COLLATZ CONJECTURE - THE PROOF

LESZEK MAZUREK

1. Introduction

The Collatz conjecture is a well known mathematical problem. It claims that for every positive integer I_{o} if iterating

$$
I_{n+1}= \begin{cases}\frac{1}{2} \cdot I_{n} & \text { for }, I_{n} \text { even } \tag{1.1}\\ 3 \cdot I_{n}+1 & \text { for }, I_{n} \text { odd }\end{cases}
$$

ultimately we get 1 .
The purpose of this paper is to prove that the Collatz conjecture is true. The proof consists of two parts:

Theorem 1.1. If the Collatz conjecture is true for a positive integer I_{0}, it is equivalent of the condition that a positive integer n and a sequence of integers $m_{n}>m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0$ exists, for which

$$
\begin{equation*}
3^{n} I_{0}=2^{m_{n}}-2^{m_{n-1}} 3^{0}-2^{m_{n-2}} 3^{1}-\cdots-2^{m_{1}} 3^{n-2}-2^{m_{0}} 3^{n-1} \tag{1.2}
\end{equation*}
$$

Theorem 1.2. For every positive integer I_{0}, such a positive integer n and a sequence of integers $m_{n}>m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0$ can be found. Therefore, (by Theorem 1.1) the Collatz conjecture is true.

2. Remarks and Definitions

To understand how the Collatz conjecture works and make it more accessible, we have to iterate integers in their binary representations. This paper explains when binary numbers are even or odd, how they are affected by different operations and examines how they iterate through the Collatz formula. The definitions and remarks introduced below are used over the course of this paper.

Remark 2.1. An integer is odd when in binary representation its least significant bit is 1 . An integer is even when in binary representation its least significant bit is 0 .

Remark 2.2. Every even positive integer can be reduced to the odd positive integer by recursively dividing it by 2 until the result is odd.

When $I_{\text {even }}$ is an even positive integer, $I_{o d d}$ is an odd positive integer and p is the number of divisions by 2 required for $I_{\text {even }}$ to became the odd integer $I_{o d d}$, then

$$
\begin{equation*}
\frac{I_{e v e n}}{2^{p}}=I_{o d d} \tag{2.1}
\end{equation*}
$$

Example 2.3. Reduction of an even integer to an odd integer in binary representation.

Let $I_{\text {even }}$ be an even positive integer

$$
I_{\text {even }}=20=10100_{b}
$$

Then

$$
\begin{aligned}
\frac{I_{\text {even }}}{2^{p}} & =\frac{20}{2^{2}} \\
& =\frac{10100_{b}}{\mathbf{1 0 0}_{b}} \\
& =10 \mathbf{1}_{b} \\
& =5=I_{o d d}
\end{aligned}
$$

We see that an even positive integer $I_{\text {even }}$ can be reduced to an odd positive integer $I_{\text {odd }}$. In this case 20 is reduced to 5 .

Remark 2.4. By multiplying an odd positive integer by 3 and adding 1 , we get a result which is always even

$$
\begin{equation*}
3 \cdot I_{\text {odd }}+1=I_{\text {even }} \tag{2.2}
\end{equation*}
$$

Example 2.5. Example in binary representation.
Let $I_{\text {odd }}$ be an odd positive integer

$$
I_{o d d}=7=111_{b}
$$

Then

$$
\begin{aligned}
3 I_{o d d}+1 & =21+1 \\
& =10101_{b}+1 \\
& =1011 \mathbf{0}_{b} \\
& =22=I_{\text {even }} .
\end{aligned}
$$

We see that by multiplying an odd positive integer $I_{\text {odd }}$ by 3 and increasing by 1, we get an even positive integer $I_{\text {even }}$.

Definition 2.6. For any positive integer I, let $l s b(I)$ be the least significant nonzero bit in the binary representation of I.

Example 2.7. Binary numbers with their least significant nonzero bits in bold:

$$
\begin{aligned}
l s b\left(101101011000_{b}\right) & =\mathbf{1 0 0 0}_{b} \\
l s b\left(10010110_{b}\right) & =\mathbf{1 0}_{b} \\
l s b\left(10110101100_{b}\right) & =\mathbf{1 0 0}_{b} \\
l s b\left(110011 \mathbf{1}_{b}\right) & =\mathbf{1}_{b} \\
l s b\left(1101111000_{b}\right) & =\mathbf{1 0 0 0}_{b}
\end{aligned}
$$

Remark 2.8. For every odd positive integer $I_{o d d}$

$$
\begin{equation*}
l s b\left(I_{o d d}\right)=2^{0}=1 \tag{2.3}
\end{equation*}
$$

Example 2.9. We find $l s b\left(I_{o d d}\right)$ for an odd positive integer $I_{o d d}$. For $I_{o d d}=25$ we have

$$
l s b(25)=l s b\left(1100 \mathbf{1}_{b}\right)=2^{0}=1
$$

Remark 2.10. For every even positive integer $I_{\text {even }}$

$$
\begin{equation*}
l s b\left(I_{\text {even }}\right)=2^{p} \tag{2.4}
\end{equation*}
$$

where p is a positive integer, and then

$$
\begin{equation*}
\frac{I_{\text {even }}}{2^{p}}=I_{o d d}, \tag{2.5}
\end{equation*}
$$

therefore

$$
\begin{equation*}
I_{\text {even }}=2^{p} I_{\text {odd }} . \tag{2.6}
\end{equation*}
$$

Example 2.11. We find $l s b\left(I_{\text {even }}\right)$ for an even positive integer $I_{\text {even }}$. For $I_{\text {even }}=28$ we have

$$
l s b(28)=l s b\left(11100_{b}\right)=2^{2}
$$

and thus

$$
\begin{aligned}
\frac{I_{\text {even }}}{2^{p}} & =\frac{28}{l s b(28)} \\
& =\frac{28}{2^{2}} \\
& =\frac{11 \mathbf{1 0 0}}{\mathbf{1 0 0}_{b}} \\
& =7=I_{o d d}
\end{aligned}
$$

When we divide 28 by $l s b(28)$ it gives us an odd positive integer 7 .
Definition 2.12. For any positive integer I, let $m s b(I)$ be the most significant bit in a binary representation of I.

Example 2.13. Binary numbers with their most significant bits in bold:

$$
\begin{aligned}
& m s b\left(\mathbf{1 0 1 1 0 1 0 0 0 0 0}_{b}\right. \\
& m s b\left(\mathbf{1 0 0 1 0 0 0}_{b}\right)\left.=\mathbf{1 0 0 0 0 0 0 0 0}_{b}\right) \\
& m s b\left(\mathbf{1 0 0 0 0 0 0 0}_{b}\right. \\
& m s b\left(\mathbf{1 1 0 0 1 1 1}_{b}\right)=\mathbf{1 0 0 0 0 0 0}_{b} \\
& m s b\left(\mathbf{1 0}^{2} 101111000_{b}\right)=\mathbf{1 0 0 0 0 0 0 0 0}_{b}
\end{aligned}
$$

Definition 2.14. For any positive integer I, let $N(I)$ be the number of consecutive nonzero bits attached to $\boldsymbol{l s b}(\boldsymbol{I})$ in the binary representation of I.

Example 2.15. Binary numbers with consecutive nonzero bits attached to $l s b$ in bold:

$$
\begin{aligned}
N\left(101101011000_{b}\right) & =1, \\
N\left(10010110_{b}\right) & =1, \\
N\left(10110111100_{b}\right) & =3, \\
N\left(110011_{b}\right) & =1, \\
N\left(\mathbf{1 1 1 1 1 1 0 0 0}_{b}\right) & =5 .
\end{aligned}
$$

Definition 2.16. Let O denote a base odd integer of I and be defined as

$$
\begin{equation*}
O=\frac{I}{l s b(I)}, \tag{2.7}
\end{equation*}
$$

where I can be an even or odd positive integer.
Example 2.17. Finding a base odd integer.
We check the case for an odd integer

$$
\begin{aligned}
I & =9=1001_{b}, \\
l s b(I) & =l s b\left(100 \mathbf{1}_{b}\right)=\mathbf{1}_{b}, \\
O & =\frac{I}{l s b(I)} \\
& =\frac{100 \mathbf{1}_{b}}{\mathbf{1}_{b}} \\
& =1001_{b} \\
& =9 .
\end{aligned}
$$

We conclude that for odd integers

$$
\begin{equation*}
O=I . \tag{2.8}
\end{equation*}
$$

Notice that when I is an odd positive integer, its base odd integer O is equal to I. Now we check the case for an even integer

$$
\begin{aligned}
I & =20=10100_{b}, \\
l s b(I) & =l s b\left(10100_{b}\right)=\mathbf{1 0 0}_{b}, \\
O & =\frac{I}{l s b(I)} \\
& =\frac{10 \mathbf{1 0 0}_{b}}{\mathbf{1 0 0}_{b}} \\
& =101_{b} \\
& =5 .
\end{aligned}
$$

To find the base odd integer O for an even integer I, we divide integer I by 2 until we get an odd result. We do this by dividing I by its least significant nonzero bit $l s b(I)$.

3. Simplification of The Collatz conjecture

Using the above remarks and definitions, standard form of the Collatz conjecture (1.1) can be substantially simplified. Despite each of the following simplifications iterating integers in slightly different way, all of them are fully aligned with original definition and therefore can be used to prove the Collatz conjecture.

Example 3.1. Iteration of the Collatz conjecture (1.1) starting from $I_{0}=11$.
Table 1. Original Collatz iterations starting from $I_{0}=11$.

n	I_{n}	$\left(I_{n}\right)_{b}$	even/odd	p_{n}	$\left(2^{p_{n}}\right)_{b}$
0	11	1011	o		
1	34	100010	e	1	10
2	17	10001	o		
3	52	110100	e	2	100
4	26	11010	e		
5	13	1101	o		
6	40	101000	e	3	1000
7	20	10100	e		
8	10	1010	e		
9	5	101	o		
10	16	10000	e	4	10000
11	8	1000	e		
12	4	100	e		
13	2	10	e		
14	1	1	o		

In binary notation, division by 2 is simply a shift of the whole number by one position(bit) to the right. In Table 1, we see it for every even integer. Instead of multiple divisions by 2 , it can be shortened to one operation. We divide by $2^{p_{n}}$, where p_{n} is a positive integer and represents a number of consecutive zeros at the end of a binary number. Notice that $2^{p_{n}}$ is the least significant nonzero bit of an even integer, defined earlier in Definition 2.6. Merging all single divisions by 2 into one division by $2^{p_{n}}$, we can simplify iterations of the Collatz conjecture to iterations presented in Table 2.

Formally, this simplification of Collatz conjecture can be define as

$$
I_{n+1}= \begin{cases}\frac{I_{n}}{2^{p_{n}}} & \text { for }, I_{n} \text { even } \tag{3.1}\\ 3 \cdot I_{n}+1 & \text { for }, I_{n} \text { odd }\end{cases}
$$

where $2^{p_{n}}=l s b\left(I_{n}\right)$ is the least significant nonzero bit of I_{n}.
Symbol I_{n} is kept as a representation of elements in the series, even if some elements are omitted in comparison to the original Collatz conjecture proposition (1.1).

Table 2. Collatz iterations with divisions by $2^{p_{n}}$.

n	I_{n}	$\left(I_{n}\right)_{b}$	even/odd	p_{n}	$\left(2^{p_{n}}\right)_{b}$
0	11	1011	o		
1	34	100010	e	1	10
2	17	10001	o		
3	52	110100	e	2	100
4	13	1101	o		
5	40	101000	e	3	1000
6	5	101	o		
7	16	10000	e	4	10000
8	1	1	o		

Since now each even integer is producing odd integer and each odd integer is producing even integer, we can consolidate both operations into one. This time, we process only odd positive integers, so we substitute I_{n} with O_{n} using definition (2.16). We define this simplification of the Collatz conjecture as

$$
\begin{equation*}
O_{n+1}=\frac{3 \cdot O_{n}+1}{2^{p_{n}}} \tag{3.2}
\end{equation*}
$$

where $2^{p_{n}}=l s b\left(3 \cdot O_{n}+1\right)$ is the least significant nonzero bit of $\left(3 \cdot O_{n}+1\right)$.
Notice that $\left(3 \cdot O_{n}+1\right)$ is always even, so $2^{p_{n}} \geq 2$ for every n. This simplification of Collatz conjecture results in iterations of odd integers only. To start from an even integer, we simply reduce it to an odd integer, by dividing it by 2 as many times as needed to achieve an odd result.

Table 3. Collatz iterations simplified to odd integers only.

n	O_{n}	$\left(O_{n}\right)_{b}$	e / o	$3 O_{n}+1$	$\left(3 O_{n}+1\right)_{b}$	p_{n}	$\left(2^{p_{n}}\right)_{b}$
0	11	1011	o	34	100010	1	10
1	17	10001	o	52	110100	2	100
2	13	1101	o	40	101000	3	1000
3	5	101	o	16	10000	4	10000
4	1	1	o				

There is one more simplification we can do.
The process introduced below differs from the original Collatz proposition, however, it produces the same results. To distinguish it from the above explanations, symbol A_{n} is used as an element of the iterations.

Starting from any positive integer A_{0}, we do not need to constantly divide by $2^{p_{n}}$. To keep this process aligned with the orginal Collatz conjecture, instead of always adding 1 , we have to add the least significant nonzero bit of A_{n}. By this, we allow A_{n} to increase, ultimately reaching, instead of 1 , integer in the form of 2^{p}, where p is a positive integer.

Table 4. Improved Collatz conjecture - iterations without divisions.

n	A_{n}	$\left(A_{n}\right)_{b}$	$3 A_{n}$	$\left(3 A_{n}\right)_{b}$	p_{n}	$\left(2^{p_{n}}\right)_{b}$	$3 A_{n}+2^{p_{n}}$	$\left(3 A_{n}+2^{p_{n}}\right)_{b}$	O_{n}
0	11	1011	33	100001	0	1	34	$\mathbf{1 0 0 0 1 0}$	$\mathbf{1 7}$
1	34	100010	102	1100110	1	10	104	$\mathbf{1 1 0 1 0 0 0}$	$\mathbf{1 3}$
2	104	1101000	312	100111000	3	1000	320	$\mathbf{1 0 1 0 0 0 0 0 0}$	$\mathbf{5}$
3	320	101000000	960	1111000000	6	1000000	1024	$\mathbf{1 0 0 0 0 0 0 0 0 0 0}$	$\mathbf{1}$
4	1024	10000000000							

Notice that corresponding odd integers are still present in such iterations in column O_{n} in Table 4. They are also visible in column $\left(3 A_{n}+2^{p_{n}}\right)_{b}$ in bold, but for each iteration they are multiplied by constantly increasing powers of 2 .

Formal definition of this improved Collatz conjecture is presented below.
Definition 3.2. For any positive integer A_{0} if iterating

$$
\begin{equation*}
A_{n+1}=3 A_{n}+l s b\left(A_{n}\right) \tag{3.3}
\end{equation*}
$$

where $l s b\left(A_{n}\right)$ is the least significant nonzero bit of A_{n}, ultimately we get $A_{n}=2^{p}$, where p is positive integer.

This way we have two equivalent methods of iterating the Collatz conjecture. The first one, proposed in (3.2), is a simplified version of (1.1) that only skips all even numbers and, as original, finally reaches 1 . The second one, without any divisions by 2 , proposed in (3.3), ultimately reaches 2^{p}, where p is a positive integer. In this case, the result in binary representation is just 1 followed by the sequence of zeros. Each of these two methods have exactly the same number of steps as they are strictly connected.

Example 3.3. In Table 5, we see a comparison of iterations through both methods side by side; without divisions (3.3) as A_{n} and with divisions (3.2) as O_{n}, starting from 11 .

Table 5. Equivalence of Collatz iterations without divisions A_{n} and with divisions O_{n} starting from 11.

n	A_{n}	$\left(A_{n}\right)_{b}$	O_{n}	$\left(O_{n}\right)_{b}$
0	11	$\mathbf{1 0 1 1}$	11	1011
1	34	$\mathbf{1 0 0 0 1 0}$	17	10001
2	104	$\mathbf{1 1 0 1 0 0 0}$	13	1101
3	320	$\mathbf{1 0 1 0 0 0 0 0 0}$	5	101
4	1024	$\mathbf{1} 0000000000$	1	1

Example 3.4. In Table 6, we see a comparison of iterations through both methods side by side; without divisions (3.3) as A_{n} and with divisions (3.2) as O_{n}, starting from 57 .

Table 6. Equivalence of Collatz iterations without divisions A_{n} and with divisions O_{n} starting from 57 .

n	A_{n}	$\left(A_{n}\right)_{b}$	O_{n}	$\left(O_{n}\right)_{b}$
0	57	$\mathbf{1 1 1 0 0 1}$	57	111001
1	172	$\mathbf{1 0 1 0 1 1 0 0}$	43	101011
2	520	$\mathbf{1 0 0 0 0 0 1 0 0 0}$	65	1000001
3	1568	$\mathbf{1 1 0 0 0 1 0 0 0 0 0}$	49	110001
4	4736	$\mathbf{1 0 0 1 0 1 0 0 0 0 0 0 0}$	37	100101
5	14336	$\mathbf{1 1 1 0 0 0 0 0 0 0 0 0 0 0}$	7	111
6	45056	$\mathbf{1 0 1 1} 000000000000$	11	1011
7	139264	$\mathbf{1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0}$	17	10001
8	425984	$\mathbf{1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$	13	1101
9	1310720	$\mathbf{1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$	5	101
10	4194304	$\mathbf{1 0}$	1	1

Example 3.5. Relations between $A_{n}, O_{n}, l s b\left(A_{n}\right)$ and $m s b\left(A_{n}\right)$ are shown in the example below:

$\boldsymbol{A}_{\boldsymbol{n}}$ is the entire integer, all bits in binary notation,
$\boldsymbol{O}_{\boldsymbol{n}}$ is the odd base of A_{n}, which are only bits between first and last nonzero bits, $\boldsymbol{l} \boldsymbol{s} \boldsymbol{b}\left(\boldsymbol{A}_{\boldsymbol{n}}\right)$ is the least significant nonzero bit of A_{n} in the form of 2^{p}, $\boldsymbol{m} \boldsymbol{s} \boldsymbol{b}\left(\boldsymbol{A}_{\boldsymbol{n}}\right)$ is the most significant bit of A_{n} in the form of 2^{q},
where p, q are positive integers.

4. Elaboration on Improved Collatz conjecture

Considering iterations of A_{n} through the improved Collatz conjecture proposed in (3.3) a very interesting feature can be seen. The least significant nonzero bit $\operatorname{lsb}\left(A_{n}\right)$ is almost always just a small fraction of A_{n}. Therefore, the most significant bit $m s b\left(A_{n}\right)$ tends to grow with coefficient on average close to 3 with each iteration. Using the improved Collatz conjecture

$$
A_{n+1}=3 A_{n}+l s b\left(A_{n}\right)
$$

we usually get

$$
\begin{equation*}
\frac{\operatorname{lsb}\left(A_{n}\right)}{A_{n}} \approx 0 \tag{4.1}
\end{equation*}
$$

therefore, we can say that on average

$$
\begin{equation*}
m s b\left(A_{n+1}\right) \approx 3 \cdot m s b\left(A_{n}\right) \tag{4.2}
\end{equation*}
$$

Small deviations from this rule can be observed, when interactions with other bits of lower significance occur (especially when O_{n} is small), which can temporarily make this coefficient slightly higher.

On the other hand, the least significant bit $l s b\left(A_{n}\right)$, being a part of A_{n}, is each time multiplied by 3 and additionally increased by adding $l s b\left(A_{n}\right)$. Therefore, the least significant bit of A_{n} tends to grow with coefficient on average close to 4 with each iteration.

When iterating

$$
\begin{equation*}
A_{n+1}=3 A_{n}+l s b\left(A_{n}\right) \tag{4.3}
\end{equation*}
$$

on average, we have

$$
\begin{align*}
l s b\left(A_{n+1}\right) & \approx 3 \cdot l s b\left(A_{n}\right)+l s b\left(A_{n}\right) \\
& \approx 4 \cdot l s b\left(A_{n}\right) . \tag{4.4}
\end{align*}
$$

A deviation from this rule can occur through interactions with other bits of A_{n}. The coefficient can be temporary much higher than 4 , when a sequence of bits in the form of "...10101010101" appears at the end of O_{n} which is a part of A_{n} (see Figure 2 for A_{0}). In this case, we can observe a rapid shortening of A_{n}. This coefficient can also be temporarily smaller, when a sequence of consecutive 1's appears at the end of O_{n}. In this case, this coefficient is temporarily equal 2 , until number of 1 's is reduced one by one in the following iterations (compare Table 9).

Even if both described dependencies can be temporarily disturbed, eventually in a large number of iterations they become very evident. As a result of their interactions, the distance between the most significant bit $m s b\left(A_{n}\right)$ and the least significant nonzero bit $l s b\left(A_{n}\right)$ gets shortened.

Notice that a difference in lengths between $\operatorname{msb}\left(A_{n}\right)$ and $l s b\left(A_{n}\right)$ represents the length of O_{n} in bits.

We see

$$
\begin{equation*}
m s b\left(A_{n}\right)-l s b\left(A_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m s b\left(A_{n}\right) / l s b\left(A_{n}\right) \rightarrow 1, \text { as } n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Example 4.1. Comparison of growth trends between the most significant bit $m s b\left(A_{n}\right)$ and the least significant nonzero bit $l s b\left(A_{n}\right)$.

Figure 1. Comparison of growth trends between $m s b\left(A_{n}\right)$ and $l s b\left(A_{n}\right)$ starting from 57.

n	A_{n}	$\left(A_{n}\right)_{b}$	O_{n}	$\left(O_{n}\right)_{b}$
0	57	$\mathbf{1 1 1 0 0 1}$	57	111001
1	172	$\mathbf{1 0 1 0 1 1 0 0}$	43	101011
2	520	$\mathbf{1 0 0 0 0 0 1 0 0 0}$	65	1000001
3	1568	$\mathbf{1 1 0 0 0 1 0 0 0 0 0}$	49	110001
4	4736	$\mathbf{1 0 0 1 0 1 0 0 0 0 0 0 0}$	37	100101
5	14336	$\mathbf{1 1 0 0 0 0 0 0 0 0 0 0 0}$	7	111
6	45056	$\mathbf{1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0}$	11	1011
7	139264	$\mathbf{1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0}$	17	10001
8	425984	$\mathbf{1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$	13	1101
9	1310720	$\mathbf{0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$	5	101
10	4194304	$\mathbf{1 0}$	1	1

Figure 2. Comparison of growth trends between $m s b\left(A_{n}\right)$ and $l s b\left(A_{n}\right)$. Special case when A_{n} contains a sequence of bits "...1010101".

n	A_{n}	$\left(A_{n}\right)_{b}$	O_{n}	$\left(O_{n}\right)_{b}$
0	1877	$\mathbf{1 1 1 0 1 0 1 0 1 0 1}$	1877	11101010101
1	5632	$\mathbf{1 0 1 1 0 0 0 0 0 0 0 0 0}$	11	1011
2	17408	$\mathbf{1 0 0 0 1} 0000000000$	17	10001
3	53248	$\mathbf{1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0}$	13	1101
4	163840	101000000000000000	5	101
5	524288	$\mathbf{1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$	1	1

When initial integer A_{0} is very big, on average

$$
\begin{equation*}
\frac{m s b\left(A_{n+1}\right)}{m s b\left(A_{n}\right)}=3 \tag{4.7}
\end{equation*}
$$

and on average

$$
\begin{equation*}
\frac{l s b\left(A_{n+1}\right)}{l s b\left(A_{n}\right)}=4 \tag{4.8}
\end{equation*}
$$

we can propose a formula to estimate the number of iterations required to reach $O_{n}=1$, which means $A_{n}=2^{p}$, where p is a positive integer.
When using binary numbers, we know that each position represents a power of 2 . Multiplication by 3 extends the length of a number by

$$
\begin{equation*}
\log _{2}(3)=1.584963 \tag{4.9}
\end{equation*}
$$

By continuous multiplication of a binary number by 3 , its length increases on average by 1.584963 bits(positions) per operation.

We check how fast the least significant bit $\operatorname{lsb}\left(A_{n}\right)$ increases its length, we have

$$
\begin{equation*}
\log _{2}(4)=2 \tag{4.10}
\end{equation*}
$$

We see that by continuous multiplication of the least significant nonzero bit by 4 , its length increases on average by 2 bits(positions) per operation. We calculate how fast $l s b\left(A_{n}\right)$ approaches $m s b\left(A_{n}\right)$.

We have

$$
\begin{equation*}
2-1.584963=0.415037 \tag{4.11}
\end{equation*}
$$

thus $l s b\left(A_{n}\right)$ is on average 0.415037 bits(positions) closer to $m s b\left(A_{n}\right)$ per iteration. Note that a number of needed iterations can be bigger, when at the end of A_{0} we have a sequence of consecutive 1's "...1111111", or it can be dramatically smaller, when at the end we have a sequence of alternating 0 and 1 "...01010101".

Example 4.2. Starting from A_{0}, which is 20000 bits long, we can predict how many times we have to iterate, through the improved version of the Collatz conjecture (3.3), until we finally reach $O_{n}=1$ (which means $A_{n}=2^{p}$, where p is a positive integer). To approximate a number of iterations, we have to divide the length of A_{0} in bits by 0.415037 , in this case

$$
\begin{equation*}
\frac{20000}{0.415037} \approx 48188 \tag{4.12}
\end{equation*}
$$

Exact number of required operations depends on detailed structure of bits in a particular initial integer. However, for big initial integers that do not end with consecutive 1 's or alternating sequences of 0 and 1 , exact number of iterations should be very close to an estimated one. In practice, starting from A_{0}, which was created as randomly generated 20000 bits, the exact number of operations needed to reach 1 was $\mathbf{4 8 0 4 3}$, which is only around 0.3% different from the estimated one.

On Figure 3, we see how length of O_{n}, in number of bits, decreases when iterating initial integer A_{0} consisting of 20000 random bits.

Length of O_{n}, is the difference in bits between the length of $m s b\left(A_{n}\right)$ and the length of $l s b\left(A_{n}\right)$ and decreases with almost perfect accuracy (see Figure 3). However, when we look closer at first 1000 iterations on Figure 4, we see local fluctuations. It is even more visible on Figure 5, where only first 100 iterations are presented.

Above elaboration, together with analysis of ending sequences of 1's, "...111111" described in Section 7 of this work, can be enough to proof the Collatz conjecture, however it is not used for this purpose in this work. It is only presented for better
understanding how integers are processed iterating through the Collatz formula and what we can observe when analyzing their binary representations.

Figure 3. Decrease of O_{n} length for 20000 bits long initial A_{0}

Figure 4. Decrease of O_{n} length for 20000 bits long initial A_{0} (first 1000 iterations).

Figure 5. Decrease of O_{n} length for 20000 bits long initial A_{0} (first 100 iterations).

5. Proof of Theorem 1.1

Proof. For any positive integer I_{0}, we find its base odd integer using (2.7) and it is

$$
\begin{equation*}
O_{0}=\frac{I_{0}}{l s b\left(I_{0}\right)} \tag{5.1}
\end{equation*}
$$

Value of $l s b\left(I_{0}\right)$ is in the form of 2^{p}, where $p \geq 0$ and $p=0$ when I_{0} is odd, thus

$$
\begin{equation*}
O_{0}=\frac{I_{0}}{2^{p}} \tag{5.2}
\end{equation*}
$$

where $p \geq 0$.
We iterate this odd positive integer O_{0} through simplified Collatz conjecture presented in equation (3.2). We have

$$
\begin{gather*}
3 \frac{3 \frac{3 \frac{3 O_{0}+1}{2^{p} 0}+1}{2^{p_{1}}}+1}{2^{p_{2}}}+1 \\
\frac{3 \frac{2^{p}}{2^{p_{n-1}}}+1}{2^{2}}=1 \tag{5.3}
\end{gather*}
$$

and O_{n} is odd for every n, so $\left(3 O_{n}+1\right)$ is always even, therefore

$$
\begin{equation*}
p_{0}, p_{1}, p_{2}, \ldots, p_{n-2}, p_{n-1} \geq 1 \tag{5.4}
\end{equation*}
$$

Equation (5.3) can be also presented like this

$$
\begin{equation*}
\left(\left(\left(\left(\left(\left(3 O_{0}+1\right) \frac{3}{2^{p_{0}}}+1\right) \frac{3}{2^{p_{1}}}+1\right) \frac{3}{2^{p_{2}}}+1\right) \ldots\right) \frac{3}{2^{p_{n-2}}}+1\right) \frac{1}{2^{p_{n-1}}}=1 \tag{5.5}
\end{equation*}
$$

By performing simple algebraic transformations we get

$$
\begin{align*}
& 3^{n} O_{0}=\left(2^{p_{n-1}} 2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right)-\left(2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right) 3^{0}- \\
& \quad-\left(2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right) 3^{1}-\cdots-2^{p_{1}} 2^{p_{o}} 3^{n-3}-2^{p_{o}} 3^{n-2}-3^{n-1} \tag{5.6}
\end{align*}
$$

Now, we can substitute O_{0} from (5.2)

$$
\begin{gathered}
3^{n} \frac{I_{0}}{2^{p}}=\left(2^{p_{n-1}} 2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right)-\left(2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right) 3^{0}-\ldots \\
\quad-\left(2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}}\right) 3^{1}-\cdots-2^{p_{1}} 2^{p_{o}} 3^{n-3}-2^{p_{o}} 3^{n-2}-3^{n-1}
\end{gathered}
$$

and multiply both sides by 2^{p}

$$
\begin{aligned}
3^{n} I_{0} & =\left(2^{p_{n-1}} 2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p}\right)-\left(2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p}\right) 3^{0}-\ldots \\
& -\left(2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p}\right) 3^{1}-\cdots-2^{p_{1}} 2^{p_{o}} 2^{p} 3^{n-3}-2^{p_{o}} 2^{p} 3^{n-2}-2^{p} 3^{n-1} .
\end{aligned}
$$

We substitute the following:

$$
\begin{align*}
2^{p_{n-1}} 2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p} & =2^{m_{n}}, \\
2^{p_{n-2}} 2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p} & =2^{m_{n-1}}, \\
2^{p_{n-3}} \ldots 2^{p_{1}} 2^{p_{0}} 2^{p} & =2^{m_{n-2}}, \\
\ldots & \tag{5.7}\\
2^{p_{1}} 2^{p_{o}} 2^{p} & =2^{m_{2}}, \\
2^{p_{o}} 2^{p} & =2^{m_{1}}, \\
2^{p} & =2^{m_{0}},
\end{align*}
$$

where all $p_{0}, p_{1}, p_{2}, \ldots, p_{n-2}, p_{n-1} \geq 1$ and $p \geq 0$.

We finally have

$$
\begin{equation*}
3^{n} I_{0}=2^{m_{n}}-2^{m_{n-1}} 3^{0}-2^{m_{n-2}} 3^{1}-\cdots-2^{m_{1}} 3^{n-2}-2^{m_{0}} 3^{n-1} \tag{5.8}
\end{equation*}
$$

where $m_{n}>m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0$ and m_{0} can eventually be 0 , when I_{0} is odd.

6. Procedure

We consider the following procedure.

Procedure 1.

Step 1. Take any positive integer A_{0} and define $B_{0}=0, C_{0}=l s b\left(A_{0}\right)$ (the least significant nonzero bit of A_{0} in its binary representation). Let our initial equation be

$$
\begin{equation*}
A_{0}=A_{0}-B_{0} \tag{6.1}
\end{equation*}
$$

Step 2. Multiply both sides of equation by 3

$$
\begin{equation*}
3 A_{0}=3 A_{0}-3 B_{0} \tag{6.2}
\end{equation*}
$$

Step 3. On the right side of equation we add C_{0} to A and B sections

$$
\begin{equation*}
3 A_{0}=\left(3 A_{0}+C_{0}\right)-\left(3 B_{0}+C_{0}\right) \tag{6.3}
\end{equation*}
$$

This is still a valid equation because $B_{0}=0$ and C_{0} elements cancel each other.

Step 4. We name A and B sections as A_{1} and B_{1}, so we have

$$
\begin{equation*}
3^{1} A_{0}=A_{1}-B_{1} \tag{6.4}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{1}=3 A_{0}+C_{0} \tag{6.5}\\
B_{1}=3 B_{0}+C_{0} \tag{6.6}\\
C_{0}=l s b\left(A_{0}\right) . \tag{6.7}
\end{gather*}
$$

and

Step 5. By repeating steps 2 to 4 , we get universal equations for iteration n

$$
\begin{equation*}
3^{n} A_{0}=A_{n}-B_{n} \tag{6.8}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n}=3 A_{n-1}+C_{n-1} \tag{6.9}\\
& B_{n}=3 B_{n-1}+C_{n-1} \\
& C_{n-1}=l s b\left(A_{n-1}\right)
\end{align*}
$$

By definition, C_{n-1} is the least significant nonzero bit of A_{n-1}, so

$$
\begin{equation*}
0<C_{n-1} \leq A_{n-1} \tag{6.12}
\end{equation*}
$$

thus

$$
\begin{equation*}
3 A_{n-1}<A_{n} \leq 4 A_{n-1} \tag{6.13}
\end{equation*}
$$

Notice that for every iteration n

$$
\begin{align*}
& A_{n}>B_{n} \tag{6.14}\\
& A_{n}>3 A_{n-1} \tag{6.15}\\
& B_{n}>3 B_{n-1} \tag{6.16}\\
& C_{n} \geq 2 C_{n-1} \tag{6.17}
\end{align*}
$$

we can continue this procedure forever.

Remark 6.1. When increasing index from n to $n+1$ and calculating

$$
A_{n+1}=3 A_{n}+C_{n}
$$

we have

$$
l s b\left(A_{n}\right)=C_{n}
$$

also

$$
l s b\left(3 A_{n}\right)=C_{n}
$$

but

$$
l s b\left(3 A_{n}+C_{n}\right)=C_{n+1}
$$

therefore

$$
C_{n+1} \geq 2 C_{n}
$$

General rule for increase of C_{n} when iterating Procedure 1 is

$$
\begin{equation*}
C_{n+1}=2^{p} \cdot C_{n} \tag{6.18}
\end{equation*}
$$

where p is a positive integer.
Note that minimal possible change of C_{n} as n increases is

$$
\begin{equation*}
C_{n+1}=2 \cdot C_{n} \tag{6.19}
\end{equation*}
$$

Example 6.2. Minimal change of C_{n}.
We check how C_{n} increases starting from 3 . For the initial value $A_{n}=3$ we have

$$
C_{n}=l s b\left(A_{n}\right)=l s b(3)=l s b\left(1 \mathbf{1}_{b}\right)=2^{0}=1
$$

We see that in the next iteration it is

$$
C_{n+1}=l s b\left(3 A_{n}+C_{n}\right)=l s b(10)=l s b\left(1010_{b}\right)=2^{1}=2
$$

In this case the change of C_{n} is minimal

$$
C_{n+1}=\mathbf{2}^{\mathbf{1}} C_{n}
$$

Example 6.3. Non-minimal change of C_{n}.
Now we check how C_{n} increases starting from 5 . For the initial value $A_{n}=5$ we have

$$
C_{n}=l s b\left(A_{n}\right)=l s b(5)=l s b\left(10 \mathbf{1}_{b}\right)=2^{0}=1
$$

We see that in the next iteration it is

$$
C_{n+1}=l s b\left(3 A_{n}+C_{n}\right)=l s b(16)=l s b\left(10000_{b}\right)=2^{4}=16
$$

In this case the change of C_{n} is non-minimal

$$
C_{n+1}=\mathbf{2}^{4} C_{n}
$$

7. Series of the consecutive minimal changes of C_{n}

Remark 7.1. When iterating through Procedure 1, we see that the number of consecutive minimal changes of C_{n} (when $C_{n+1}=2 C_{n}$) is limited by the number of consecutive nonzero bits attached to $l s b\left(A_{n}\right)$ in binary representation of A_{n}. This dependency can be formulated as follows.

The number of consecutive minimal changes of C_{n} is equal to $N\left(A_{n}\right)$, the number of consecutive nonzero bits attached to $l s b\left(A_{n}\right)$ in A_{n} (see Definition 2.14).

In case when there are no nonzero bits attached to $l s b\left(A_{n}\right)$, we have $C_{n+1}>2 C_{n}$ (see Table 7 for A_{3} and A_{4}, where we have corresponding 4 and 4 in the column $\left.C_{n+1} / C_{n}\right)$. The number of consecutive minimal changes of C_{n} in example below (number of 2's in C_{n+1} / C_{n}) is equal to $N\left(A_{0}\right)$.
Example 7.2. In this case $N\left(A_{0}\right)=3$, thus the number of consecutive minimal changes of C_{n} is 3 .

Table 7. Relation between $N\left(A_{n}\right)$, the number of consecutive nonzero bits attached to $l s b\left(A_{n}\right)$, and the number of consecutive minimal changes of C_{n}.

n	A_{n}	$N\left(A_{n}\right)$	$3 A_{n}$	C_{n}	C_{n+1} / C_{n}
0	101111_{b}	3	10001101_{b}	1_{b}	2
1	10001110_{b}	2	110101010_{b}	10_{b}	$\mathbf{2}$
2	110101100_{b}	1	10100000100_{b}	100_{b}	$\mathbf{2}$
3	10100001000_{b}	0	111100011000_{b}	1000_{b}	4
4	111100100000_{b}	0	10110101100000_{b}	100000_{b}	4
5	10110110000000_{b}	1	1000100010000000_{b}	10000000_{b}	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Example 7.3. In this case $N\left(A_{0}\right)=2$, thus the number of consecutive minimal changes of C_{n} is 2 .

Table 8. Relation between how many times $\frac{C_{n+1}}{C_{n}}=2$ and $N\left(A_{n}\right)$.

n	A_{n}	$N\left(A_{n}\right)$	$3 A_{n}$	C_{n}	C_{n+1} / C_{n}
0	1110_{b}	$\mathbf{2}$	101010_{b}	10_{b}	$\mathbf{2}$
1	101100_{b}	1	10000100_{b}	100_{b}	$\mathbf{2}$
2	10001000_{b}	0	110011000_{b}	1000_{b}	4
3	110100000_{b}	0	10011100000_{b}	100000_{b}	8
4	10100000000_{b}	1	111100000000_{b}	100000000_{b}	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Remark 7.4. Notice that as we iterate and $n \rightarrow \infty$, each time $N\left(A_{n}\right)$ decreases to 0 , gets new value and decreases to 0 again and so on ... (compare Example 7.6).

Remark 7.5. Notice that for every iteration n, for which $N\left(A_{n}\right)=0$, we have $C_{n+1} / C_{n}>2$.

Example 7.6. We check initial iterations of number $27\left(11011_{b}\right)$ using the Procedure 1. In Table 9, we see how $N\left(A_{n}\right)$ decreases to 0 . When $N\left(A_{n}\right)$ is greater than $0, C_{n}$ has minimal change $\left(C_{n+1}=2 C_{n}\right)$. When $N\left(A_{n}\right)$ reaches 0 , change of C_{n} is not minimal $\left(C_{n+1}>2 C_{n}\right)$.

Table 9. $N\left(A_{n}\right)$ decreases to 0 in series, as $n \rightarrow \infty$.

n	11011	1	$N\left(A_{n}\right)$
C_{n+1} / C_{n}			
0	1010010	0	2
1	11111000	4	4
2	1011110000		3
3	1100011100000	2	2
4	101000010000000		1
5	1111001000000000	0	2
6	101101100000000000		1
7	10001001000000000000		0
8	110011100000000000000	2	4
9	10011011000000000000000	1	2
10	111010010000000000000000	0	2
11	10101111000000000000000000		3
12	1000001110000000000000000000		2
13	11000101100000000000000000000		1
14		\ldots	2
15	\ldots	2	
16	1001010001000000000000000000000		0
\ldots		\ldots	

Remark 7.7. As explained above, minimal change of C_{n} requires a series of 1's at the end of O_{n}, which decreases with each iteration. To achieve constantly minimal change of C_{n} we need an infinitely long series of 1 's. For every integer, such series is always limited, therefore inevitably after sequence of minimal changes of C_{n}, where $C_{n+1}=2 C_{n}$, we have bigger change, where $C_{n+1}>2 C_{n}$.

8. SERIES OF B_{n}

We check how B_{n} grows, assuming $C_{0}=1$ and constantly minimal change of $\boldsymbol{C}_{\boldsymbol{n}}$ which is

$$
\begin{equation*}
C_{n+1}=2 C_{n} \tag{8.1}
\end{equation*}
$$

for every n.

TABLE 10. Change of B_{n} with $n \rightarrow \infty$, when $C_{n+1}=2 C_{n}$.

n	B_{n}	C_{n}	$3 B_{n}+C_{n}$
0	0	2^{0}	2^{0}
1	2^{0}	2^{1}	$3^{1} 2^{0}+2^{1}$
2	$3^{1} 2^{0}+2^{1}$	2^{2}	$3^{2} 2^{0}+3^{1} 2^{1}+2^{2}$
3	$3^{2} 2^{0}+3^{1} 2^{1}+2^{2}$	2^{3}	$3^{3} 2^{0}+3^{2} 2^{1}+3^{1} 2^{2}+2^{3}$
4	$3^{3} 2^{0}+3^{2} 2^{1}+3^{1} 2^{2}+2^{3}$	2^{4}	$3^{4} 2^{0}+3^{3} 2^{1}+3^{2} 2^{2}+3^{1} 2^{3}+2^{4}$
5	$3^{4} 2^{0}+3^{3} 2^{1}+3^{2} 2^{2}+3^{1} 2^{3}+2^{4}$	2^{5}	$3^{5} 2^{0}+3^{4} 2^{1}+3^{3} 2^{2}+3^{2} 2^{3}+3^{1} 2^{4}+2^{5}$

From Table 10, we get the following formula

$$
\begin{equation*}
B_{n}=3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1} \tag{8.2}
\end{equation*}
$$

assuming a minimal change of C_{n}

$$
\begin{equation*}
C_{n+1}=2 C_{n}, \tag{8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{0}=2^{0}=1 \tag{8.4}
\end{equation*}
$$

As explained earlier (Remark 7.7), as $n \rightarrow \infty, C_{n+1}$ can not always equal $2 C_{n}$, so we check how B_{n} grows when bigger change of C_{n} occurs every so often.

TABLE 11. Change of B_{n}, as $n \rightarrow \infty$, when C_{n+1} does not always equal $2 C_{n}$.

n	B_{n}	C_{n}	C_{n+1} / C_{n}
0	0	2^{0}	2^{1}
1	2^{0}	2^{1}	2^{1}
2	$3^{2} 2^{0}+3^{1} 2^{1}+2^{2}$	2^{4}	2^{1}
3	$3^{3} 2^{0}+3^{2} 2^{1}+3^{1} 2^{2}+2^{4}$	2^{5}	2^{3}
4	$3^{4} 2^{0}+3^{3} 2^{1}+3^{2} 2^{2}+3^{1} 2^{4}+2^{5}$	$\mathbf{2}^{8}$	$\mathbf{2}^{2}$
5	$3^{5} 2^{0}+3^{4} 2^{1}+3^{3} 2^{2}+3^{2} 2^{4}+3^{1} 2^{5}+\mathbf{2}^{8}$	$\mathbf{2}^{10}$	2^{1}
6	$3^{6} 2^{0}+3^{5} 2^{1}+3^{4} 2^{2}+3^{3} 2^{4}+3^{2} 2^{5}+3^{1} \mathbf{2}^{8}+\mathbf{2}^{10}$	2^{11}	
7	2^{6}		
8	$3^{7} 2^{0}+3^{6} 2^{1}+3^{5} 2^{2}+3^{4} 2^{4}+3^{3} 2^{5}+3^{2} \mathbf{2}^{8}+3^{1} \mathbf{2}^{10}+2^{11}$		

In Table 11, we see the influence of non minimal changes of C_{n} on B_{n}. In all cases, without any artificial assumptions about minimal changes of C_{n}, formula for B_{n} is

$$
\begin{equation*}
B_{n}=3^{n-1} \cdot 2^{m_{0}}+3^{n-2} \cdot 2^{m_{1}}+3^{n-3} \cdot 2^{m_{2}}+\ldots+3^{1} \cdot 2^{m_{n-2}}+3^{0} \cdot 2^{m_{n-1}} \tag{8.5}
\end{equation*}
$$

and differences between consecutive m's can be greater than 1 . This can be presented as a condition for m 's to be integers and

$$
\begin{equation*}
m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0 \tag{8.6}
\end{equation*}
$$

9. Equation for 3^{n}

Theorem 9.1. For every positive integer n, 3 to the power of n can be expanded into a sequence

$$
\begin{equation*}
3^{n}=3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n} \tag{9.1}
\end{equation*}
$$

which can also be presented as

$$
\begin{equation*}
3^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}-1}\left(3^{\mathrm{n}-1-\mathrm{k}} 2^{\mathrm{k}}\right)+2^{\mathrm{n}} \tag{9.2}
\end{equation*}
$$

Remark 9.2. Notice that in (9.1), all differences between consecutive powers of 2 are strictly equal to 1 .

Proof. For $n=1$, we have

$$
\begin{aligned}
3^{1} & =3^{0} \cdot 2^{0}+2^{1} \\
& =1+2 \\
& =3^{1} .
\end{aligned}
$$

To see a bit more complicated case, for $n=2$, we have

$$
\begin{aligned}
3^{2} & =3^{1} \cdot 2^{0}+3^{0} \cdot 2^{1}+2^{2} \\
& =3+2+4 \\
& =9 \\
& =3^{2} .
\end{aligned}
$$

Assuming it is true for n, we check if it is true for $n+1$. We start from

$$
3^{n}=3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n} \quad \mid(\cdot 3)
$$

After multiplication on both sides by 3

$$
\begin{aligned}
3^{n+1} & =3^{n} \cdot 2^{0}+3^{n-1} \cdot 2^{1}+3^{n-2} \cdot 2^{2}+\ldots+3^{2} \cdot 2^{n-2}+3^{1} \cdot 2^{n-1}+3 \cdot 2^{n} \\
& =3^{n} \cdot 2^{0}+3^{n-1} \cdot 2^{1}+3^{n-2} \cdot 2^{2}+\ldots+3^{2} \cdot 2^{n-2}+3^{1} \cdot 2^{n-1}+(2+1) \cdot 2^{n} \\
& =3^{n} \cdot 2^{0}+3^{n-1} \cdot 2^{1}+3^{n-2} \cdot 2^{2}+\ldots+3^{2} \cdot 2^{n-2}+3^{1} \cdot 2^{n-1}+\left(2+3^{0}\right) \cdot 2^{n} \\
& =3^{n} \cdot 2^{0}+3^{n-1} \cdot 2^{1}+3^{n-2} \cdot 2^{2}+\ldots+3^{2} \cdot 2^{n-2}+3^{1} \cdot 2^{n-1}+3^{0} \cdot 2^{n}+2^{n+1} .
\end{aligned}
$$

Now we substitute $n+1=w$

$$
\begin{equation*}
3^{w}=3^{w-1} \cdot 2^{0}+3^{w-2} \cdot 2^{1}+3^{w-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{w-2}+3^{0} \cdot 2^{w-1}+2^{w} \tag{9.3}
\end{equation*}
$$

which proves that formula (9.1) is correct.

$$
\text { 10. Limit of } \frac{A_{n}}{B_{n}}
$$

Lemma 10.1. When iterating Procedure 1 for any initial positive integer A_{0} we have

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}<\frac{A_{n}}{B_{n}} \tag{10.1}
\end{equation*}
$$

for all $n>0$.

Proof. From (6.9) and (6.10) we have

$$
\begin{equation*}
A_{n+1}=A_{n}\left(3+\frac{C_{n}}{A_{n}}\right) \tag{10.2}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n+1}=B_{n}\left(3+\frac{C_{n}}{B_{n}}\right) \tag{10.3}
\end{equation*}
$$

From (6.14)

$$
A_{n}>B_{n}
$$

for all $n>0$, so

$$
\left(3+\frac{C_{n}}{A_{n}}\right)<\left(3+\frac{C_{n}}{B_{n}}\right)
$$

therefore

$$
\frac{\left(3+\frac{C_{n}}{A_{n}}\right)}{\left(3+\frac{C_{n}}{B_{n}}\right)}<1
$$

Dividing (10.2) by (10.3)

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}=\frac{A_{n}}{B_{n}} \cdot \frac{\left(3+\frac{C_{n}}{A_{n}}\right)}{\left(3+\frac{C_{n}}{B_{n}}\right)} \tag{10.4}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}<\frac{A_{n}}{B_{n}} \tag{10.5}
\end{equation*}
$$

for all $n>0$.

Lemma 10.2. When iterating Procedure 1 for any initial positive integer A_{0} we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=1 \tag{10.6}
\end{equation*}
$$

Notice that we always have

$$
\begin{equation*}
C_{n}=2^{p_{n}} \cdot C_{n-1} \tag{10.7}
\end{equation*}
$$

where p_{n} is positive integer and

$$
\begin{equation*}
C_{0}=2^{p_{0}}, p_{0} \geq 0 \tag{10.8}
\end{equation*}
$$

Proof. We analyse

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}
$$

From (6.8)

$$
A_{n}=3^{n} A_{0}+B_{n},
$$

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}} & =\lim _{n \rightarrow \infty} \frac{3^{n} A_{0}+B_{n}}{B_{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{B_{n}}{B_{n}}+\frac{3^{n} A_{0}}{B_{n}}\right) \tag{10.9}\\
& =\lim _{n \rightarrow \infty}\left(1+\frac{3^{n} A_{0}}{B_{n}}\right) .
\end{align*}
$$

Substituting B_{n} from (8.2) and 3^{n} from (9.1) we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1+\frac{3^{n} A_{0}}{B_{n}}\right) \\
=\lim _{n \rightarrow \infty}\left(1+\frac{\left(3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+\mathbf{2}^{\mathbf{n}}\right) A_{0}}{3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}}\right) .
\end{gathered}
$$

Notice that the above substitution for B_{n} is correct only under condition that C_{n} equals $2 C_{n-1}$ for every n and $C_{0}=1$, see (8.3) and (8.4).

One can check that

$$
3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}
$$

grows much faster than $\mathbf{2}^{\mathbf{n}}$ as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty}\left(\frac{3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n}}{3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}}\right)=1
$$

which makes:

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1+\frac{\left(3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n}\right) A_{0}}{3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}}\right) \\
=1+A_{0}
\end{gathered}
$$

Finally, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=1+A_{0} \tag{10.10}
\end{equation*}
$$

when

$$
\begin{equation*}
C_{n}=2 C_{n-1} \tag{10.11}
\end{equation*}
$$

for every n and

$$
\begin{equation*}
C_{0}=1 \tag{10.12}
\end{equation*}
$$

For any initial A_{0}, the condition (10.11) is impossible to be fulfilled, when $n \rightarrow \infty$ (see Remark 7.4, Remark 7.1 and Remark 7.7). After certain number of repetitions (see Remark 7.5) $C_{n}>2 C_{n-1}$ always occurs. Whenever $C_{n}>2 C_{n-1}$ occurs, value
of B_{n} in equation (10.9) grows gradually, faster than the value of 3^{n}. We use the equation presented in (8.5)

$$
\begin{equation*}
B_{n}=3^{n-1} \cdot 2^{m_{0}}+3^{n-2} \cdot 2^{m_{1}}+3^{n-3} \cdot 2^{m_{2}}+\ldots+3^{1} \cdot 2^{m_{n-2}}+3^{0} \cdot 2^{m_{n-1}} \tag{10.13}
\end{equation*}
$$

and

$$
m_{n-1}>m_{n-2}>\ldots>m_{2}>m_{1}>m_{0} \geq 0
$$

In above representation of B_{n}, differences between consecutive powers of 2 can be greater than 1 , while in formula for 3^{n}, the difference between consecutive powers of 2 is always equal to 1 , as $n \rightarrow \infty$ (compare with Remark 9.2). Therefore, we have

$$
\begin{equation*}
3^{n} \ll B_{n}, \text { as } n \rightarrow \infty, \tag{10.14}
\end{equation*}
$$

which is

$$
\begin{aligned}
& \left(3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n}\right) \\
& \quad \ll\left(3^{n-1} \cdot 2^{m_{0}}+3^{n-2} \cdot 2^{m_{1}}+3^{n-3} \cdot 2^{m_{2}}+\ldots+3^{1} \cdot 2^{m_{n-2}}+3^{0} \cdot 2^{m_{n-1}}\right),
\end{aligned}
$$

thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \left(\frac{3^{n} A_{0}}{B_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3^{n-1} \cdot 2^{0}+3^{n-2} \cdot 2^{1}+3^{n-3} \cdot 2^{2}+\ldots+3^{1} \cdot 2^{n-2}+3^{0} \cdot 2^{n-1}+2^{n}}{3^{n-1} \cdot 2^{m_{0}}+3^{n-2} \cdot 2^{m_{1}}+3^{n-3} \cdot 2^{m_{2}}+\ldots+3^{1} \cdot 2^{m_{n}-2}+3^{0} \cdot 2^{m_{n-1}}}\right) \\
& =0 .
\end{aligned}
$$

Finally,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}} & =\lim _{n \rightarrow \infty}\left(1+\frac{3^{n} A_{0}}{B_{n}}\right) \\
& =\lim _{n \rightarrow \infty}(1+0) \tag{10.15}\\
& =1
\end{align*}
$$

when

$$
\begin{equation*}
C_{n}=2^{p_{n}} \cdot C_{n-1}, \tag{10.16}
\end{equation*}
$$

where p_{n} is an positive integer and

$$
\begin{equation*}
C_{0}=2^{p_{0}}, p_{0} \geq 0 . \tag{10.17}
\end{equation*}
$$

Lemma 10.3. Starting from any positive integer, when iterating Procedure 1, such iteration number k exists, that for all following iterations n

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}<4 \tag{10.18}
\end{equation*}
$$

and then

$$
\begin{equation*}
A_{n}=2^{p} \text {, where } p \in \mathbb{Z}^{+} . \tag{10.19}
\end{equation*}
$$

Proof. When starting Procedure 1 from any positive integer A_{0}, the condition for A_{n} to be in a form of 2^{p} (where p is positive integer) is such that the least significant nonzero bit of A_{n} is

$$
\begin{equation*}
\operatorname{lsb}\left(A_{n}\right)=C_{n}=A_{n} \tag{10.20}
\end{equation*}
$$

From (6.9) and (6.10) we have

$$
\begin{equation*}
A_{n+1}=3 A_{n}+C_{n} \tag{10.21}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n+1}=3 B_{n}+C_{n} \tag{10.22}
\end{equation*}
$$

We substitute $C_{n}=A_{n}$, so

$$
\begin{align*}
A_{n+1} & =3 A_{n}+A_{n} \tag{10.23}\\
& =4 A_{n} \\
B_{n+1} & =3 B_{n}+A_{n} \tag{10.24}
\end{align*}
$$

We extract A_{n} from (10.24)

$$
A_{n}=B_{n+1}-3 B_{n}
$$

and substitute in (10.23)

$$
\begin{aligned}
A_{n+1} & =4 A_{n} \\
& =4\left(B_{n+1}-3 B n\right) \\
& =4 B_{n+1}-12 B_{n} .
\end{aligned}
$$

We divide both sides by B_{n+1}, to get

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}=4-\frac{12 B_{n}}{B_{n+1}} \tag{10.25}
\end{equation*}
$$

Now, we substitue from (6.8)

$$
A_{n}=3^{n} A_{0}+B_{n}
$$

in (10.24), so

$$
\begin{aligned}
B_{n+1} & =3 B_{n}+A_{n} \\
& =3 B_{n}+3^{n} A_{0}+B_{n} \\
& =4 B_{n}+3^{n} A_{0}
\end{aligned}
$$

Finally, we substitute B_{n+1} in (10.25)

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}=4-\frac{12 B_{n}}{4 B_{n}+3^{n} A_{0}} . \tag{10.26}
\end{equation*}
$$

When $n \rightarrow \infty$, from (10.14) we have

$$
\begin{equation*}
3^{n} \ll B_{n} \tag{10.27}
\end{equation*}
$$

$$
\begin{equation*}
\frac{12 B_{n}}{4 B_{n}+3^{n} A_{0}} \rightarrow \frac{12 B_{n}}{4 B_{n}} \rightarrow 3 \tag{10.28}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}} \rightarrow 4-3 \rightarrow 1 \tag{10.29}
\end{equation*}
$$

from (10.26) and it produces the same result, which is already proven in Lemma 10.2. On the other hand, when $3^{n} A_{0}$ is still comparable or bigger than $4 B_{n}$, we have

$$
\begin{equation*}
\frac{12 B_{n}}{4 B_{n}+3^{n} A_{0}}>0 \tag{10.30}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}=4-0^{+}<4 . \tag{10.31}
\end{equation*}
$$

We see that condition for A_{n} to be in a form of 2^{p}, leads us to an ultimate condition

$$
\begin{equation*}
\frac{A_{n+1}}{B_{n+1}}<4 \tag{10.32}
\end{equation*}
$$

From Lemma 10.1, we get that $\frac{A_{n}}{B_{n}}$ is continuously decreasing, so we formulate the final conclusion.

When iterating Procedure 1, as $n \rightarrow \infty$, at certain iteration k, we have $l s b\left(A_{k}\right)=$ A_{k}. For all next iterations, where $n>k$

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}<4 \tag{10.33}
\end{equation*}
$$

and also

$$
\begin{equation*}
A_{n}=2^{p} \tag{10.34}
\end{equation*}
$$

where p is a positive integer.

11. Proof of Theorem 1.2

Proof. We start with any positive integer I_{0}, let $A_{0}=I_{0}$. We start Procedure 1 . Iterating this procedure, as $n \rightarrow \infty$ we have

$$
\begin{equation*}
3^{n} A_{0}=A_{n}-B_{n} \tag{11.1}
\end{equation*}
$$

from (6.8) also

$$
\begin{equation*}
A_{n}>B_{n} \tag{11.2}
\end{equation*}
$$

from (6.14) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=1 \tag{11.3}
\end{equation*}
$$

from Lemma 10.2.

In binary notation, such situation occurs only when:
A_{n} is a single bit in the form of $2^{m_{n}}$, where $m_{n} \in \mathbb{Z}^{+}$and
B_{n} is the sum of almost all bits $2^{p_{n}}$, where $0 \leq p_{n}<m_{n}$, as follows

$$
\begin{aligned}
& \left(A_{n}\right)_{b}=100000000000000 \ldots \\
& \left(B_{n}\right)_{b}=11111111111111 \ldots
\end{aligned}
$$

From Lemma 10.3, we know that when iterating Procedure 1, such k exists, that for all following iterations n, where $n>k$

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}<4 \tag{11.4}
\end{equation*}
$$

and then A_{n} is in the form of

$$
\begin{equation*}
A_{n}=2^{p} \tag{11.5}
\end{equation*}
$$

where p is a positive integer.
Therefore, for all $n>k$ we substitute in (11.1), $A_{n}=2^{m_{n}}$ and B_{n} from (10.13), we finally have

$$
\begin{align*}
3^{n} A_{0} & =2^{m_{n}}-\left(3^{n-1} \cdot 2^{m_{0}}+3^{n-2} \cdot 2^{m_{1}}+\ldots+3^{1} \cdot 2^{m_{n-2}}+3^{0} \cdot 2^{m_{n-1}}\right) \\
& =2^{m_{n}}-3^{n-1} \cdot 2^{m_{0}}-3^{n-2} \cdot 2^{m_{1}}-\ldots-3^{1} \cdot 2^{m_{n-2}}-3^{0} \cdot 2^{m_{n-1}} \tag{11.6}
\end{align*}
$$

Now we sort elements and substitute $A_{0}=I_{0}$ to conclude.
For any initial I_{0}, such positive integer k exists that for every positive integer $n>k$ sequence of integers

$$
m_{n}>m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0
$$

exists, for which

$$
3^{n} I_{0}=2^{m_{n}}-2^{m_{n-1}} 3^{0}-2^{m_{n-2}} 3^{1}-\cdots-2^{m_{1}} 3^{n-2}-2^{m_{0}} 3^{n-1}
$$

12. Extension of Theorem 1.2

Theorem 12.1. For every initial positive integer I_{0}, an infinite number of equations exists that satisfies Theorem 1.2, therefore, it can be extended in an infinite number of ways to form the following expression

$$
\begin{equation*}
I_{0}=\frac{2^{m_{n}}-2^{m_{n-1}} 3^{0}-2^{m_{n-2}} 3^{1}-\cdots-2^{m_{1}} 3^{n-2}-2^{m_{0}} 3^{n-1}}{3^{n}} \tag{12.1}
\end{equation*}
$$

where n is a positive integer and all m's form a sequence of integers that

$$
m_{n}>m_{n-1}>m_{n-2}>\ldots>m_{1}>m_{0} \geq 0
$$

Proof. The proof of Theorem 1.2 confirms that.

13. Examples

Presented below are various examples of positive integers, confirming the Theorems proven above.

$$
\begin{array}{r}
3^{41} \mathbf{2 7}=2^{70}-2^{66} 3^{0}-2^{61} 3^{1}-2^{60} 3^{2}-2^{59} 3^{3}-2^{56} 3^{4}-2^{52} 3^{5} \\
-2^{50} 3^{6}-2^{48} 3^{7}-2^{44} 3^{8}-2^{43} 3^{9}-2^{42} 3^{10}-2^{41} 3^{11}-2^{38} 3^{12} \\
-2^{37} 3^{13}-2^{36} 3^{14}-2^{35} 3^{15}-2^{34} 3^{16}-2^{33} 3^{17}-2^{31} 3^{18}-2^{30} 3^{19} \\
-2^{28} 3^{20}-2^{27} 3^{21}-2^{26} 3^{22}-2^{23} 3^{23}-2^{21} 3^{24}-2^{20} 3^{25}-2^{19} 3^{26} \tag{13.6}\\
-2^{18} 3^{27}-2^{16} 3^{28}-2^{15} 3^{29}-2^{14} 3^{30}-2^{12} 3^{31}-2^{11} 3^{32}-2^{9} 3^{33} \\
-2^{7} 3^{34}-2^{6} 3^{35}-2^{5} 3^{36}-2^{4} 3^{37}-2^{3} 3^{38}-2^{1} 3^{39}-2^{0} 3^{40}
\end{array}
$$

$$
\begin{array}{r}
3^{34} \cdot 121=2^{61}-2^{57} 3^{0}-2^{52} 3^{1}-2^{51} 3^{2}-2^{50} 3^{3}-2^{47} 3^{4}-2^{43} 3^{5} \\
-2^{41} 3^{6}-2^{39} 3^{7}-2^{35} 3^{8}-2^{34} 3^{9}-2^{33} 3^{10}-2^{32} 3^{11}-2^{29} 3^{12} \\
-2^{28} 3^{13}-2^{27} 3^{14}-2^{26} 3^{15}-2^{25} 3^{16}-2^{24} 3^{17}-2^{22} 3^{18}-2^{21} 3^{19} \tag{13.7}\\
-2^{19} 3^{20}-2^{18} 3^{21}-2^{17} 3^{22}-2^{14} 3^{23}-2^{12} 3^{24}-2^{11} 3^{25}-2^{10} 3^{26} \\
-2^{9} 3^{27}-2^{7} 3^{28}-2^{6} 3^{29}-2^{5} 3^{30}-2^{3} 3^{31}-2^{2} 3^{32}-2^{0} 3^{33}
\end{array}
$$

$$
\begin{align*}
& 3^{174} \cdot 8388607=2^{299}-2^{295} 3^{0}-2^{290} 3^{1}-2^{289} 3^{2}-2^{288} 3^{3}-2^{285} 3^{4} \tag{13.8}\\
& -2^{281} 3^{5}-2^{279} 3^{6}-2^{277} 3^{7}-2^{273} 3^{8}-2^{272} 3^{9}-2^{271} 3^{10}-2^{270} 3^{11}-2^{267} 3^{12} \\
& -2^{266} 3^{13}-2^{265} 3^{14}-2^{264} 3^{15}-2^{263} 3^{16}-2^{262} 3^{17}-2^{260} 3^{18}-2^{259} 3^{19}-2^{257} 3^{20} \\
& -2^{256} 3^{21}-2^{255} 3^{22}-2^{252} 3^{23}-2^{250} 3^{24}-2^{249} 3^{25}-2^{248} 3^{26}-2^{247} 3^{27}-2^{245} 3^{28} \\
& -2^{244} 3^{29}-2^{243} 3^{30}-2^{241} 3^{31}-2^{240} 3^{32}-2^{236} 3^{33}-2^{235} 3^{34}-2^{234} 3^{35}-2^{233} 3^{36} \\
& -2^{232} 3^{37}-2^{229} 3^{38}-2^{227} 3^{39}-2^{225} 3^{40}-2^{224} 3^{41}-2^{223} 3^{42}-2^{221} 3^{43}-2^{219} 3^{44} \\
& -2^{218} 3^{45}-2^{214} 3^{46}-2^{213} 3^{47}-2^{207} 3^{48}-2^{206} 3^{49}-2^{204} 3^{50}-2^{201} 3^{51}-2^{200} 3^{52} \\
& -2^{198} 3^{53}-2^{197} 3^{54}-2^{196} 3^{55}-2^{195} 3^{56}-2^{193} 3^{57}-2^{190} 3^{58}-2^{187} 3^{59}-2^{185} 3^{60} \\
& -2^{184} 3^{61}-2^{183} 3^{62}-2^{180} 3^{63}-2^{179} 3^{64}-2^{178} 3^{65}-2^{173} 3^{66}-2^{172} 3^{67}-2^{171} 3^{68} \\
& -2^{170} 3^{69}-2^{169} 3^{70}-2^{168} 3^{71}-2^{166} 3^{72}-2^{165} 3^{73}-2^{163} 3^{74}-2^{162} 3^{75}-2^{160} 3^{76} \\
& -2^{158} 3^{77}-2^{157} 3^{78}-2^{151} 3^{79}-2^{150} 3^{80}-2^{148} 3^{81}-2^{147} 3^{82}-2^{146} 3^{83}-2^{145} 3^{84} \\
& -2^{143} 3^{85}-2^{139} 3^{86}-2^{138} 3^{87}-2^{131} 3^{88}-2^{130} 3^{89}-2^{128} 3^{90}-2^{126} 3^{91}-2^{123} 3^{92} \\
& -2^{122} 3^{93}-2^{121} 3^{94}-2^{120} 3^{95}-2^{119} 3^{96}-2^{118} 3^{97}-2^{117} 3^{98}-2^{116} 3^{99}-2^{114} 3^{100} \\
& -2^{113} 3^{101}-2^{112} 3^{102}-2^{108} 3^{103}-2^{107} 3^{104}-2^{105} 3^{105}-2^{102} 3^{106}-2^{101} 3^{107} \\
& -2^{100} 3^{108}-2^{99} 3^{109}-2^{98} 3^{110}-2^{94} 3^{111}-2^{93} 3^{112}-2^{91} 3^{113}-2^{90} 3^{114}-2^{89} 3^{115} \\
& -2^{87} 3^{116}-2^{86} 3^{117}-2^{84} 3^{118}-2^{83} 3^{119}-2^{81} 3^{120}-2^{80} 3^{121}-2^{78} 3^{122}-2^{74} 3^{123} \\
& -2^{72} 3^{124}-2^{71} 3^{125}-2^{69} 3^{126}-2^{67} 3^{127}-2^{66} 3^{128}-2^{65} 3^{129}-2^{61} 3^{130}-2^{60} 3^{131} \\
& -2^{59} 3^{132}-2^{58} 3^{133}-2^{57} 3^{134}-2^{56} 3^{135}-2^{54} 3^{136}-2^{53} 3^{137}-2^{52} 3^{138}-2^{49} 3^{139} \\
& -2^{46} 3^{140}-2^{42} 3^{141}-2^{40} 3^{142}-2^{39} 3^{143}-2^{36} 3^{144}-2^{34} 3^{145}-2^{32} 3^{146}-2^{30} 3^{147} \\
& -2^{29} 3^{148}-2^{28} 3^{149}-2^{24} 3^{150}-2^{22} 3^{151}-2^{21} 3^{152}-2^{20} 3^{153}-2^{19} 3^{154}-2^{18} 3^{155} \\
& -2^{17} 3^{156}-2^{16} 3^{157}-2^{15} 3^{158}-2^{14} 3^{159}-2^{13} 3^{160}-2^{12} 3^{161}-2^{11} 3^{162}-2^{10} 3^{163} \\
& -2^{9} 3^{164}-2^{8} 3^{165}-2^{7} 3^{166}-2^{6} 3^{167}-2^{5} 3^{168}-2^{4} 3^{169}-2^{3} 3^{170}-2^{2} 3^{171}-2^{1} 3^{172} \\
& -2^{0} 3^{173}
\end{align*}
$$

Figure 6. Decreasing $\frac{A_{n}}{B_{n}} \rightarrow 1$, as $n \rightarrow \infty$ for $A_{0}=27$.

Figure 7. Decreasing $\frac{A_{n}}{B_{n}} \rightarrow 1$, as $n \rightarrow \infty$ for $A_{0}=121$.

Figure 8. Decreasing $\frac{A_{n}}{B_{n}} \rightarrow 1$, as $n \rightarrow \infty$ for $A_{0}=8388607$.

