
example 2(odd integer sum):
$\mathrm{P}_{1}=1$
$\mathrm{P}_{2}=7$
$\mathrm{P}_{3}=11$
$(1-1)+(7-1)+(11-1)+3=18+1$
$0+6+10+3=18+1$
$0+6+10+3-1=18$
$6+10+2=18$
$18=18$
thus we proved $\forall n \in \mathbb{Z}$ can be writen as sum of 2 or more primes.

