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Abstract

We present two Geometric-Algebra (GA) solutions to a vector-rotation

problem posed by Professor Miroslav Josipović. We follow the sort of

solution process that might be useful to students. First, we review concepts

from GA and classical geometry that may prove useful. Then, we formulate

and carry-out two solution strategies. After testing the resulting solutions,

we propose an extension to the original problem.
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Figure 1: For a given vector v and the unit vector n̂, find a rotor R =

exp (−αjn̂/2) such that v ·
(
RvR†

)
= 0 where j = e1e2e3.

1 Introduction

Professor Miroslav Josipović presented the following problem in the LinkedIn

group “Pre-University Geometric Algebra”:

For a given vector v and the unit vector n̂, find a rotor R =

exp (−αjn̂/2) such that v ·
(
RvR†

)
= 0 where j = e1e2e3.

The two solutions given herein may not be the most efficient, but the discussions

of various aspects and stratagems may be useful to readers who are newcomers

to GA.

2 Observations and Ideas

We’ll begin with some thoughts that might prove useful.

• Initial GA observations

– jn̂ is a bivector.

– R = exp (−αjn̂/2) = cos
α

2
− jn̂ sin

α

2
, and R† = exp (+αjn̂/2) =

cos
α

2
+ jn̂ sin

α

2
. Therefore, to find R, all we need to do is identify

α.

– RvR† is a vector; specifically, the rotation of v around n̂ by α radians

in the right-hand sense.

– The condition v ·
(
RvR†

)
= 0 means that the vector RvR† is per-

pendicular to v.

– For any two vectors u and w, u · v = 〈uv〉0 ([2], p. p. 101).

• Geometric observations
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– The rotation of v about n̂ generates a cone whose apex angle is twice

as large as the angle between v and n̂. Therefore, the angle between

v and n̂ must be ≥ 45◦; otherwise, no rotation of v about n̂ will be

perpendicular to v.

– If the angle between v and n̂ is 45◦, then α = π.

– If v is parallel to the bivector jn̂ (and therefore perpendicular to n̂) ,

then α = π/2.

• Further GA observations and ideas

– v ·
(
RvR†

)
= 〈vRvR†〉0.

– In the nomenclature of [2] (p. 105), j is the unit pseudoscalar Ifor

G3 (that is, of 3-D GA). The properties of I for a given Gn include

∗ I = (−1)
n(n−1)/2

; ∴ j2 = −1.

∗ For any k -vector B, BI =
[
(−1)

k(n−1)
]
IB; ∴ uI = Iu for any

vector u in G3.

A direct approach that is based upon these ideas might expand vRvR†, then

use the properties of j to simplify the job of finding the 〈〉0 of that expansion.

Because, RR† = 1, a less-direct approach that might save ourselves some work

would start by reversing the order of the product vR.

We’ll use both approaches here.

3 Solutions

3.1 A Direct Solution, Using the Properties of j

Based upon previous experience, we’ll divide both sides of vRvR† = 0 by v2 to

give v̂Rv̂R† = 0. Then, we proceed with the expansion.

v̂Rv̂R† = v
[
cos

α

2
− (jn̂) sin

α

2

]
︸ ︷︷ ︸

R

v̂
[
cos

α

2
+ (jn̂) sin

α

2

]
︸ ︷︷ ︸

R†

= v̂v̂ cos2
α

2
+ [v̂v̂jn̂] sin

α

2
cos

α

2

− [v̂jn̂v̂] sin
α

2
cos

α

2
− [v̂jn̂v̂jn̂] sin2 α

2
.

Using v̂v̂ = 1 and the properties of 〈〉0, 〈v̂Rv̂R†〉0 = 0 the previous equation

becomes

cos2
α

2
− 〈jn̂〉0 sin

α

2
cos

α

2
− 〈v̂jn̂v̂〉0 sin

α

2
cos

α

2
− 〈v̂jn̂v̂jn̂〉0 sin2 α

2
= 0.

(3.1)

Now, let’s examine each of the 〈 〉0 factors.
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• jn̂ is a bivector, so 〈jn̂〉0 = 0.

• Using the properties of j (Section 2) and the associative properties of

the geometric product, we find that v̂jn̂v̂ = v̂n̂jv̂ = v̂n̂v̂j = [v̂n̂v̂] j. In

addition, for any two vectors u and w, uw = 2u · w − wu ([1], p. 32).

Therefore, v̂n̂v̂ = v̂ [2n̂ · v̂ − v̂n̂] = 2 (n̂ · v̂) v̂ − n̂, which is a vector. In

G3, the product of any vector with j is a bivector. Therefore, [v̂n̂v̂] j is a

bivector, so 〈v̂jn̂v̂〉0 = 0.

• Again using the properties of j, v̂jn̂v̂jn̂ = v̂n̂v̂n̂jj = −v̂n̂v̂n̂. When we

analyzed v̂jn̂v̂, we found that v̂n̂v̂ = 2 (n̂ · v̂) v̂ − n̂. Thus, −v̂n̂v̂n̂ =

− [2 (n̂ · v̂) v̂ − n̂] n̂ = −2 (n̂ · v̂) v̂n̂+ 1 = −2 (n̂ · v̂)

(
n̂ · v̂ + n̂ ∧ v̂︸ ︷︷ ︸

bivector

)
+ 1.

The 〈 〉0 of that result is −2 (n̂ · v̂)
2

+ 1.

Substituting these 〈〉0’s into Eq. (3.1),

cos2
α

2
−
[
−2 (n̂ · v̂)

2
+ 1
]

sin2 α

2
= 0 (3.2)

1− sin2 α

2
+
[
2 (n̂ · v̂)

2 − 1
]

sin2 α

2
= 0,

and finally

α = ±2 arcsin


√√√√ 1

2
[
1− (v̂ · n̂)

2
]
 . (3.3)

3.2 A Solution that Reverses vR

This solution strategy (at least my execution of it) is much less efficient than

the first, but some of the ideas involved might interest newcomers to GA. To

reverse the product vR, we’ll express it in terms of Rv. First, we note that

vR = v
{

cos
α

2
− jn̂ sin

α

2

}
= v cos

α

2
− [v (jn̂)] sin

α

2
; in contrast,

Rv =
{

cos
α

2
− jn̂ sin

α

2

}
v

= v cos
α

2
− [(jn̂)v] sin

α

2
.

Therefore,

vR = Rv − [v (jn̂)− (jn̂v)] sin
α

2
.

Next, by using the identity that for any vector u and any bivector B, u ·B =
1

2
[uB−Bu] ([1]. p. 32), we obtain

vR = Rv − 2 [v · (jn̂)] sin
α

2
.
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Making this substitution, and using R† = cos
α

2
+ jn̂ sin

α

2
, our equation

〈vRvR†〉0 = 0 becomes, progressively,

〈
{
Rv − 2 [v · (jn̂)] sin

α

2

}
vR†〉0 = 0,

〈RvvR† − 2
{

[v · (jn̂)] sin
α

2

}
vR†〉0 = 0,

〈v2 − 2
{

[v · (jn̂)] sin
α

2

}v
[
cos

α

2
+ jn̂ sin

α

2

]
︸ ︷︷ ︸

=R†

〉0 = 0,

〈v2 −
[
2 sin

α

2
cos

α

2

]
{[v · (jn̂)]v} −

[
2 sin2 α

2

]
{[v · (jn̂)] [v (jn̂)]}〉0 = 0,

v2 −
[
2 sin

α

2
cos

α

2

]
〈{[v · (jn̂)]v}〉0︸ ︷︷ ︸

(I)

−
[
2 sin2 α

2

]
〈[v · (jn̂)] [v (jn̂)]〉0︸ ︷︷ ︸

(II)

= 0.

(3.4)

Now, let’s discuss the factors (I) and (II). To evaluate factor (I), we’ll write

v as the sum of its components parallel and perpendicular to the bivector jn̂. To

do this, we make use of the identity that for any vector u and any bivector B. the

component of u parallel to B is (u ·B)B−1, and the component perpendicular

to B is (u ∧B)B−1 ([1], p. 65). (Of course, B−1 is itself a bivector.) Thus, we

expand [v · (jn̂)]v as

[v · (jn̂)]v = [v · (jn̂)]

[v · (jn̂)] (jn̂)
−1︸ ︷︷ ︸

v‖

+ [v ∧ (jn̂)] (jn̂)
−1︸ ︷︷ ︸

v⊥


= [v · (jn̂)]

2︸ ︷︷ ︸
scalar

(jn̂)
−1

+ [v · (jn̂)] [v ∧ (jn̂)] (jn̂)
−1

The first term on the right-hand side of that result is a bivector. The second

term is a bivector, too. We can see this by recalling that v · (jn̂) is a vector

that’s parallel to the bivector jn̂. (Actually, v · (jn̂) is a 90◦ rotation, in the

plane of jn̂, of the vector [v · (jn̂)] (jn̂)
−1

), which is v‖.) Also, [v ∧ (jn̂)] (jn̂)
−1

is v⊥. Therefore, v · (jn̂) and [v ∧ (jn̂)] (jn̂)
−1

are perpendicular to each other.

As a result, their product is a bivector.

Because both terms on the right-hand side of the expansion of [v · (jn̂)]v

are bivectors, so is their sum. Thus, 〈[v · (jn̂)]v〉0 = 0.

To evaluate 〈[v · (jn̂)] [v (jn̂)]〉0, we will use similar reasoning. We start

by expanding the geometric product v (jn̂) as v (jn̂) = v · (jn̂) + v ∧ (jn̂).

Therefore,

[v · (jn̂)] [v (jn̂)] = [v · (jn̂)] [v · (jn̂) + v ∧ (jn̂)]

= [v · (jn̂)]
2

+ [v · (jn̂)] [v ∧ (jn̂)] .

The first term on the right-hand side is a scalar, and the second is a trivec-

tor. Therefore, 〈[v · (jn̂)] [v (jn̂)]〉0 = [v · (jn̂)]
2
. Because (I) = 0 and (II) =
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[v · (jn̂)]
2
, Eq. (3.4) becomes

v2 −
[
2 sin2 α

2

]
[v · (jn̂)]

2
= 0.

Before proceeding further, we’ll divide through by v2 to obtain

1−
[
2 sin2 α

2

]
[v̂ · (jn̂)]

2
= 0.

We’ll also recognize that [v̂ · (jn̂)]
2

= 1− (v̂ · n̂)
2
. Solving for α,

α = ±2 arcsin


√√√√ 1

2
[
1− (v̂ · n̂)

2
]
 , (3.5)

which is Eq. (3.3).

4 Testing the Solution

4.1 Does the solution make sense?

In Eq. 3.5, the first thing that we might question is whether the “±” makes sense.

It does indeed make sense, because either direction of rotation will produce a

vector that’s perpendicular to v.

The geometric observations listed in Section 2 provide bases for testing

other aspects of our solution. The first observation was that the angle between v

and n̂ must be ≥ 45◦; otherwise, no rotation of v about n̂ will be perpendicular

to v. Eq. (3.5) is consistent with that observation: if said angle is less than 45◦,

then v̂ · n̂ > 1/
√

2, and 1/

√
2
[
1− (v̂ · n̂)

2
]
> 1. The value of the sine function

never exceeds 1, so no solution exists when the angle between v and n̂ is <45◦.

The second geometrical observation was that if the angle between v and n̂

is 45◦, then α = π. In this case, v̂ · n̂ = 1/
√

2, so 1/

√
2
[
1− (v̂ · n̂)

2
]

= 1, and

α = π.

The third observation was that if v is perpendicular to n̂, then α = π/2.

Here, v̂ · n̂ = 0, so 1/

√
2
[
1− (v̂ · n̂)

2
]

= 1/
√

2, and α = π/2.

4.2 Analytical Test

This test consists of substituting the two solutions (the “-” as well as the “+”)

in Eq. (3.2). Note that we needn’t go all the way back to vRvR†, because

〈vRvR†〉0 simplifies to cos2
α

2
−
[
1− 2 (n̂ · v̂)

2
]

sin2 α

2
for all values of α.
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Here, we’ll test only the “+” solution from Eq. (3.5). From said solution,

sin
α

2
= sin

1

2

2 arcsin


√√√√ 1

2
[
1− (v̂ · n̂)

2
]




=

√√√√ 1

2
[
1− (v̂ · n̂)

2
] .

Substituting this expression in Eq. (3.2), and using cos2
α

2
= 1− sin2 α

2
, we find

that the “+” solution in Eq. (3.5) does work.

4.3 Numerical Test

We can test solution quantitatively via an interactive construction. For example,

one made with GeoGebra.

5 Extending the Problem

Suppose the problem were

For a given vector v and the unit vector n̂, find a rotor R =

exp (−αjn̂/2) such that the angle between v and RvR† is a given

angle µ . What must the angle α be?

As a hint, what is the relation between 〈RvR†〉0, 〈RvR†〉2, and the trigonometric

functions of µ?
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