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Abstract. In this paper we introduce and develop a method for studying

problems concerning packing and covering dilemmas and explore some poten-

tial applications.

1. Introduction

Problems concerning packing or covering are of much centrality, whose perceived
solutions will have much importance in various applied areas. There abounds a
good number of problems in this area of study, where the primary motive is to
optimally pack similar copies of a given shape into another shape. Conversely, the
problem often seeks for the smallest cover of similar copies of a shape so that the
wasted space is as small as possible. One typical example is the square packing
problem (See [1]), where the objective is to find the optimal number of packing
unit squares into squares of side a > 1. In other words, it seeks to minimize the
wasted space of such a packing. Another problem of similar flavor is the circle
packing in a square (See [2]), where the goal is to pack n circles into the smallest
possible square. There are a whole host of other packing problems not least of
which is the rectangle packing problem, where the objective is the pack rectangles
in the smallest polygon such no two of them overlaps [3].
The current paper introduces and develops a method for finding possible covers of
geometric shapes in the plane.

2. The notion of covering and covering capacity

In this section we introduce the notion of covering and the covering capacity.
We study this notion in depth and explore some potential application in relation
to problems concerning packing dilemmas.

Definition 2.1. Let D ⊆ R2 and {Si} and {Ti} be a class of shapes in D. Then
we say Si ∈ {Si} admits a cover in {Ti} if there exists a self transformation F
such that F : Si −→ Sj for some j such that Sj is embedded in Ti. We denote the
embedding as Sj ≺ Ti and we call Ti the cover of Si.

Proposition 2.1. Let D ⊆ R2. Then every shape S in D admits a cover.

Proof. Let S be a fixed shape in D ⊆ R2. Let us apply a dilation Mt : S → S ′ with
scale factor t > 1 such that S ′ is a shape in D. It follows that S ≺ S ′ and since Mt

is a transformation we can choose F := M1. �

Definition 2.2. Let S and T be any two shapes in D ⊆ R2. Then we say S and
T are congruent if and only if AreaT = AreaS .
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Definition 2.3. Let S and T be any two shapes in D ⊆ R2 such that T is a cover
of S. Then by the covering capacity of S relative to the cover T we mean the
maximum number of copies of shapes congruent to S that can be embedded into
the shape T . We denote the covering capacity by

ΩT (S) =

⌊
AreaT
AreaS

⌋
where AreaT and AreaS denotes the area occupied by T and S, respectively, and
b·c is the floor function.

Proposition 2.2. Let T ′ and T be a unit square and a square of side a units,
respectively. If T admits n optimal packing of similar copies of T ′ and a is an
integer, then a =

√
n.

Proof. Under the assumption T admits n optimal packing of similar copies of T ′,
then we have

ΩT (T ′) =

⌊
AreaT
AreaT ′

⌋
=
⌊
a2
⌋

= a2.

Since a is an integer, ΩT (T ′) is the number of optimal packing and it follows that

n = a2

and the equality follows. �

Definition 2.4. Let S and T be any two shapes in D ⊆ R2 such that T is a cover
of S. Let ρT (S) denotes a packing of S into T and χ[ρT (S)] denotes the number of
such packing. Then we write the packing inefficiency of ρT (S) as the discrepancy

Inefficiency[ρT (S)] = ΩT (S)− χ[ρT (S)].

We call the numbers minχ[ρT (S)] and maxχ[ρT (S)] the least and the worst com-
plexity of the packing ρT (S).

Remark 2.5. The notion of the packing inefficiency can intuitively be thought of
as a numerical measure of the inefficiency of any sort of packing of a shape into its
smallest cover. Indeed, if the inefficiency of any such packing is minimal then the
packing must be an optimal packing. Conversely the packing will nonetheless fail
to be optimal if the inefficiency is too big.

It is a well-known open problem to determine an asymptotic for the wasted space
of any optimal packing of units squares in a square [1]. In the following Proposition
we obtain a crude estimate for the wasted space of any packing of a square in a
square of non-integer length.

Proposition 2.3. Let T ′ and T be a square of side b and a units, respectively. If
T admits packing of similar copies of T ′ and a is a non-integer with b an integer,
then there exists a packing for which the wasted space is

2a

b

{a
b

}
−
{a
b

}2

,

where {·} denotes the fractional part of any real number.
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Proof. Let us choose ρT (T ′) to be the packing of similar copies of T ′ along
⌊
a
b

⌋
×
⌊
a
b

⌋
grid of axis-aligned b units squares within the square T . Then the wasted space of
packing congruent copies of T ′ into T is given by(

a

b

)2

− ΩT (T ′) =

(
a

b

)2

−

⌊(
a

b

)2
⌋

=

{(
a

b

)2
}

so that the wasted space of the packing of squares along the square grid is⌊(
a

b

)2
⌋
− χ[ρT (T ′)] +

{(
a

b

)2
}

=

⌊(
a

b

)2
⌋
−
⌊a
b

⌋2
+

{(
a

b

)2
}

=
2a

b

{a
b

}
−
{a
b

}2

.

�

It follows from Proposition 2.3 any improvement on the current upper and lower
bounds of the wasted space of any packing can be obtained by improving on upper
or lower bounds of the packing complexity of any such packing into a square. It
turns out that we can dramatically cut down on the wasted space of some particular
type of packing with certain complexity. These ideas are espoused in the following
proposition.

Theorem 2.6. Let T ′ and T be a square of side b and a units, respectively. If
T admits packing of similar copies of T ′ and a is a non-integer with b an integer,
then there exists a packing for which the wasted space is{(

a

b

)2
}

provided
√

ΩT (T ′) is an integer.

Proof. Under the assumption
√

ΩT (T ′) is an integer, let us choose ρT (T ′) to be the

packing of similar copies of T ′ along

√√√√⌊(a
b

)2
⌋
×

√√√√⌊(a
b

)2
⌋

grid of axis-aligned

b units squares within the square T . Then the wasted space of packing congruent
copies of T ′ into T is given by(

a

b

)2

− ΩT (T ′) =

(
a

b

)2

−

⌊(
a

b

)2
⌋

=

{(
a

b

)2
}
.

Since
√

ΩT (T ′) is an integer, congruent copies of T ′ packed into T are all squares
so that the wasted space of the packing of squares along the square grid is also{(

a

b

)2
}
.
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�

Corollary 2.1. Let T ′ be a unit square and T be a square of sides a > 1 units. If
a is a non-integer, then there exists a packing of copies of T ′ into T for which the
wasted space is {

a2
}

provided
√

ΩT (T ′) is an integer.

Proof. This is a consequence of Theorem 2.6. �

Proposition 2.4. Let S, T ′ and T be shapes in D ⊆ R2 such that T and T ′ are
covers of S. If T ≺ T ′ then ΩT (S) ≤ ΩT ′(S).

Proof. Let us suppose T ≺ T ′, then AreaT < AreaT ′ . It follows that⌊
AreaT
AreaS

⌋
≤
⌊

AreaT ′

AreaS

⌋
so that ΩT (S) ≤ ΩT ′(S), since S ≺ T ≺ T ′. �

Remark 2.7. The next result introduces a criterion for determining the plausibility
of a predetermined cover admitting packing of the same number of congruent copies
of two distinct shapes in the plane R2.

Proposition 2.5. Let S,S ′ and T be shapes in D ⊆ R2 such that T is a cover of
S and S ′. If ΩT (S) = ΩT (S ′) then

|AreaS −AreaS′ | < AreaS′AreaS
AreaT

.

Moreover, If ΩT (S) = ΩT ′(S) then |AreaT −AreaT ′ | < AreaS .

Proof. Suppose ΩT (S) = ΩT (S ′) then we can write⌊
AreaT
AreaS

⌋
=

⌊
AreaT
AreaS′

⌋
so that

AreaT
AreaS

−
{

AreaT
AreaS

}
=

AreaT
AreaS′

−
{

AreaT
AreaS′

}
.

It follows that we can write the discrepancy

AreaS′ +
AreaS′AreaS

{
AreaT
AreaS

}
AreaT

= AreaS +
AreaSAreaS′

{
AreaT
AreaS′

}
AreaT

so that

|AreaS −AreaS′ | =

∣∣∣∣∣∣
AreaSAreaS′

{
AreaT
AreaS

}
AreaT

−
AreaSAreaS′

{
AreaT
AreaS′

}
AreaT

∣∣∣∣∣∣
<

AreaS′AreaS
AreaT
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since AreaT > AreaS ,AreaS′ and where {·} denotes the fractional part of any
decimal representation.
Similarly, we can write the equality as ΩT (S) = ΩT ′(S)⌊

AreaT
AreaS

⌋
=

⌊
AreaT ′

AreaS

⌋
which is equivalent to

|AreaT ′ −AreaT | < AreaS

∣∣∣∣ {AreaT
AreaS

}
−
{

AreaT ′

AreaS

} ∣∣∣∣
< AreaS .

�

The first part of Proposition 2.5 is quite suggestive. It follows that for any two
shapes S,S ′ admitting a cover T in the plane R2, If on the contrary

|AreaS −AreaS′ | ≥ AreaS′AreaS
AreaT

then T cannot admit the same maximal packing of congruent copies of S and S ′.

Theorem 2.8. Let S,S ′ be any two shapes admitting a cover T in the plane R2.
If

|AreaS −AreaS′ | ≥ AreaS′AreaS
AreaT

then T cannot admit the same maximal packing of congruent copies of S and S ′.
Similarly, If

|AreaT −AreaT ′ | ≥ AreaS

then T and T ′ do not admit the same maximal packing of congruent copies of S.

Proof. This is a contrapositive of proposition 2.5. �

3. Covering potential

In this section we introduce the notion of the covering potential. We launch
the following languages.

Definition 3.1. Let = = {Sj : 1 ≤ j ≤ n} be a finite class of shapes of varying
sizes in R2. Then by the covering potential of the class = relative to the cover
T , denoted ΓT (=), we mean the finite sum

ΓT (=) =
∑

1≤j≤n

ΩT (Sj).

Proposition 3.1. Let = = {Sj : 1 ≤ j ≤ n} be a finite class of shapes of varying
sizes in R2 and =c be the set of dilation of the shapes in = for c > 0. Then the
inequality holds

cΓT (=c) ≤ ΓT (=).
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Proof. We note that

ΓT (=c) =
∑
Sj∈=c

ΩT (Sj)

=
∑
Sj∈=c

⌊
AreaT
AreaSj

⌋

=
∑
Sj∈=

⌊
AreaT
cAreaSj

⌋

≤ 1

c

∑
Sj∈=

⌊
AreaT
AreaSj

⌋
=

1

c
ΓT (=)

and the inequality follows as a consequence. �

Proposition 3.2. Let =1 = {Sj : 1 ≤ j ≤ n} and =2 = {S ′j : 1 ≤ j ≤ m} be any

two finite class of shapes of varying sizes in R2. Then we have

ΓT (=1 ∪ =2) = ΓT (=1) + ΓT (=2)− ΓT (=1 ∩ =2).

Proof. We note that

ΓT (=1 ∪ =2) =
∑

Sj∈=1∪=2

ΩT (Sj)

=
∑
Sj∈=1

ΩT (Sj) +
∑
Sj∈=2

ΩT (Sj)−
∑

Sj∈=1∩=2

ΩT (Sj)

= ΓT (=1) + ΓT (=2)− ΓT (=1 ∩ =2).

�

Proposition 3.3. If T ≺ T ′, then ΓT (=) ≤ ΓT ′(=).

Proof. Let us suppose T ≺ T ′ then appealing to Proposition 2.4 we can write
ΩT (S) ≤ ΩT ′(S) so that we have∑

1≤j≤n

ΩT (Sj) ≤
∑

1≤j≤n

ΩT ′(Sj)

and the inequality follows. �

Proposition 3.4. Let = = {Sj : 1 ≤ j ≤ n} be a finite class of shapes of varying
sizes in R2. If ΓT (=) > 0 then there exist at least a shape Sl ∈ = admitting the
cover T .

Proof. Under the requirement ΓT (=) > 0, it follows that∑
1≤j≤n

ΩT (Sj) > 0

and since each ΩT (Sj) > 0, there must exists some Sl for 1 ≤ l ≤ n such that
ΩT (Sl) > 0. �

Remark 3.2. Next we upper and lower bound the covering potential of a given finite
class of shapes with a universal cover.
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Proposition 3.5. Let αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} be a finite class of shapes
of varying sizes in R2 with a cover. Then we have the inequality

nAreaT
max{AreaSj}nj=1

+O(n) ≤ ΓT (αT ) ≤ nAreaT
min{AreaSj}nj=1

+O(n).

Proof. First we note that we can write

ΓT (αT ) =
∑

1≤j≤n

ΩT (Sj)

=
∑

1≤j≤n

⌊
AreaT
AreaSj

⌋

=
∑

1≤j≤n

AreaT
AreaSj

−
∑

1≤j≤n

{
AreaT
AreaSj

}

= AreaT
∑

1≤j≤n

1

AreaSj
+O

( ∑
1≤j≤n

1

)
= AreaT

∑
1≤j≤n

1

AreaSj
+O(n)

and the upper and the lower bound follows by controlling the main term in the sum
by the area of the minimal and the maximal shape in the class. �

4. The Density of Optimal Packing

In this section we introduce and develop the notion of the density of maximal
packing of congruent shapes in a given cover. We launch the following languages
and exploit some applications.

Definition 4.1. Let αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} be a class of shapes of varying
sizes in R2. Then we denote the density relative to the class αT with a cover of
the maximal packing of shapes congruent to S as the limit

D(S) := lim
n−→∞

ΩT (S)

ΓT (αT )

if it exists.

Remark 4.2. The notion of density of maximal packing of a given shape in a plane
relative to the class αT with a cover does not necessarily confine the underlying
shape into the same class. It may turn out that the shape does not belong to the
class, in which case chances are the covering capacity of this shape relative to the
class is a nullity and so the density of the maximal packing would be nullity as well
in this setting. This possibility confirms the first property espoused in the following
proposition.

Proposition 4.1. Let αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} be a class of shapes of
varying sizes in R2 with a cover. Then the following properties of density of the
maximal packing of congruent shapes relative to the class αT = {Sj : Sj ≺ T , 1 ≤
j ≤ n} with a cover holds

(i) 0 ≤ D(Sk) ≤ 1.
(ii) D(Sk) ≤ D(Sl) for a fixed k, l if Sl ≺ Sk.
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(iii)
∑
Sj∈αT

D(Sj) = 1

Proof. Part (i) of Proposition 4.1 is an easy consequence of the Definition 4.1. For
(ii) if Sl ≺ Sk for Sk,Sl ∈ =T then AreaSl ≤ AreaSk so that ΩT (Sk) ≤ ΩT (Sl).
It follows that D(Sk) ≤ D(Sl).
For property (iii) we can write∑

Sj∈αT

D(Sj) =
∑
Sj∈αT

lim
n−→∞

ΩT (Sj)
ΓT (αT )

= lim
n−→∞

∑
Sj∈αT

ΩT (Sj)
ΓT (αT )

= lim
n−→∞

∑
Sj∈αT

ΩT (Sj)

ΓT (αT )
= 1

since the limit exists for each j ≥ 1 by virtue of Definition 4.1. �

Remark 4.3. The notion of the density relative to a class with a cover can be
a useful tool in practice; indeed, it can help to determine if a fixed preassigned
shape can admit congruent copies of a shape in the plane. The converse may not
necessarily be the true. The very notion the packing density of a shape relative
to a preassigned given class with a cover is zero would not necessarily mean the
underlying cover does not admit packing of congruent copies.

Proposition 4.2. Let αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} be a class of shapes of
varying sizes in R2 with a cover. If D(S) > 0 relative to the class αT , then T
admits packing of congruent copies of S.

Proof. Under the assumption that D(S) > 0 relative to the class αT with a cover,
it follows that ΓT (αT ) > 0 and there exists some constant c > 0 such that we can
write

ΩT (S) ∼ cΓT (αT ) > 0

and T admits packing of congruent copies of S. �

Proposition 4.3. Let αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} be a class of shapes
of varying sizes in R2 with a cover. Then the density D(S) relative to the class
αT = {Sj : Sj ≺ T , 1 ≤ j ≤ n} with a cover satisfies the asymptotic

D(S) ∼
1

AreaS∑
1≤j≤n

1
AreaSj

.

Proof. This asymptotic is a consequence of the estimate in Proposition 3.5. �

1.

1

.
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