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COLLATZ CONJECTURE - THE PROOF

LESZEK MAZUREK

Abstract. In this paper, we prove the Collatz conjecture. The proof consists

of two parts. The first, shows that if an integer can be iterated through the

Collatz conjecture to one, it is the equivalent of the condition that it can be
presented as a certain equation. In the second part, we prove that for every

initial integer, this equation can be found. To achieve this, we propose a

procedure that can be iterated, and we prove that by doing this we arrive at
this equation. We also prove that initial integer can be presented in an infinite

number of ways in the form of needed equation. All analysis is done using

binary representation of numbers.

1. Introduction

The Collatz conjecture is a well known mathematical problem. It claims that
for every positive integer I0 if iterating

(1.1) In+1 =


1
2 · In for, In even

3 · In + 1 for, In odd

ultimately we get 1.
The purpose of this paper is to prove that the Collatz conjecture is true. The

proof consists of two parts:

Theorem 1.1. If the Collatz conjecture is true for a positive integer I0, it is the
equivalent of the condition that a positive integer n and a sequence of integers
mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 exists, for which

(1.2) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.

Theorem 1.2. For every positive integer I0, such a positive integer n and
a sequence of integers mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 can be found.
Therefore, (by Theorem 1.1) the Collatz conjecture is true.

2. Remarks and Definitions

To understand how the Collatz conjecture works and make it more accessible, we
have to iterate integers in their binary representations. This paper explains when
binary numbers are even or odd, how they are affected by different operations
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and examines how they iterate through the Collatz formula. The definitions and
remarks introduced below are used over the course of this paper.

Remark 2.1. An integer is odd when in binary representation its least significant
bit is 1. An integer is even when in binary representation its least significant bit is
0.

Remark 2.2. Every even positive integer can be reduced to the odd positive integer
by recursively dividing it by 2 until the result is odd.

When Ieven is an even positive integer, Iodd is an odd positive integer and p is the
number of divisions by 2 required for Ieven to became the odd integer Iodd, then

(2.1)
Ieven

2p
= Iodd.

Example 2.3. Reduction of an even integer to an odd integer in binary represen-
tation.

Let Ieven be an even positive integer

Ieven = 20 = 10100b.

Then
Ieven

2p
=

20

22

=
10100b

100b

= 101b

= 5 = Iodd.

We see that an even positive integer Ieven can be reduced to an odd positive integer
Iodd. In this case 20 is reduced to 5.

Remark 2.4. By multiplying an odd positive integer by 3 and adding 1, we get a
result which is always even

(2.2) 3 · Iodd + 1 = Ieven.

Example 2.5. Example in binary representation.
Let Iodd be an odd positive integer

Iodd = 7 = 111b.

Then
3Iodd + 1 = 21 + 1

= 10101b + 1

= 10110b

= 22 = Ieven.

We see that by multiplying an odd positive integer Iodd by 3 and increasing by 1,
we get an even positive integer Ieven.

Definition 2.6. For any positive integer I, let lsb(I) be the least significant
nonzero bit in the binary representation of I.
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Example 2.7. Binary numbers with their least significant nonzero bits in bold:

lsb(101101011000b) = 1000b,

lsb(10010110b) = 10b,

lsb(10110101100b) = 100b,

lsb(1100111b) = 1b,

lsb(1101111000b) = 1000b.

Remark 2.8. For every odd positive integer Iodd

(2.3) lsb(Iodd) = 20 = 1.

Example 2.9. We find lsb(Iodd) for an odd positive integer Iodd.
For Iodd = 25 we have

lsb(25) = lsb(11001b) = 20 = 1.

Remark 2.10. For every even positive integer Ieven

(2.4) lsb(Ieven) = 2p,

where p is a positive integer, and then

(2.5)
Ieven

2p
= Iodd,

therefore

(2.6) Ieven = 2pIodd.

Example 2.11. We find lsb(Ieven) for an even positive integer Ieven.
For Ieven = 28 we have

lsb(28) = lsb(11100b) = 22

and thus

Ieven
2p

=
28

lsb(28)

=
28

22

=
11100b

100b

= 7 = Iodd.

When we divide 28 by lsb(28) it gives us an odd positive integer 7.

Definition 2.12. For any positive integer I, let msb(I) be the most significant
bit in a binary representation of I.

Example 2.13. Binary numbers with their most significant bits in bold:

msb(101101011000b) = 100000000000b,

msb(10010110b) = 10000000b,

msb(10110101100b) = 10000000000b,

msb(1100111b) = 1000000b,

msb(1101111000b) = 1000000000b.
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Definition 2.14. Let O denote a base odd integer of I and be defined as

(2.7) O =
I

lsb(I)
,

where I can be an even or odd positive integer.

Example 2.15. Finding a base odd integer.
We check the case for an odd integer

I = 9 = 1001b,

lsb(I) = lsb(1001b) = 1b,

O =
I

lsb(I)

=
1001b

1b

= 1001b

= 9.

We conclude that for odd integers

(2.8) O = I.

Notice that when I is an odd positive integer, its base odd integer O is equal to I.
Now we check the case for an even integer

I = 20 = 10100b,

lsb(I) = lsb(10100b) = 100b,

O =
I

lsb(I)

=
10100b

100b

= 101b

= 5.

To find the base odd integer O for an even integer I, we divide integer I by 2 until
we get an odd result. We do this by dividing I by its least significant nonzero bit
lsb(I).

3. Simplification of The Collatz conjecture

Using the above remarks and definitions, standard form of the Collatz conjecture
(1.1) can be substantially simplified. Despite each of the following simplifications
iterating integers in slightly different way, all of them are fully aligned with original
definition and therefore can be used to prove the Collatz conjecture.
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Example 3.1. Iteration of the Collatz conjecture (1.1) starting from I0 = 11.

Table 1. Original Collatz iterations starting from I0 = 11.

n In (In)b even/odd pn (2pn)b
0 11 1011 o
1 34 100010 e 1 10
2 17 10001 o
3 52 110100 e 2 100
4 26 11010 e
5 13 1101 o
6 40 101000 e 3 1000
7 20 10100 e
8 10 1010 e
9 5 101 o

10 16 10000 e 4 10000
11 8 1000 e
12 4 100 e
13 2 10 e
14 1 1 o

In binary notation, division by 2 is simply a shift of the whole number by one
position(bit) to the right. In Table 1, we see it for every even integer. Instead of
multiple divisions by 2, it can be shortened to one operation. We divide by 2pn ,
where pn is a positive integer and represents a number of consecutive zeros at the
end of a binary number. Notice that 2pn is the least significant nonzero bit of an
even integer, defined earlier in Definition 2.6. Merging all single divisions by 2 into
one division by 2pn , we can simplify iterations of the Collatz conjecture to iterations
presented in Table 2.

Table 2. Collatz iterations with divisions by 2pn .

n In (In)b even/odd pn (2pn)b
0 11 1011 o
1 34 100010 e 1 10
2 17 10001 o
3 52 110100 e 2 100
4 13 1101 o
5 40 101000 e 3 1000
6 5 101 o
7 16 10000 e 4 10000
8 1 1 o
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Formally, this simplification of Collatz conjecture can be define as

In+1 =


In
2pn for, In even,

3 · In + 1 for, In odd,

(3.1)

where 2pn = lsb(In) is the least significant nonzero bit of In.

Symbol In is kept as a representation of elements in the series, even if some elements
are omitted in comparison to the original Collatz conjecture proposition (1.1).

Since now each even integer is producing odd integer and each odd integer is pro-
ducing even integer, we can consolidate both operations into one. This time, we
process only odd positive integers, so we substitute In with On using definition
(2.14). We define this simplification of the Collatz conjecture as

On+1 =
3 ·On + 1

2pn
,(3.2)

where 2pn = lsb(3 ·On + 1) is the least significant nonzero bit of (3 ·On + 1).

Notice that (3 ·On +1) is always even, so 2pn ≥ 2 for every n. This simplification of
Collatz conjecture results in iterations of odd integers only. To start from an even
integer, we simply reduce it to an odd integer, by dividing it by 2 as many times
as needed to achieve an odd result.

Table 3. Collatz iterations simplified to odd integers only.

n On (On)b e/o 3On + 1 (3On + 1)b pn (2pn)b
0 11 1011 o 34 100010 1 10
1 17 10001 o 52 110100 2 100
2 13 1101 o 40 101000 3 1000
3 5 101 o 16 10000 4 10000
4 1 1 o

There is one more simplification we can do.

The process introduced below differs from the original Collatz proposition, however,
it produces the same results. To distinguish it from the above explanations, symbol
Xn is used as an element of the iterations.

Starting from any positive integer X0, we do not need to constantly divide by 2pn .
To keep this process aligned with the orginal Collatz conjecture, instead of always
adding 1, we have to add the least significant nonzero bit of Xn. By this, we allow
Xn to increase, ultimately reaching, instead of 1, integer in the form of 2p, where
p is a positive integer.
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Table 4. Improved Collatz conjecture - iterations without divisions.

n Xn (Xn)b 3Xn (3Xn)b pn (2pn )b 3Xn + 2pn (3Xn + 2pn )b On

0 11 1011 33 100001 0 1 34 100010 17

1 34 100010 102 1100110 1 10 104 1101000 13

2 104 1101000 312 100111000 3 1000 320 101000000 5

3 320 101000000 960 1111000000 6 1000000 1024 10000000000 1

4 1024 10000000000

Notice that corresponding odd integers are still present in such iterations in column
On in Table 4. They are also visible in column (3Xn + 2pn)b in bold, but for each
iteration they are multiplied by constantly increasing powers of 2.

Formal definition of this improved Collatz conjecture is presented below.

Definition 3.2. For any positive integer X0 if iterating

(3.3) Xn+1 = 3Xn + lsb(Xn),

where lsb(Xn) is the least significant nonzero bit of Xn, ultimately we get Xn = 2p,
where p is positive integer.

This way we have two equivalent methods of iterating the Collatz conjecture.
The first one, proposed in (3.2), is a simplified version of (1.1) that only skips
all even numbers and, as original, finally reaches 1. The second one, without any
divisions by 2, proposed in (3.3), ultimately reaches 2p, where p is a positive integer.
In this case, the result in binary representation is just 1 followed by the sequence of
zeros. Each of these two methods have exactly the same number of steps
as they are strictly connected.

Example 3.3. In Table 5, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as Xn and with divisions (3.2) as On, starting
from 11.

Table 5. Equivalence of Collatz iterations without divisions Xn

and with divisions On starting from 11.

n Xn (Xn)b On (On)b
0 11 1011 11 1011
1 34 100010 17 10001
2 104 1101000 13 1101
3 320 101000000 5 101
4 1024 10000000000 1 1
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Example 3.4. In Table 6, we see a comparison of iterations through both methods
side by side; without divisions (3.3) as Xn and with divisions (3.2) as On, starting
from 57.

Table 6. Equivalence of Collatz iterations without divisions Xn

and with divisions On starting from 57.

n Xn (Xn)b On (On)b
0 57 111001 57 111001
1 172 10101100 43 101011
2 520 1000001000 65 1000001
3 1568 11000100000 49 110001
4 4736 1001010000000 37 100101
5 14336 11100000000000 7 111
6 45056 1011000000000000 11 1011
7 139264 100010000000000000 17 10001
8 425984 1101000000000000000 13 1101
9 1310720 101000000000000000000 5 101

10 4194304 10000000000000000000000 1 1

Example 3.5. Relations between Xn, On, lsb(Xn) and msb(Xn) are shown in the
example below:

Xn︷ ︸︸ ︷
On︷ ︸︸ ︷

1001010000000︸ ︷︷ ︸
lsb(Xn)

↑︸ ︷︷ ︸
msb(Xn)

Xn is the entire integer, all bits in binary notation,
On is the odd base of Xn, which are only bits between first and last nonzero bits,
lsb(Xn) is the least significant nonzero bit of Xn in the form of 2p,
msb(Xn) is the most significant bit of Xn in the form of 2q,
where p, q are positive integers.

4. Elaboration on Improved Collatz conjecture

Considering iterations of Xn through the improved Collatz conjecture proposed
in (3.3) a very interesting feature can be seen. The least significant nonzero bit
lsb(Xn) is almost always just a small fraction of Xn. Therefore, the most significant
bit msb(Xn) tends to grow with coefficient on average close to 3 with each iteration.
Using the improved Collatz conjecture

Xn+1 = 3Xn + lsb(Xn),

we usually get

(4.1)
lsb(Xn)

Xn
≈ 0,
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therefore, we can say that on average

(4.2) msb(Xn+1) ≈ 3 ·msb(Xn).

Small deviations from this rule can be observed, when interactions with other bits
of lower significance occur (especially when On is small), which can temporarily
make this coefficient slightly higher.

On the other hand, the least significant bit lsb(Xn), being a part of Xn, is each
time multiplied by 3 and additionally increased by adding lsb(Xn). Therefore, the
least significant bit of Xn tends to grow with coefficient on average close to 4 with
each iteration.

When iterating

(4.3) Xn+1 = 3Xn + lsb(Xn)

on average, we have

lsb(Xn+1) ≈ 3 · lsb(Xn) + lsb(Xn)

≈ 4 · lsb(Xn).
(4.4)

A deviation from this rule can occur through interactions with other bits of Xn.
The coefficient can be temporary much higher than 4, when a sequence of bits in
the form of ”...10101010101” appears at the end of On which is a part of Xn (see
Figure 2 for X0). In this case, we can observe a rapid shortening of Xn. This coef-
ficient can also be temporarily smaller, when a sequence of consecutive 1’s appears
at the end of On. In this case, this coefficient is temporarily equal 2, until number
of 1’s is reduced one by one in the following iterations.

Even if both described dependencies can be temporarily disturbed, eventually in
a large number of iterations they become very evident. As a result of their in-
teractions, the distance between the most significant bit msb(Xn) and the least
significant nonzero bit lsb(Xn) gets shortened.

Notice that a difference in lengths between msb(Xn) and lsb(Xn) represents the
length of On in bits.

We see

(4.5) msb(Xn)− lsb(Xn)→ 0, as n→∞,

and

(4.6) msb(Xn) / lsb(Xn)→ 1, as n→∞.
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Example 4.1. Comparison of growth trends between the most significant bit
msb(Xn) and the least significant nonzero bit lsb(Xn).

Figure 1. Comparison of growth trends between msb(Xn) and
lsb(Xn) starting from 57.

Figure 2. Comparison of growth trends between msb(Xn) and
lsb(Xn). Special case when Xn contains a sequence of bits
”...1010101”.
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When initial integer X0 is very big, on average

(4.7)
msb(Xn+1)

msb(Xn)
= 3

and on average

(4.8)
lsb(Xn+1)

lsb(Xn)
= 4,

we can propose a formula to estimate the number of iterations required to reach
On = 1, which means Xn = 2p, where p is a positive integer.
When using binary numbers, we know that each position represents a power of 2.
Multiplication by 3 extends the length of a number by

(4.9) log2(3) = 1.584963.

By continuous multiplication of a binary number by 3, its length increases on av-
erage by 1.584963 bits(positions) per operation.

We check how fast the least significant bit lsb(Xn) increases its length, we have

(4.10) log2(4) = 2.

We see that by continuous multiplication of the least significant nonzero bit by 4,
its length increases on average by 2 bits(positions) per operation. We calculate how
fast lsb(Xn) approaches msb(Xn).

We have

(4.11) 2− 1.584963 = 0.415037,

thus lsb(Xn) is on average 0.415037 bits(positions) closer to msb(Xn) per iteration.
Note that a number of needed iterations can be bigger, when at the end of X0 we
have a sequence of consecutive 1’s ”...1111111”, or it can be dramatically smaller,
when at the end we have a sequence of alternating 0 and 1 ”...01010101”.

Example 4.2. Starting from X0, which is 20000 bits long, we can predict how
many times we have to iterate, through the improved version of the Collatz con-
jecture (3.3), until we finally reach On = 1 (which means Xn = 2p, where p is a
positive integer). To approximate a number of iterations, we have to divide the
length of X0 in bits by 0.415037, in this case

(4.12)
20000

0.415037
≈ 48188.

Exact number of required operations depends on detailed structure of bits in a
particular initial integer. However, for big initial integers that do not end with
consecutive 1’s or alternating sequences of 0 and 1, exact number of iterations
should be very close to an estimated one. In practice, starting from X0, which was
created as randomly generated 20000 bits, the exact number of operations needed
to reach 1 was 48043, which is only around 0.3% different from the estimated one.

On Figure 3, we see how length of On, in number of bits, decreases when iterating
initial integer X0 consisting of 20000 random bits.
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Length of On, is the difference in bits between the length of msb(Xn) and the length
of lsb(Xn) and decreases with almost perfect accuracy (see Figure 3). However,
when we look closer at first 1000 iterations on Figure 4, we see local fluctuations.
It is even more visible on Figure 5, where only first 100 iterations are presented.

Above elaboration, together with analysis of ending sequences of 1’s, ”...111111”
described in Section 7 of this work, can be enough to proof the Collatz conjecture,
however it is not used for this purpose in this work. It is only presented for better
understanding how integers are processed iterating through the Collatz formula and
what we can observe when analyzing their binary representations.

Figure 3. Decrease of On length for 20000 bits long initial X0
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Figure 4. Decrease of On length for 20000 bits long initial X0

(first 1000 iterations).

Figure 5. Decrease of On length for 20000 bits long initial X0

(first 100 iterations).
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5. Proof of Theorem 1.1

Proof. For any positive integer I0, we find its base odd integer using (2.7) and it is

(5.1) O0 =
I0

lsb(I0)
.

Value of lsb(I0) is in the form of 2p, where p ≥ 0 and p = 0 when I0 is odd, thus

(5.2) O0 =
I0
2p

,

where p ≥ 0.

We iterate this odd positive integer O0 through simplified Collatz conjecture
presented in equation (3.2). We have

(5.3)
3

3
3

3
3O0+1

2p0
+1

2p1
+1

2p2 + 1
...

2
pn−2

+1

2pn−1 = 1,

and On is odd for every n, so (3On + 1) is always even, therefore

(5.4) p0, p1, p2, ..., pn−2, pn−1 ≥ 1.

Equation (5.3) can be also presented like this

(5.5)

(((((
(3O0 + 1)

3

2p0
+ 1

)
3

2p1
+ 1

)
3

2p2
+ 1

)
...

)
3

2pn−2
+ 1

)
1

2pn−1
= 1.

By performing simple algebraic transformations we get

(5.6)
3nO0 = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30−
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1.

Now, we can substitute O0 from (5.2)

3n I0
2p = (2pn−12pn−22pn−3 ... 2p12p0)− (2pn−22pn−3 ... 2p12p0) 30 − ...
− (2pn−3 ... 2p12p0) 31 − · · · − 2p12po3n−3 − 2po3n−2 − 3n−1,

and multiply both sides by 2p

3nI0 = (2pn−12pn−22pn−3 ... 2p12p02p)− (2pn−22pn−3 ... 2p12p02p) 30 − ...
− (2pn−3 ... 2p12p02p) 31 − · · · − 2p12po2p3n−3 − 2po2p3n−2 − 2p3n−1.
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We substitute the following:

2pn−12pn−22pn−3 ... 2p12p02p = 2mn ,

2pn−22pn−3 ... 2p12p02p = 2mn−1 ,

2pn−3 ... 2p12p02p = 2mn−2 ,

...

2p12po2p = 2m2 ,

2po2p = 2m1 ,

2p = 2m0 ,

(5.7)

where all p0, p1, p2, ..., pn−2, pn−1 ≥ 1 and p ≥ 0.

We finally have

(5.8) 3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 and m0 can eventually be 0,
when I0 is odd.

�

We prove in opposite direction.

Proof. We start from integer I0 that fulfils equation

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where n is a positive integer and mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 are
integers.

We divide both sides by 3n. We have

I0 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1

3n
.

Now we iterate through the simplified Collatz equation in the form of (3.1), which
combines multiple divisions by 2 into single division by 2p. In each iteration we
receive odd integer from even integer or even integer from odd integer.

We divide I0 by 2m0 , where m0 ≥ 0 to receive odd integer. If I0 is already odd
then m0 = 0, so 20 = 1 and division by 1 does not affect the result. If I0 is even,
m0 > 0 and m0 is the number that represents how many times I0 has to be divided
by 2 to become odd. We have

I1 =
I0

2m0
=

2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n2m0
− 3n−1

3n

which is an odd integer. For odd integer

I1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n2m0
− 1

3
we multiply by 3

I1 · 3 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n−12m0
− 3

3
and add 1

I2 = I1 · 3 + 1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2

3n−12m0
.
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We put the last term to separate quotient

I2 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−12m0
− 2m13n−2

2m03n−1
.

We know that I2 is even (from Remark 2.4), so it can be divided by 2p0 , where
p0 > 0, to get an odd integer. We know that m1 > m0, so to make the right side
of equation odd, we need m1 = p0 + m0, which gives 2p0 = 2m1

2m0
and then divide I2

by 2p0

I3 =
I2

2p0
=

2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−12m1
− 1

3
.

Now that I3 is odd, we multiply it by 3 again

I3 · 3 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m23n−3

3n−22m1
− 3

3

and add 1

I4 = I3 · 3 + 1 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4 − 2m23n−3

3n−22m1
.

We put the last term to separate quotient

I4 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4

3n−22m1
− 2m23n−3

2m13n−2
.

We know that I4 is even, so it can be divided by 2p1 , where p1 > 0, to become an
odd integer. We know that m2 > m1, so to make the right side of equation odd,
we need m2 = p1 + m1, which gives 2p1 = 2m2

2m1
and then divide I4 by 2p1

I5 =
I4
2p1

=
2mn − 2mn−130 − 2mn−231 − · · · − 2m33n−4

3n−22m2
− 3n−3

3n−2
.

We can continue this process till

Ik−4 =
2mn − 2mn−130

322mn−2
− 31

32
.

We know Ik−4 is odd, we multiply it by 3

Ik−4 · 3 =
2mn − 2mn−130

312mn−2
− 32

32

and add 1

Ik−3 = Ik−4 · 3 + 1 =
2mn − 2mn−130

312mn−2
.

We put the last term to separate quotient

Ik−3 =
2mn

312mn−2
− 2mn−130

2mn−231
.

We know that Ik−3 is even, so it can be divided by 2pn−2 , where pn−2 > 0, to
become an odd integer. We know that mn−1 > mn−2, so to make the right side of

equation odd, we need mn−1 = pn−2 + mn−2, which gives 2pn−2 = 2mn−1

2mn−2 and then
divide Ik−3 by 2pn−2

Ik−2 =
Ik−3
2pn−2

=
2mn

312mn−1
− 30

31
.

We know Ik−2 is odd, we multiply it by 3
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Ik−2 · 3 =
2mn

302mn−1
− 31

31

and add 1

Ik−1 = Ik−2 · 3 + 1 =
2mn

302mn−1
.

We know that Ik−1 is even, so it can be divided by 2pn−1 , where pn−1 > 0, to
become an odd integer. We know that mn > mn−1, so to make the right side of
equation odd, we need mn = pn−1 + mn−1, which gives 2pn−1 = 2mn

2mn−1 and then
divide Ik−1 by 2pn−1

Ik =
Ik−1
2pn−1

=
2mn

2mn
= 1.

�

Notice that for any initial positive integer I0 that fulfils equation

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where n is a positive integer and mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0 are
integers, we have a sequence of integers

I0, I1, I2, I3, ...Ik−3, Ik−2, Ik−1, Ik

and Ik = 1.

6. Procedure

We consider the following procedure.

Procedure 1.

Step 1. Take any positive integer I0 and define

A0 = 2p,where p ∈ Z+ and A0 > I0,(6.1)

B0 = A0 − I0,(6.2)

C0 = 0.(6.3)

We have

(6.4) 30I0 = A0 − B0 − C0.
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Step 2. Multiply both sides of the equation by 3 using the following transforma-
tions

3nI0 = 3 · 3n−1I0,(6.5)

An = 4 · An−1,(6.6)

Bn = 3 · Bn−1 + An−1 − lsb(Bn−1),(6.7)

Cn = 3 · Cn−1 + lsb(Bn−1).(6.8)

We have general formula for nth iteration

(6.9) 3nI0 = An − Bn − Cn.

Step 3. Iterate Step 2 forever.

Remark 6.1. Notice that in Procedure 1 we have

An > Bn,(6.10)

Bn > 0, for all n and(6.11)

Cn > 0, for n > 0.(6.12)

Lemma 6.2. When iterating Procedure 1, for any initial positive integer I0 such
iteration number k exists that starting from this iteration and for all the following
iterations, when n ≥ k,

(6.13) An = Bn + lsb(Bn).

Proof. We iterate Procedure 1 for any initial positive integer I0. From (6.9) we
have

(6.14) An = 3nI0 + Bn + Cn

therefore we see that

(6.15) An > Bn, for all n.

We define Gn as a sum of all bits between lsb(Bn) and An that are not part of Bn.

Figure 6. Definition of Gn.
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We know that

(6.16) Gn > lsb(Bn),

when there are some gaps between bits in Bn, or

(6.17) Gn = 0, Gn < lsb(Bn)

if there are no gaps between bits in Bn and all bits are next to each other.

We have

(6.18) An = Bn + Gn + lsb(Bn)

(see Figure 6).

From (6.7) we have

(6.19) Bn+1 = 3Bn + An − lsb(Bn),

we substitute An from (6.18)

(6.20) Bn+1 = 3Bn + Bn + Gn + lsb(Bn)− lsb(Bn)

therefore

(6.21) Bn+1 = 4Bn + Gn.

Example 6.3. When we multiply number by 4, we shift the binary representation
of such number by two positions towards higher bits.

Figure 7. Multiplication by 4 in binary notation - all bits shifted
by 2 positions.

We multiply (shift) all bits in Bn as well as all bits in Gn.

Example 6.4. In (6.21) when we change from iteration n to n + 1, we shift all of
the bits in Bn, but we also add Gn to have Bn+1.
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Figure 8. Binary operations for Bn+1 = 4Bn + Gn.

Notice how one Gn was added to 4Bn therefore when iterating from n to n + 1 in
this example we have

Gn+1 = 4Gn −Gn

= 3Gn,(6.22)

(compare to Figure 7).

Example 6.5. In general case, after the operation Bn+1 = 4Bn +Gn, lsb(Bn) can
be shifted more then two bits.

Figure 9. Binary operations for Bn+1 = 4Bn + Gn, bigger shift of lsb(Bn).

By comparing with Example 6.4, notice a bigger shift of lsb(Bn) (by 4 positions).
Some bits transfered from Gn were left behind lsb(Bn+1) and Gn+1 is lower than
3Gn

Gn+1 = 4Gn −Gn − d

= 3Gn − d,(6.23)

where d represents all bits that are left below lsb(Bn+1).

We continue with the proof.
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We divide both sides of (6.21) by Bn

(6.24)
Bn+1

Bn
=

4Bn

Bn
+

Gn

Bn

thus

(6.25)
Bn+1

Bn
= 4 +

Gn

Bn
.

We evaluate Gn

Bn
for n + 1. From (6.21) we know the change of Bn and from (6.23)

we know the change of Gn therefore

(6.26)
Gn+1

Bn+1
=

3Gn − d

4Bn + Gn
.

We see that

(6.27) lim
n → ∞

Gn

Bn
= 0.

Remark 6.6. Notice that from (6.25) we have

(6.28) lim
n → ∞

Bn+1

Bn
= 4.

From (6.16) we know that when there are gaps between bits in Bn, we have

(6.29) Gn > lsb(Bn),

we divide both sides by Bn

(6.30)
Gn

Bn
>

lsb(Bn)

Bn
.

We know from (6.27) that

(6.31) lim
n → ∞

Gn

Bn
= 0.

This means that such iteration k exists that starting from this iteration and for all
the following iterations n, where n ≥ k

(6.32)
Gn

Bn
<

lsb(Bn)

Bn

this means

(6.33) Gn < lsb(Bn)

therefore from (6.17)

(6.34) Gn = 0.

Substituting Gn to (6.18) we have

(6.35) An = Bn + lsb(Bn).

�
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7. Proof of Theorem 1.2

Proof. We start Procedure 1 for any positive integer I0. From Lemma 6.2 we know
that such iteration number k exists that for all next iterations when n ≥ k

(7.1) lsb(Bn) = An −Bn.

From general formula on nth iteration (6.9) we have

(7.2) 3nI0 = An − Bn − Cn.

For iterations where n ≥ k, we substitute for An −Bn. We have

(7.3) 3nI0 = lsb(Bn)− Cn.

Notice that lsb(Bn) is a single bit in the form of

(7.4) lsb(Bn) = 2mn , where mn ∈ Z+

and Cn is created by iterating Procedure 1, based on the formula

(7.5) Cn = 3Cn−1 + lsb(Bn−1).

With each iteration, Cn is multiplied by 3 (all bits are multiplied by 3) and new
higher bit is added, so it can be presented as

(7.6) Cn = 3n−1· 2m0 + 3n−2· 2m1 + ... + 31· 2mn−2 + 30· 2mn−1 ,

where

mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

We substitute in (7.3)

3nI0 = 2mn − (3n−1· 2m0 + 3n−2· 2m1 + ... + 31· 2mn−2 + 30· 2mn−1)

= 2mn − 3n−1· 2m0 − 3n−2· 2m1 − ...− 31· 2mn−2 − 30· 2mn−1
(7.7)

and we sort terms to get

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1,

where all m’s form a sequence of integers that

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

We conclude that for every initial positive integer I0, when iterating Procedure 1,
such positive integer k exists that for every positive integer n ≥ k a sequence of
integers

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0

exists, for which

3nI0 = 2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1.

�
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8. Extension of Theorem 1.2

Theorem 8.1. For every initial positive integer I0, an infinite number of equations
exists that satisfies Theorem 1.2, therefore, it can be extended in an infinite number
of ways to form the following expression

(8.1) I0 =
2mn − 2mn−130 − 2mn−231 − · · · − 2m13n−2 − 2m03n−1

3n
,

where n is a positive integer and all m’s form a sequence of integers that

mn > mn−1 > mn−2 > ... > m1 > m0 ≥ 0.

Proof. The proof of Theorem 1.2 confirms that. �
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9. Examples

Presented below are various examples of positive integers, confirming the Theo-
rems proven above.

(9.1) 36·9 = 213 − 2930 − 2631 − 2432 − 2333 − 2234 − 2035

(9.2) 37·9 = 215 − 21330 − 2931 − 2632 − 2433 − 2334 − 2235 − 2036

(9.3) 38·9 = 217 − 21530 − 21331 − 2932 − 2633 − 2434 − 2335 − 2236 − 2037

312·6541 = 232 − 22830 − 22531 − 22332 − 22233 − 22134 − 21735

−21536 − 21337 − 21038 − 2939 − 23310 − 20311
(9.4)

(9.5) 37·435 = 220 − 21630 − 21131 − 21032 − 2933 − 2434 − 2135 − 2036

34127 = 270 − 26630 − 26131 − 26032 − 25933 − 25634 − 25235

−25036 − 24837 − 24438 − 24339 − 242310 − 241311 − 238312

−237313 − 236314 − 235315 − 234316 − 233317 − 231318 − 230319

−228320 − 227321 − 226322 − 223323 − 221324 − 220325 − 219326

−218327 − 216328 − 215329 − 214330 − 212331 − 211332 − 29333

−27334 − 26335 − 25336 − 24337 − 23338 − 21339 − 20340

(9.6)

334·121 = 261 − 25730 − 25231 − 25132 − 25033 − 24734 − 24335

−24136 − 23937 − 23538 − 23439 − 233310 − 232311 − 229312

−228313 − 227314 − 226315 − 225316 − 224317 − 222318 − 221319

−219320 − 218321 − 217322 − 214323 − 212324 − 211325 − 210326

−29327 − 27328 − 26329 − 25330 − 23331 − 22332 − 20333

(9.7)
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3174·8388607 = 2299 − 229530 − 229031 − 228932 − 228833 − 228534

−228135 − 227936 − 227737 − 227338 − 227239 − 2271310 − 2270311 − 2267312

−2266313 − 2265314 − 2264315 − 2263316 − 2262317 − 2260318 − 2259319 − 2257320

−2256321 − 2255322 − 2252323 − 2250324 − 2249325 − 2248326 − 2247327 − 2245328

−2244329 − 2243330 − 2241331 − 2240332 − 2236333 − 2235334 − 2234335 − 2233336

−2232337 − 2229338 − 2227339 − 2225340 − 2224341 − 2223342 − 2221343 − 2219344

−2218345 − 2214346 − 2213347 − 2207348 − 2206349 − 2204350 − 2201351 − 2200352

−2198353 − 2197354 − 2196355 − 2195356 − 2193357 − 2190358 − 2187359 − 2185360

−2184361 − 2183362 − 2180363 − 2179364 − 2178365 − 2173366 − 2172367 − 2171368

−2170369 − 2169370 − 2168371 − 2166372 − 2165373 − 2163374 − 2162375 − 2160376

−2158377 − 2157378 − 2151379 − 2150380 − 2148381 − 2147382 − 2146383 − 2145384

−2143385 − 2139386 − 2138387 − 2131388 − 2130389 − 2128390 − 2126391 − 2123392

−2122393 − 2121394 − 2120395 − 2119396 − 2118397 − 2117398 − 2116399 − 21143100

−21133101 − 21123102 − 21083103 − 21073104 − 21053105 − 21023106 − 21013107

−21003108 − 2993109 − 2983110 − 2943111 − 2933112 − 2913113 − 2903114 − 2893115

−2873116 − 2863117 − 2843118 − 2833119 − 2813120 − 2803121 − 2783122 − 2743123

−2723124 − 2713125 − 2693126 − 2673127 − 2663128 − 2653129 − 2613130 − 2603131

−2593132 − 2583133 − 2573134 − 2563135 − 2543136 − 2533137 − 2523138 − 2493139

−2463140 − 2423141 − 2403142 − 2393143 − 2363144 − 2343145 − 2323146 − 2303147

−2293148 − 2283149 − 2243150 − 2223151 − 2213152 − 2203153 − 2193154 − 2183155

−2173156 − 2163157 − 2153158 − 2143159 − 2133160 − 2123161 − 2113162 − 2103163

−293164 − 283165 − 273166 − 263167 − 253168 − 243169 − 233170 − 223171 − 213172

−203173

(9.8)
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