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Abstract. Motivated by Gilbreath’s conjecture, we develop the notion of the

gap sequence induced by any sequence of numbers. We introduce the notion

of the path and associated circuits induced by an originator and study the
conjecture via the notion of the trace and length of a path.

1. Introduction

Let P denotes the set of all prime numbers and {pi}ni=1 be sequence of consec-
utive prime numbers. Then Gilbreath’s conjecture - a not-well studied conjecture
in additive number theory - is a conjecture about the distribution of the sequences
generated by applying the forward difference operator on consecutive prime num-
bers leaving the result unassigned and repeating the process. The conjecture named
after Norman L. Gilbreath - who presented it to the mathematical community in
1958 after discovering the pattern working arithmetic on a napkin - is the assertion
that the first term in each of the sequences generated in this way must always be a
unit. More formally the conjecture can be stated in the following manner

Conjecture 1.1 (Gilbreath). Let {pn} be the ordered sequence of prime numbers
pn and define each term in the sequence {d1n} by

d1n = pn+1 − pn
where n is positive. Also for any integer k ≥ 2 let the terms in {dkn} be given by

dkn = |dk−1
n+1 − dk−1

n |.

Then Gilbreath’s conjecture is the assertion that dk1 = 1 for all k ≥ 1.

The conjecture was studied long before Gilbreath’s observation by Francois Proth
who allegedly had obtained a proof which was invalidated [1]. The conjecture
remains unresolved as of now but it had been verified computationally to be true
by Andrew Odlyzko, that dk1 = 1 for all k ≤ n = 3.4× 1011 in 1993 [3]. There has
also been spates of attempts generalizing Gilbreath’ conjecture by many authors
to other non-prime sequences obeying similar distribution of prime numbers with
certain specifications on their gaps [4] but various counter examples have now been
found. Nonetheless a careful study by Andrew Odlyzko confirms the generalization
to sequences starting with 1 and others of even parity with not-too-large gaps and
sufficiently random [2].
In this paper we introduce and develop the notion of a path and circuit induced
by a sequence. We study associated statistics of paths such as the trace and
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formulate a finite version of Gilbreath’s conjecture in the language of trace, so that
establishing the finite version would immediately imply the actual version of the
conjecture. Our studies and further studies of this conjecture will be studied in the
following language:

Conjecture 1.2 (Gilbreath). Let P denotes the set of all prime numbers and
{dkj }j≥1 for all 1 ≤ k ≤ n−1 be the circuit induced by the originator {pi}ni=1 where

each pi ∈ P. Then dk1 > 0 for all 1 ≤ k ≤ n− 1 and τn,1 = n− 1 for all n ≥ 2.

2. The notion of a path induced by a sequence

In this section we introduce and study the notion of a path induced by an origi-
nator. We study some few statistics in this direction and establish some inequalities
for our studies in the sequel.

Definition 2.1. Let {ai}ni=1 be any finite sequence. Then by the path of order
1 with steps l ≥ 1 induced by the sequence, we mean the sequence {d1j}lj=1 such
that

d11 = |a2 − a1|, d12 = |a3 − a2|, . . . , d1l = |al+1 − al|.

Similarly by the path of order k ≥ 2 with t (t < l) steps induced by the sequence
{ai}ni=1, we mean the sequence {dkj }tj=1 such that

dk1 = |dk−1
2 − dk−1

1 |, . . . , dkt = |dk−1
t+1 − d

k−1
t |

and we call each dkj for 1 ≤ j ≤ t a segment of the path induced. We call dk1 the
prime segment of the path. We call the sequence {ai}ni=1 the originator of the
paths and we denote with ai = d0i for 1 ≤ i ≤ n. Similarly we call the originator
the trivial path induced with {ai}ni=1 = {d0i }ni=1.

Proposition 2.1. Let {dkj }tj=1 be a path of order k ≥ 1 with step t with originator

{ai}ni=1. Then the path {dk+1
i }i≥1 has exactly t− 1 steps.

Proof. Suppose {dkj }tj=1 is a path of order k ≥ 1 with step t with originator {ai}ni=1.

Then dk+1
i = |dkj+1 − dkj | for t− 1 ≥ j ≥ 1 is a segment of the path {dk+1

i }i≥1 and

each such segment is uniquely determined by t− 1 segments of the path {dkj }tj=1.

It follows that the path {dk+1
i }i≥1 must have exactly t− 1 steps. �

It follows that the number of steps of paths induced by any sequence must
experience some amount of drop with an increase in the order of the path. In
particular, the number of steps in a path produced by some originator of order l
must be a unit more step than the path of order l + 1 with the same originator.

Proposition 2.2. Let {ai}ni=1 be an originator of paths, then the total number of
steps in all induced paths must be

n(n− 1)

2
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Proof. Suppose {ai}ni=1 is an originator of paths, then appealing to Proposition 2.1
the path of order 1 must have exactly (n− 1) steps. The path of order 2 must have
exactly (n − 2) steps. By induction the path of order k ≥ 2 must have (n − k)
steps. By iterating downwards we generate the steps of all such induced path by
the originator terminating to 1. Thus the total number of such steps of all induced
paths is given by

1 + 2 + · · ·+ (n− 2) + (n− 1) =
n(n− 1)

2
.

�

Remark 2.2. We relate the notion of the step and the order of a path to the number
of terms in an originator. This is an easy consequence of Proposition 2.2.

Proposition 2.3 (Step-order equation). Let {ai}ni=1 be an originator of the path
{dkj }tj=1. Then we have

n = k + t.

Proof. Let {dkj }tj=1 be the path induced by the originator {ai}ni=1. Then by ap-
pealing to Proposition 2.2 the number of steps t in the path must satisfy

t = n− k.
�

3. The length of a path

In this section we introduce and study the notion of the length of a path.

Definition 3.1. Let {dkj }tj=1 be a path of order k ≥ 1 with step t induced by the

sequence {ai}ni=1. Then by the length of the path, denoted ι(dkj ), we mean the
finite sum

ιt,k =

t∑
j=1

dkj .

Remark 3.2. Next we establish a somewhat crude inequality that relates the length
of each path to the worst segment of the previous consecutive path. This relation-
ship will turn out to be useful to our further studies in the sequel.

Proposition 3.1. Let {dkj }tj=1 be a path with originator {ai}ni=1. Then for all
k ≥ 1 the inequality holds

|dk−1
n−k − d

k−1
1 | ≤ ιn−k,k ≤ (n− k)max{|dk−1

j+1 − d
k−1
j |}n−k

j=1 .

Proof. Appealing to Definition 3.1 and Proposition 2.3, we can write

ιn−k,k =

t∑
j=1

dkj

=

n−k∑
j=1

|dk−1
j+1 − d

k−1
j |

≤ max{|dk−1
j+1 − d

k−1
j |}n−k

j=1

n−k∑
j=1

1
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thereby establishing the upper bound. The lower bound however follows by adding
and deleting of the segments of the path of order (k− 1) and subsequent appeal to
the triangle inequality. �

It turns out that a good knowledge of the largest value of a segment in a given
path provides at least an information about at least one segment in the closest
previous path. We leverage the inequality devised in Proposition 3.1 to make this
assertion more formal.

Proposition 3.2. Let {dkj }tj=1 be a path with originator {ai}ni=1. If max{|dk−1
j+1 −

dk−1
j |}n−k

j=1 ≤ c for some c > 0, then there exists at least some 1 ≤ m ≤ (n−k) such

that dkm ≤ c.

Proof. Suppose {dkj }tj=1 is a path with originator {ai}ni=1. Then by appealing to
Proposition 3.1, we have the inequality

ιn−k,k ≤ (n− k)max{|dk−1
j+1 − d

k−1
j |}n−k

j=1 .

Under the requirement max{|dk−1
j+1 − d

k−1
j |}n−k

j=1 ≤ c for some c > 0, then it follows
that

ιn−k,k ≤ (n− k)max{|dk−1
j+1 − d

k−1
j |}n−k

j=1

≤ c(n− k)

so that the average value of segments in the path with (n− k) steps is given by

ιn−k,k

(n− k)
=

1

(n− k)

n−k∑
j=1

|dk−1
j+1 − d

k−1
j | ≤ c.

It follows that there must exists some 1 ≤ m ≤ (n− k) such that dkm ≤ c for c > 0.
Suppose for all such 1 ≤ m ≤ (n − k) then dkm > c, then ιn−k,k > c(n − k). It
follows that

c(n− k) < ιn−k,k ≤ (n− k)max{|dk−1
j+1 − d

k−1
j |}n−k

j=1

so that c < max{|dk−1
j+1 − d

k−1
j |}n−k

j=1 , which is a contradiction. �

Proposition 3.3. Let {dkj }tj=1 and {dk+1
j }t−1

j=1 be any two paths of the same origi-

nator such that |dkj+1 − dkj | ≤ dkj+1 for all 1 ≤ j ≤ t. Then the inequality holds

ιt−1,k+1 < ιt,k

for all k ≥ 1.

Proof. Appealing to Definition 3.1 we can write

ιt−1,k+1 =

t−1∑
j=1

dk+1
j

=

t−1∑
j=1

|dkj+1 − dkj |.
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Under the requirement that |dkj+1 − dkj | ≤ dkj+1 for all 1 ≤ j ≤ t, we have the
inequality

t−1∑
j=1

|dkj+1 − dkj | ≤
t−1∑
j=1

dkj+1

=

t∑
j=1

dkj = ιt,k.

�

Remark 3.3. It suggests very clearly that for all the paths induced by the originator
{ai}ni=1 the worst order and the least step attainable are n− 1 and 1, respectively.
Next we introduce and study the notion of a circuit and associated statistics.

4. The notion of a circuit

In this section we introduce and study the notion of a circuit generated by paths
induced by a certain originator.

Definition 4.1. Let {ai}ni=1 be a generator of the paths {dkj }j≥1. Then we call
the collection of all such paths for all 1 ≤ k ≤ n − 1 the circuit induced by the
originator.

Definition 4.2. Let {dkj }j≥1 for all 1 ≤ k ≤ n − 1 be the circuit induced by the
originator {ai}ni=1. Then we denote the length of the circuit with

κ(n) :=

n−1∑
k=1

ιn−k,k.

Proposition 4.1. Let {dkj }j≥1 for all 1 ≤ k ≤ n− 1 be the circuit induced by the
originator {ai}ni=1. Then the inequality holds

(n− 2)min{|dk−1
n−k − d

k−1
1 |}n−2

k=1 ≤ κ(n) ≤
n−1∑
k=1

max{|dk−1
j+1 − d

k−1
j |}n−k

j=1

+

n−1∫
1

( t∑
s=1

max{|ds−1
j+1 − d

s−1
j |}n−s

j=1

)
dt.

Proof. The lower bound follows by an appeal to the lower bound in Proposition
3.1. The upper bound follows by an application of partial summation to the sum

κ(n) : =

n−1∑
k=1

ιn−k,k

≤
n−1∑
k=1

(n− k)max{|dk−1
j+1 − d

k−1
j |}n−k

j=1 .

�
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Definition 4.3. Let {dkj }j≥1 for all 1 ≤ k ≤ n − 1 be the circuit induced by the
originator {ai}ni=1. Then by the trace of the sth segment of paths in a circuit,
denoted τn,s, we mean the finite sum

τn,s :=

n−s∑
k=1

dks .

Proposition 4.2. Let {dkj }j≥1 for all 1 ≤ k ≤ n− 1 be the circuit induced by the
originator {ai}ni=1, then the inequality holds

2τn,s ≥ (as+1 − as) + dn−s
s + τn,s+1.

Proof. First we note that we can write

τn,s : =

n−s∑
k=1

dks

=

n−s∑
k=1

|dk−1
s+1 − dk−1

s |

≥
n−s∑
k=1

(dk−1
s+1 − dk−1

s )

=

n−s∑
k=1

dk−1
s+1 −

n−s∑
k=1

dk−1
s

=

n−s−1∑
i=0

dis+1 −
n−s−1∑
i=0

dis

= d0s+1 +

n−(s+1)∑
i=1

dis+1 −
n−s∑
i=1

dis − d0s + dn−s
s

= (as+1 − as) + dn−s
s + τn,s+1 − τn,s

thereby establishing the desired inequality. �

It follows that we can write the length of a circuit κ(n) with originator {ai}ni=1

as the sum of the trace of segments of each kind within paths in the circuit. To
that end, we can write

κ(n) =

n−1∑
k=1

ιn−k,k

=

n−1∑
k=1

n−k∑
s=1

dks
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so that by interchanging the order of summation we have

κ(n) =

n−1∑
k=1

n−k∑
s=1

dks

=

n−1∑
s=1

d1s +

n−2∑
s=1

d2s + · · ·+
n−(n−2)∑

s=1

dn−2
s + dn−1

s

=

(
d11 + d21 + · · ·+ dn−1

1

)
+

(
d12 + d22 + · · ·+ dn−2

2

)
+ · · ·+ dn−1

1

=

n−1∑
k=1

dk1 +

n−2∑
k=1

dk2 + · · ·+
n−(n−1)∑

k=1

dkn−1

=

n−1∑
s=1

n−s∑
k=1

dks

=

n−1∑
s=1

τn,s.

It follows that the total length of any given circuit can also be obtained by summing
the trace of each segment in a circuit, so that we can upper and lower bound the
average trace in a circuit by an appeal to Proposition 4.1 as

Proposition 4.3. Let {dkj }j≥1 for all 1 ≤ k ≤ n− 1 be the circuit induced by the
originator {ai}ni=1. Then the inequality holds

(n− 2)min{|dk−1
n−k − d

k−1
1 |}n−2

k=1 ≤
n−1∑
s=1

τn,s ≤ (n− 1)max1≤k≤n−1max{|dk−1
j+1 − d

k−1
j |}n−k

j=1

+

n−1∫
1

( t∑
s=1

max{|ds−1
j+1 − d

s−1
j |}n−s

j=1

)
dt.

Proof. The lower bound follows from the lower bound in Proposition 4.1. The upper
bound follows by appealing to the upper bound in Proposition 4.1 and noting that

n−1∑
k=1

max{|dk−1
j+1 − d

k−1
j |}n−k

j=1 ≤ (n− 1)max1≤k≤nmax{|dk−1
j+1 − d

k−1
j |}n−k

j=1 .

�

The upper bound in Proposition 4.3 does suggests on average the trace of seg-
ments in a circuit must be at most

≤ max1≤k≤nmax{|dk−1
j+1 − d

k−1
j |}n−k

j=1

so that there must exists some 1 ≤ m ≤ n−1 such that τn,m ≤ max1≤k≤nmax{|dk−1
j+1−

dk−1
j |}n−k

j=1 . Next we leverage the inequality in Proposition 4.2 to establish an in-
equality relating the length of a circuit to the terms of the originator and the trace
of the first segment in each path in the circuit.
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Theorem 4.4. Let {dkj }j≥1 for all 1 ≤ k ≤ n − 1 be the circuit induced by the
originator {ai}ni=1. Then the inequality holds

κ(n) + τn,1 ≥ (2an − an−1 − a1) +

n−2∑
j=1

dn−j
j .

Proof. By iterating the inequality in Proposition 4.2, we obtain the following chains
of inequalities

2τn,1 ≥ (a2 − a1) + dn−1
1 + τn,2

2τn,2 ≥ (a3 − a2) + dn−2
2 + τn,3

...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...

2τn,n−2 ≥ (an−1 − an−2) + d2n−2 + τn,n−1.

Adding the left hand-sides and the right-hand sides of the chain, we obtain further
the inequality

2

n−2∑
s=1

τn,s ≥ (an−1 − a1) +

n−2∑
j=1

dn−j
j +

n−1∑
s=2

τn,s.

By adding and deleting the term 2τn,n−1 on the left-hand side of the inequality and
τn,1 on the right-hand side, we obtain the refined inequality

2

n−1∑
s=1

τn,s ≥
n−1∑
s=1

τn,s +

n−2∑
j=1

dn−j
j + (an−1 − a1) + 2τn,n−1 − τn,1.

It follows that we can write

n−1∑
s=1

τn,s ≥
n−2∑
j=1

dn−j
j + (an−1 − a1) + 2τn,n−1 − τn,1

= (2an − an−1 − a1) +

n−2∑
j=1

dn−j
j − τn,1

by exploiting the relation τn,n−1 = d1n−1 = an − an−1, thereby establishing the
inequality. �

Proposition 4.4. Let {dkj }j≥1 for all 1 ≤ k ≤ n− 1 be the circuit induced by the
originator {ai}ni=1 with each ai ∈ Z. If τn,s < n− s then there exists at least some
t such that dts = 0 for 1 ≤ t ≤ n− s.
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Proof. Under the assumption that {dkj }j≥1 for all 1 ≤ k ≤ n − 1 is the circuit
induced by the originator {ai}ni=1, then we obtain the lower bound

τn,s :=

n−s∑
k=1

dks

≥ min{dks}n−s
k=1

n−s∑
k=1

1 = (n− s)min{dks}n−s
k=1

and under the requirement τn,s < n− s with min{dks}n−s
k=1 ∈ Z+ ∪ {0}, we can take

min{dks}n−s
k=1 = 0, thereby ending the proof. �

Proposition 4.5. Let {dkj }j≥1 for all 1 ≤ k ≤ n− 1 be the circuit induced by the

originator {ai}ni=1. If dk1 > 0 for all 1 ≤ k ≤ n − 1 and τn,1 = n − 1 for all n ≥ 2
then dk1 = 1 for all 1 ≤ k ≤ n− 1.

Proof. Under the assumption that for the circuit {dkj }j≥1 for all 1 ≤ k ≤ n − 1
induced by the originator {ai}ni=1 with τn,1 = n− 1, then it follows that

τn,1 =

n−1∑
k=1

dk1 = n− 1.

Since there are n − 1 prime segments in the sum and each prime segment dk1 > 0
for all 1 ≤ k ≤ n− 1, then dk1 = 1 for 1 ≤ k ≤ n− 1. �

Remark 4.5. It turns out we can restate Gilbreath’s conjecture in the language of
the trace, so that proving this version of the conjecture would certainly imply the
actual version of Gilbreath’s conjecture.

Conjecture 4.1 (Gilbreath). Let P denotes the set of all prime numbers and
{dkj }j≥1 for all 1 ≤ k ≤ n−1 be the circuit induced by the originator {pi}ni=1 where

each pi ∈ P. Then dk1 > 0 for all 1 ≤ k ≤ n− 1 and τn,1 = n− 1 for all n ≥ 2.
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1. Proth, Francois Théoremes sur les nombres premiers, CR Acad. Sci. Paris, vol. 87(2), Elsevier,
1878, 926.

2. David, Darling, The Universal Book of Mathematics, by John Wiley & Sons, Inc., Hoboken,

2004.
3. Odlyzko, Andrew M., Iterated absolute values of differences of consecutive primes, Mathe-

matics of computation, vol.61(203), 1993, 373–380.

4. Guy, Richard, Unsolved problems in number theory, Springer Science & Business Media, vol.1,
Taylor & Francis, 2004.

Department of Mathematics, African Institute for Mathematical science, Ghana
E-mail address: theophilus@aims.edu.gh/emperordagama@yahoo.com

1

.


