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COLLATZ CONJECTURE - THE PROOF

LESZEK MAZUREK

Abstract. In this paper, we prove the Collatz conjecture. The proof consists

of two parts. The first, shows that if an integer can be iterated through the

Collatz conjecture to one, it is the equivalent of the condition that it can be
presented as a certain equation. In the second part, we prove that for every

initial integer, this equation can be found. To achieve this, we propose a

procedure that can be iterated, and we prove that by doing this we arrive at
this equation. We also prove that initial integer can be presented in an infinite

number of ways in the form of needed equation. All analysis is done using

binary representation of numbers.

1. Introduction

The Collatz conjecture is a well known mathematical problem. It claims that
for every positive integer I0 if iterating

(1.1) In+1 =


1
2 · In for, In even

3 · In + 1 for, In odd

ultimately we get 1.
The purpose of this paper is to prove that the Collatz conjecture is true. The

proof consists of two parts:

Theorem 1.1. If the Collatz conjecture is true for a positive integer I0, it is the
equivalent of the condition that a positive integer n and a sequence of integers
mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 exists, for which

(1.2) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.

Theorem 1.2. For every positive integer I0, such a positive integer n and
a sequence of integers mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 can be found.
Therefore, (by Theorem 1.1) the Collatz conjecture is true.

2. Remarks and Definitions

To understand how the Collatz conjecture works and make it more accessible, we
have to iterate integers in their binary representations. This paper explains when
binary numbers are even or odd, how they are affected by different operations
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and examines how they iterate through the Collatz formula. The definitions and
remarks introduced below are used over the course of this paper.

Remark 2.1. An integer is odd when in binary representation its least significant
bit is 1. An integer is even when in binary representation its least significant bit is
0.

Remark 2.2. Every even positive integer can be reduced to the odd positive integer
by recursively dividing it by 2 until the result is odd.

When Ieven is an even positive integer, Iodd is an odd positive integer and p is the
number of divisions by 2 required for Ieven to became the odd integer Iodd, then

(2.1)
Ieven

2p
= Iodd.

Example 2.3. Reduction of an even integer to an odd integer in binary represen-
tation.

Let Ieven be an even positive integer

Ieven = 20 = 10100b.

Then
Ieven

2p
=

20

22

=
10100b

100b

= 101b

= 5 = Iodd.

We see that an even positive integer Ieven can be reduced to an odd positive integer
Iodd. In this case 20 is reduced to 5.

Remark 2.4. By multiplying an odd positive integer by 3 and adding 1, we get a
result which is always even

(2.2) 3 · Iodd + 1 = Ieven.

Example 2.5. Example in binary representation.
Let Iodd be an odd positive integer

Iodd = 7 = 111b.

Then
3Iodd + 1 = 21 + 1

= 10101b + 1

= 10110b

= 22 = Ieven.

We see that by multiplying an odd positive integer Iodd by 3 and increasing by 1,
we get an even positive integer Ieven.
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Definition 2.6. For any positive integer I, let lsb(I) be the least significant
nonzero bit in the binary representation of I.

Example 2.7. Binary numbers with their least significant nonzero bits in bold:

lsb(101101011000b) = 1000b,

lsb(10010110b) = 10b,

lsb(10110101100b) = 100b,

lsb(1100111b) = 1b,

lsb(1101111000b) = 1000b.

Remark 2.8. For every odd positive integer Iodd

(2.3) lsb(Iodd) = 20 = 1.

Example 2.9. We find lsb(Iodd) for an odd positive integer Iodd.
For Iodd = 25 we have

lsb(25) = lsb(11001b) = 20 = 1.

Remark 2.10. For every even positive integer Ieven

(2.4) lsb(Ieven) = 2p,

where p is a positive integer, and then

(2.5)
Ieven

2p
= Iodd,

therefore

(2.6) Ieven = 2pIodd.

Example 2.11. We find lsb(Ieven) for an even positive integer Ieven.
For Ieven = 28 we have

lsb(28) = lsb(11100b) = 22

and thus

Ieven
2p

=
28

lsb(28)

=
28

22

=
11100b

100b

= 7 = Iodd.

When we divide 28 by lsb(28) it gives us an odd positive integer 7.

Definition 2.12. Let O denote a base odd integer of I and be defined as

(2.7) O =
I

lsb(I)
,

where I can be an even or odd positive integer.
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Example 2.13. Finding a base odd integer.
We check the case for an odd integer

I = 9 = 1001b,

lsb(I) = lsb(1001b) = 1b,

O =
I

lsb(I)

=
1001b

1b

= 1001b

= 9.

We conclude that for odd integers

(2.8) O = I.

Notice that when I is an odd positive integer, its base odd integer O is equal to I.
Now we check the case for an even integer

I = 20 = 10100b,

lsb(I) = lsb(10100b) = 100b,

O =
I

lsb(I)

=
10100b

100b

= 101b

= 5.

To find the base odd integer O for an even integer I, we divide integer I by 2 until
we get an odd result. We do this by dividing I by its least significant nonzero bit
lsb(I).

3. Proof of Theorem 1.1

Proof. For any positive integer I0, we find its base odd integer using (2.7) and it is

(3.1) O0 =
I0

lsb(I0)
.

Value of lsb(I0) is in the form of 2p, where p ≥ 0 and p = 0 when I0 is odd, thus

(3.2) O0 =
I0
2p

,

where p ≥ 0.

We iterate this odd positive integer O0 through the Collatz conjecture . We have
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(3.3)
3

3
3

3
3O0+1

2p0
+1

2p1
+1

2p2 + 1
...

2
pn−2

+1

2pn−1 = 1,

and On is odd for every n, so (3On + 1) is always even, therefore

(3.4) p0, p1, p2, ..., pn−2, pn−1 ≥ 1.

Equation (3.3) can be also presented like this

(3.5)

(((((
(3O0 + 1)

3

2p0
+ 1

)
3

2p1
+ 1

)
3

2p2
+ 1

)
...

)
3

2pn−2
+ 1

)
1

2pn−1
= 1.

By performing simple algebraic transformations we get

(3.6)
3nO0 = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30−
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1.

Now, we can substitute O0 from (3.2)

3n I0
2p = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30 − ...
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1,

and multiply both sides by 2p

3nI0 = (2pn−12pn−22pn−3 ... 2p12p02p)− (2pn−22pn−3 ... 2p12p02p) 30 − ...
− (2pn−3 ... 2p12p02p) 31 − · · · − 2p12po2p3n−3 − 2po2p3n−2 − 2p3n−1.

We substitute the following:

2pn−12pn−22pn−3 ... 2p12p02p = 2mn ,

2pn−22pn−3 ... 2p12p02p = 2mn−1 ,

2pn−3 ... 2p12p02p = 2mn−2 ,

...

2p12po2p = 2m2 ,

2po2p = 2m1 ,

2p = 2m0 ,

(3.7)

where all p0, p1, p2, ..., pn−2, pn−1 ≥ 1 and p ≥ 0.

We finally have

(3.8) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 and m0 can eventually be 0,
when I0 is odd.

�
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We prove in opposite direction.

Proof. We start from integer I0 that fulfils equation

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where n is a positive integer and mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 are
integers.

We divide both sides by 3n. We have

I0 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1

3n
.

Now we iterate through the Collatz equation, combines multiple divisions by 2 into
single division by 2p. In each iteration we receive odd integer from even integer or
even integer from odd integer.

We divide I0 by 2m0 , where m0 ≥ 0 to receive odd integer. If I0 is already odd
then m0 = 0, so 20 = 1 and division by 1 does not affect the result. If I0 is even,
m0 > 0 and m0 is the number that represents how many times I0 has to be divided
by 2 to become odd. We have

I1 =
I0

2m0
=

2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n2m0
− 3n−1

3n

which is an odd integer. For odd integer

I1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n2m0
− 1

3

we multiply by 3

I1 · 3 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n−12m0
− 3

3

and add 1

I2 = I1 · 3 + 1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n−12m0
.

We put the last term to separate quotient

I2 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−12m0
− 2m13n−2

2m03n−1
.

We know that I2 is even (from Remark 2.4), so it can be divided by 2p0 , where
p0 > 0, to get an odd integer. We know that m1 > m0, so to make the right side
of equation odd, we need m1 = p0 + m0, which gives 2p0 = 2m1

2m0
and then divide I2

by 2p0

I3 =
I2

2p0
=

2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−12m1
− 1

3
.

Now that I3 is odd, we multiply it by 3 again

I3 · 3 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−22m1
− 3

3

and add 1

I4 = I3 · 3 + 1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4 − 2m23n−3

3n−22m1
.
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We put the last term to separate quotient

I4 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4

3n−22m1
− 2m23n−3

2m13n−2
.

We know that I4 is even, so it can be divided by 2p1 , where p1 > 0, to become an
odd integer. We know that m2 > m1, so to make the right side of equation odd,
we need m2 = p1 + m1, which gives 2p1 = 2m2

2m1
and then divide I4 by 2p1

I5 =
I4
2p1

=
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4

3n−22m2
− 3n−3

3n−2
.

We can continue this process till

Ik−4 =
2mn − 2mn−130

322mn−2
− 31

32
.

We know Ik−4 is odd, we multiply it by 3

Ik−4 · 3 =
2mn − 2mn−130

312mn−2
− 32

32

and add 1

Ik−3 = Ik−4 · 3 + 1 =
2mn − 2mn−130

312mn−2
.

We put the last term to separate quotient

Ik−3 =
2mn

312mn−2
− 2mn−130

2mn−231
.

We know that Ik−3 is even, so it can be divided by 2pn−2 , where pn−2 > 0, to
become an odd integer. We know that mn−1 > mn−2, so to make the right side of

equation odd, we need mn−1 = pn−2 + mn−2, which gives 2pn−2 = 2mn−1

2mn−2 and then
divide Ik−3 by 2pn−2

Ik−2 =
Ik−3
2pn−2

=
2mn

312mn−1
− 30

31
.

We know Ik−2 is odd, we multiply it by 3

Ik−2 · 3 =
2mn

302mn−1
− 31

31

and add 1

Ik−1 = Ik−2 · 3 + 1 =
2mn

302mn−1
.

We know that Ik−1 is even, so it can be divided by 2pn−1 , where pn−1 > 0, to
become an odd integer. We know that mn > mn−1, so to make the right side of
equation odd, we need mn = pn−1 + mn−1, which gives 2pn−1 = 2mn

2mn−1 and then
divide Ik−1 by 2pn−1

Ik =
Ik−1
2pn−1

=
2mn

2mn
= 1.

�

Notice that for any initial positive integer I0 that fulfils equation

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,
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where n is a positive integer and mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 are
integers, we have a sequence of integers

I0, I1, I2, I3, ...Ik−3, Ik−2, Ik−1, Ik

and Ik = 1.

4. Procedure

We consider the following procedure.

Procedure 1.

Step 1. Take any positive integer I0 and define

A0 = 2p,where p ∈ Z+ and A0 > I0,(4.1)

B0 = A0 − I0,(4.2)

C0 = 0.(4.3)

We have

(4.4) 30I0 = A0 − B0 − C0.

Step 2. Multiply both sides of the equation by 3 using the following transforma-
tions

3nI0 = 3 · 3n−1I0,(4.5)

An = 4 · An−1,(4.6)

Bn = 3 · Bn−1 + An−1 − lsb(Bn−1),(4.7)

Cn = 3 · Cn−1 + lsb(Bn−1).(4.8)

We have general formula for nth iteration

(4.9) 3nI0 = An − Bn − Cn.

Step 3. Iterate Step 2 forever.

Remark 4.1. Notice that

Bn > 0, for all n,(4.10)

Cn > 0, for n > 0.(4.11)

From (4.9) we have

(4.12) An = 3nI0 + Bn + Cn

therefore

(4.13) An > Bn, for all n.

We define Gn as a sum of all bits between lsb(Bn) and An that are not part of Bn.
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Figure 1. Definition of Gn.

Lemma 4.2. When iterating Procedure 1, for any initial positive integer I0

(4.14) Bn+1 = 4Bn + Gn.

Proof. We know that

(4.15) Gn > lsb(Bn),

when there are some gaps between bits in Bn, or

(4.16) Gn = 0, Gn < lsb(Bn)

if there are no gaps between bits in Bn and all bits are next to each other.

From Figure 1 we see that

(4.17) An = Bn + Gn + lsb(Bn).

From (4.7) we have

(4.18) Bn+1 = 3Bn + An − lsb(Bn),

we substitute An from (4.17)

(4.19) Bn+1 = 3Bn + Bn + Gn + lsb(Bn)− lsb(Bn)

therefore

(4.20) Bn+1 = 4Bn + Gn.

�

In the following examples we check how Gn changes when we iterate from n to
n + 1. When we multiply number by 4, we shift the binary representation of such
number by two positions towards higher bits.

Figure 2. Multiplication by 4 in binary notation - all bits shifted
by 2 positions.
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We multiply (shift) all bits in Bn as well as all bits in Gn.

Example 4.3. In (4.20) when we change from iteration n to n + 1, we shift all of
the bits in Bn, but we also add Gn to have Bn+1.

Figure 3. Binary operations for Bn+1 = 4Bn + Gn.

Notice how one Gn was added to 4Bn therefore when iterating from n to n + 1 in
this example we have

Gn+1 = 4Gn −Gn

= 3Gn,(4.21)

(compare to Figure 2).

Example 4.4. In another case, after the operation Bn+1 = 4Bn + Gn, lsb(Bn)
can be shifted by more than two positions.

Figure 4. Binary operations for Bn+1 = 4Bn + Gn, bigger shift of lsb(Bn).

By comparing with Example 4.3, notice a bigger shift of lsb(Bn) (by 4 positions).
Some bits transfered from Gn were left behind lsb(Bn+1) and Gn+1 is lower than
3Gn

Gn+1 = 4Gn −Gn − d

= 3Gn − d,(4.22)

where d represents all bits that are smaller than lsb(Bn+1).
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Example 4.5. It is also possible that after the operation Bn+1 = 4Bn + Gn,
lsb(Bn) can be shifted by only one bit.

Figure 5. Binary operations for Bn+1 = 4Bn + Gn, shift of
lsb(Bn) by one position.

In such case

Gn+1 = 4Gn −Gn + 2lsb(Bn)

= 3Gn + 2lsb(Bn)(4.23)

Notice that almost always we have

(4.24) 2lsb(Bn) ≤ 1

3
Gn

(see Figure 6),

Figure 6. Comparison of 2lsb(Bn) to Gn in different cases.

with only one exception when

(4.25) 2lsb(Bn) = Gn

(see Figure 7).
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Figure 7. Special case when 2lsb(Bn) = Gn.

In this special case when

(4.26) 2lsb(Bn) = Gn

we have

(4.27) Gn+1 = 4Gn

and

(4.28) Gn+2 = 0

in next two iterations (compare Figure 8).

Figure 8. Two iterations after 2lsb(Bn) = Gn we have Gn+2 = 0.

Remark 4.6. From all above examples, which present all possible changes of Gn,
we can conclude that

(4.29) Gn+1 = a ·Gn, where a ≤ 3
1

3
,

or

(4.30) Gn+1 = 4Gn,

but then Gn+2 = 0.
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Lemma 4.7. When iterating Procedure 1, for any initial positive integer I0 such
iteration number k exists that starting from this iteration and for all the following
iterations, when n ≥ k,

(4.31) An = Bn + lsb(Bn).

Proof. We iterate Procedure 1 for any initial positive integer I0. We know from
Lemma 4.2 that

(4.32) Bn+1 = 4Bn + Gn.

We divide both sides by Bn

(4.33)
Bn+1

Bn
=

4Bn

Bn
+

Gn

Bn

thus

(4.34)
Bn+1

Bn
= 4 +

Gn

Bn
.

We evaluate Gn

Bn
for n+1. From (4.32) we know the change of Bn and from Remark

4.6 we know the change of Gn therefore

(4.35)
Gn+1

Bn+1
=

a ·Gn

4Bn + Gn
, where a ≤ 3

1

3
,

or a = 4, but then Gn+2 = 0.

In (4.35) we see that the numerator grows slower than the denominator therefore

(4.36) lim
n → ∞

Gn

Bn
= 0.

Remark 4.8. Notice that from (4.34) we have

(4.37) lim
n → ∞

Bn+1

Bn
= 4.

From (4.15) we know that when there are gaps between bits in Bn, we have

(4.38) Gn > lsb(Bn),

we divide both sides by Bn

(4.39)
Gn

Bn
>

lsb(Bn)

Bn
.

We know from (4.36) that

(4.40) lim
n → ∞

Gn

Bn
= 0.

This means that such iteration k exists that starting from this iteration and for all
the following iterations n, where n ≥ k

(4.41)
Gn

Bn
<

lsb(Bn)

Bn
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this means

(4.42) Gn < lsb(Bn)

therefore from (4.16)

(4.43) Gn = 0.

Substituting Gn to (4.17) we have

(4.44) An = Bn + lsb(Bn).

�

5. Proof of Theorem 1.2

Proof. We start Procedure 1 for any positive integer I0. From Lemma 4.7 we know
that such iteration number k exists that for all next iterations when n ≥ k

(5.1) lsb(Bn) = An −Bn.

From general formula on nth iteration (4.9) we have

(5.2) 3nI0 = An − Bn − Cn.

For iterations where n ≥ k, we substitute for An −Bn. We have

(5.3) 3nI0 = lsb(Bn)− Cn.

Notice that lsb(Bn) is a single bit in the form of

(5.4) lsb(Bn) = 2mn , where mn ∈ Z+

and Cn is created by iterating Procedure 1, based on the formula

(5.5) Cn = 3Cn−1 + lsb(Bn−1).

With each iteration, Cn is multiplied by 3 (all bits are multiplied by 3) and new
higher bit is added, so it can be presented as

(5.6) Cn = 3n−1· 2m0 + 3n−2· 2m1 + ... + 31· 2mn−2 + 30· 2mn−1 ,

where
mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

We substitute in (5.3)

3nI0 = 2mn − (3n−1· 2m0 + 3n−2· 2m1 + ... + 31· 2mn−2 + 30· 2mn−1)

= 2mn − 3n−1· 2m0 − 3n−2· 2m1 − ...− 31· 2mn−2 − 30· 2mn−1
(5.7)

and we sort terms to get

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where all m’s form a sequence of integers that

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

We conclude that for every initial positive integer I0, when iterating Procedure 1,
such positive integer k exists that for every positive integer n ≥ k a sequence of
integers

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0

exists, for which

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.
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�

6. Extension of Theorem 1.2

Theorem 6.1. For every initial positive integer I0, an infinite number of equations
exists that satisfies Theorem 1.2, therefore, it can be extended in an infinite number
of ways to form the following expression

(6.1) I0 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1

3n
,

where n is a positive integer and all m’s form a sequence of integers that

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

Proof. The proof of Theorem 1.2 confirms that. �
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7. Examples

Presented below are various examples of positive integers, confirming the Theo-
rems proven above.

(7.1) 36·9 = 213 − 2930 − 2631 − 2432 − 2333 − 2234 − 2035

(7.2) 37·9 = 215 − 21330 − 2931 − 2632 − 2433 − 2334 − 2235 − 2036

(7.3) 38·9 = 217 − 21530 − 21331 − 2932 − 2633 − 2434 − 2335 − 2236 − 2037

312·6541 = 232 − 22830 − 22531 − 22332 − 22233 − 22134 − 21735

−21536 − 21337 − 21038 − 2939 − 23310 − 20311
(7.4)

(7.5) 37·435 = 220 − 21630 − 21131 − 21032 − 2933 − 2434 − 2135 − 2036

34127 = 270 − 26630 − 26131 − 26032 − 25933 − 25634 − 25235

−25036 − 24837 − 24438 − 24339 − 242310 − 241311 − 238312

−237313 − 236314 − 235315 − 234316 − 233317 − 231318 − 230319

−228320 − 227321 − 226322 − 223323 − 221324 − 220325 − 219326

−218327 − 216328 − 215329 − 214330 − 212331 − 211332 − 29333

−27334 − 26335 − 25336 − 24337 − 23338 − 21339 − 20340

(7.6)

334·121 = 261 − 25730 − 25231 − 25132 − 25033 − 24734 − 24335

−24136 − 23937 − 23538 − 23439 − 233310 − 232311 − 229312

−228313 − 227314 − 226315 − 225316 − 224317 − 222318 − 221319

−219320 − 218321 − 217322 − 214323 − 212324 − 211325 − 210326

−29327 − 27328 − 26329 − 25330 − 23331 − 22332 − 20333

(7.7)
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3174·8388607 = 2299 − 229530 − 229031 − 228932 − 228833 − 228534

−228135 − 227936 − 227737 − 227338 − 227239 − 2271310 − 2270311 − 2267312

−2266313 − 2265314 − 2264315 − 2263316 − 2262317 − 2260318 − 2259319 − 2257320

−2256321 − 2255322 − 2252323 − 2250324 − 2249325 − 2248326 − 2247327 − 2245328

−2244329 − 2243330 − 2241331 − 2240332 − 2236333 − 2235334 − 2234335 − 2233336

−2232337 − 2229338 − 2227339 − 2225340 − 2224341 − 2223342 − 2221343 − 2219344

−2218345 − 2214346 − 2213347 − 2207348 − 2206349 − 2204350 − 2201351 − 2200352

−2198353 − 2197354 − 2196355 − 2195356 − 2193357 − 2190358 − 2187359 − 2185360

−2184361 − 2183362 − 2180363 − 2179364 − 2178365 − 2173366 − 2172367 − 2171368

−2170369 − 2169370 − 2168371 − 2166372 − 2165373 − 2163374 − 2162375 − 2160376

−2158377 − 2157378 − 2151379 − 2150380 − 2148381 − 2147382 − 2146383 − 2145384

−2143385 − 2139386 − 2138387 − 2131388 − 2130389 − 2128390 − 2126391 − 2123392

−2122393 − 2121394 − 2120395 − 2119396 − 2118397 − 2117398 − 2116399 − 21143100

−21133101 − 21123102 − 21083103 − 21073104 − 21053105 − 21023106 − 21013107

−21003108 − 2993109 − 2983110 − 2943111 − 2933112 − 2913113 − 2903114 − 2893115

−2873116 − 2863117 − 2843118 − 2833119 − 2813120 − 2803121 − 2783122 − 2743123

−2723124 − 2713125 − 2693126 − 2673127 − 2663128 − 2653129 − 2613130 − 2603131

−2593132 − 2583133 − 2573134 − 2563135 − 2543136 − 2533137 − 2523138 − 2493139

−2463140 − 2423141 − 2403142 − 2393143 − 2363144 − 2343145 − 2323146 − 2303147

−2293148 − 2283149 − 2243150 − 2223151 − 2213152 − 2203153 − 2193154 − 2183155

−2173156 − 2163157 − 2153158 − 2143159 − 2133160 − 2123161 − 2113162 − 2103163

−293164 − 283165 − 273166 − 263167 − 253168 − 243169 − 233170 − 223171 − 213172

−203173

(7.8)

Email address: mr.leszek.mazurek@gmail.com , ©2021 Leszek Mazurek


