Hubble equation through the eyes of a microbiologist

Vladimir Aksayskiy vladimir.aksayskiy@mail.ru

Abstract

From the point of view of a microbiologist, the Hubble equation describes the expansion of the Universe as an exponential phase of the expansion of a colony of microbes-galaxies on the surface of a dark nutrient medium.

Text

According to the empirical Hubble equation, the speed of recession of galaxies is proportional to the radial distance from the Earth. Now it is considered as a cosmological law describing the expansion of the Universe [1] . The Hubble equation is:
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{r}=\mathrm{H}_{0} \cdot \mathrm{r} \quad$ differential form
$r(t)=r_{0} \cdot e^{H_{0} \cdot t} \quad$ integral form

Here $\mathrm{H}_{0}=2.2 \cdot 10^{-18} \mathrm{~Hz}$ is the Hubble constant; r is the radial distance between the Earth and the galaxy. From the point of view of a microbiologist, the Hubble equation describes the expansion of the Universe like an exponential phase of the expansion of a colony of microbes on the surface of a nutrient medium $[2,3]$. In this case, HO is the specific growth rate of the galaxy colony and rO is the starting radius of the colony. Figure 1 shows the exponential phase of the expansion of a galaxy colony over the surface of a dark medium. The starting radius corresponds to the distance to the nearest galaxy, Andromeda. Figures 2-3 show Hubble plots for this process.

Fig. 1 Exponential phase of the expansion of a colony of galaxies.

Fig. 2-3. Velocity and acceleration of the exponential phase of the expansion of a galaxy colony over the surface of a dark medium.

If we consider the expansion of a colony of galaxies within the framework of the diffusion-wave model, then the criterion relation will be valid for it:

$$
\frac{\mathrm{u}^{2}}{\mathrm{D} \cdot \mathrm{H}_{0}}=1
$$

here u is the wave velocity, D is the diffusion coefficient or specific action.

Links

1. https://en.wikipedia.org/wiki/Hubble\'s_law
2. https://en.wikipedia.org/wiki/Bacterial_growth
3. https://en.wikipedia.org/wiki/Exponential_growth
