Derived from first principles fine-structure constant constants

HuangShan

(Wuhu Institute of Technology, China, Wuhu, 241003)

Abstract: If you don't feel the subtlety of it, you don't really like physics.

Key words: universal Gravitational constant formula, Coulomb's law, Basic atomic mass.

$$\begin{cases} \frac{(m_e)(R_\infty)(G_N)}{(a_0)} = 2\pi(m_e)[\alpha_o](c) \ , \\ \\ \frac{(e_o)(R_\infty)}{4\pi(\epsilon_0)(a_0)} = (c) \ , \\ \\ \frac{1}{2}(m_e)[\alpha_o]^2(c)^2 = \frac{(m_{atom})(c)^2}{2\pi(R_\infty)} \ , \end{cases}$$

Where (ϵ_0) is the Vacuum dielectric constant, (μ_0) is the Permeability of vacuum, (c) is the Speed of light, (e_0) is the Elementary charge, $[\alpha_0]$ is the Fine structure constant, (\mathbf{R}_∞) is the Rydberg constant, (\mathbf{a}_0) is the Bohr radius, (\mathbf{m}_{atom}) is the Basic atomic mass, (\mathbf{m}_e) is the Electron rest mass, (\mathbf{G}_N) is the Gravitational constant.

Reference: https://en.wikipedia.org/wiki/Physical constant.