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Abstract

We develop definitions and a theory for convergent series that have

terms of the form 1/aj where aj is an integer greater than one and the
series convergence point is less than one. These series have terms with

denominators that can be used as number bases. The series for e − 2
and zn = ζ(n) − 1 are of this type. Further, both series yield number

bases that can represent all possible rational convergence points as
single digits. As partials for these series are rational numbers, all
partials can be given as single decimals using some aj as a base. In

the case of e − 2, the last term of a partial yields such a base and
partials form systems of nesting inequalities yielding a proof of the

irrationality of e − 2. Using limits in an unusual way we are able to
give a second proof for the irrationality of e−2. A third proof validates

the second using Dedekind cuts. In the case of zn, using the z2 case
we determine that such systems of nesting inequalities are not formed,

but we discover partials require bases greater than the denominator
of their last term. We prove this property for the general zn case and,

using the unusual limit style proof mentioned, prove zn is irrational.
We once again validate the proof using Dedekind cuts. Finally, we
are able to give what we consider a satisfying proof showing why both

e − 2 and zn are irrational.

Introduction

Apery’s ζ(3) is irrational proof [1] and its simplifications [3, 11] are the only
proofs that a specific odd argument for ζ(n) is irrational. The irrationality
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of even arguments of zeta are a natural consequence of Euler’s formula [2]:

ζ(2n) =
∞

∑

k=1

1

k2n
= (−1)n−1 22n−1

(2n!)
B2nπ2n. (1)

Apery also showed ζ(2) is irrational, and Beukers, based on the work
(tangentially) of Apery, simplified both proofs. He replaced Apery’s mys-
terious recursive relationships with multiple integrals. See Poorten [12] for
the history of Apery’s proof; Havil [7] gives an overview of Apery’s ideas
and attempts to demystify them. Also of interest is Huylebrouck’s [8] paper
giving an historical context for the main technique used by Beukers. Papers
by Poorten and Beukers are in Pi: A Source Book [4] and The Number π
[5] gives Beukers’s proofs (condensed) and related material. Both the proofs
of Apery and Beukers require the prime number theorem and subtle ε − δ
reasoning.

Thus we have all even ζ(n) proven irrational using a classic formula and
exactly one odd; whereas, you would think that both evens and odds could
be proven in the same way.

Attempts to generalize the techniques of the one odd success seem to be
hopelessly elusive. Apery’s and other ideas can be seen in the work of Rivoal
and Zudilin [13, 16]. Their results, that there are an infinite number of odd
n such that ζ(n) is irrational and at least one of the cases 5,7,9, 11 likewise
irrational do suggest a radically different approach is necessary.

We claim all ζ(n ≥ 2) can be proven to be irrational by using what we call
decimal sets and well known and relatively simple properties of decimal bases:
all integers greater than one can be used as a number basis [6, Sections 9.1-
9.3]. We still need the lesser cousin of the prime number theorem, Bertrand’s
postulate [6], and some new use of limits which we validate using Dedekind
cuts. Like Apery and Beukers, we use a known irrational number, e, (they
used ζ(2)) as a proving ground and reader familiarization strategy for our
decimal techniques.

Decimals and series

We give definitions that make a connection between certain convergent in-
finite series and number bases. Here is the idea. Every partial sum for an
infinite series of fractions is a rational number that can be given as a single
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decimal in a specific base. We use the symbol .(p)k
q to designate that the

partial with upper index k has for its first digit in base q the number (sym-
bol) p. For some k, this digit becomes fixed; we designate this with .(p)k+

q .
If a partial is not equal to a single digit in the number base q, it is between
two such numbers. As all rational numbers in (0, 1), designated henceforth
with Q(0, 1), can be represented as single decimal digits, if we can show a
series convergent point, known to be in (0, 1), is not equal to any such single
digit, then we will have shown it is irrational. We use denominators of the
fractions of the series as a source for number bases.

Definition 1. A plus one series is a convergent infinite series with a con-
vergent point less than one and terms of the form 1/aj with aj a strictly
increasing sequence of integers all greater than one. Partials for such sums
are given by sk where k is the upper index; the infinite series convergent
point is given by s.

Examples of plus one series are the telescoping series, geometric series as
given by infinite decimals in a base (2 varieties), e − 2, and ζ(n) − 1. We
will designate the partials sums of these series with sk(tele), .(a−1)(b − 1)k,
.a(k,b), sk(e − 2), and sn

k . With similar notation for their convergence points.

Definition 2. A plus one series with denominators aj is said to be complete
if

B{aj}∞j=1 = Q(0, 1),

where B{aj}∞j=1 is the union of all single decimal numbers formed with aj as
number bases.

The series s(tele), s(e − 2), and sn
k are complete; .(a − 1)(b − 1)k and

.a(k,b) are not complete.
As the partial sums of a plus-one series are all rational, a complete plus-

one series must have partials that can be given as a single digit decimal using
some term’s denominator. The question is which denominator is used.

Definition 3. A plus-one series having partials sk is said to be k-less, k-
equal, or k-greater if sk can be represented as a single decimal in a smallest
base ar where r < k, r = k, or r > k, respectively. If no such ar exists the
series is termed k-null.
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Partials of a complete plus-one series will always be k-less, k-equal, or
k-greater.1 Incomplete series might be k-null.

Finally, plus-one series are convergent series. They can converge to a
rational or irrational number in (0, 1).

Definition 4. A plus-one series with convergent point s is said to be series-k-
plus if there exists a smallest base ar that can represent s as a single decimal.
Such series are said to be series-k-null if no such ar exists.

The following theorem is not surprising, but hopefully it cements the
ideas given.

Theorem 1. A complete series-k-null plus-one series converges to an irra-
tional number.

Proof. Suppose such a series converges to a rational number. Then that
rational number can be represented in some base ar as a single decimal digit.
But a series-k-null series has no such ar, a contradiction.

sn
3 sn

4 sn
5 . . .

2n WF WF WF . . .
3n WF WF WF . . .
4n WF WF WF . . .
...

...
...

...
...

RF
...
...

RF

Table 1: A term base partial table for zeta(n).

1It is possible that some partials are k-greater, say, and some are k-less, but this is not
the case for the plus-one series mentioned in this article. The telescoping series is k-less,
but has an oscillating feature; it is also way less, less than half.
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Term Base Partial Tables

A complete k-greater series allows a systematic depiction of partials with
decimals in a set of bases that would seem to force an irrational convergence
point. In Table 1 partial sums for zn are given in the top row and terms
for these series are given in the left column. As the partial sums can’t be
given as finite decimals in the bases of the terms that define the partial sum,
they must be mixed or repeating decimals. But convergence to a rational
number implies that partials should have accruing fixed decimals of the form
.(a−1)(b− 1)R+, where R indicates the number of times the decimal (b−1)
repeats and the plus indicates additional non-fixed digits. By completeness
such a base, the right form, RF must exist. As this RF migrates per the
k-greater property, all decimal bases are eventually the wrong form, WF.

In Table 2
What is immediately of interest is systematically representing partial

sums in bases given by terms. Table 1 shows the terms of ζ(n) − 1 be-
ing used as bases for its partial sums. If the convergence point is rational,
say a/b, then for decimal base b partials will need to develop fixed decimals
of the form .(a − 1)(b − 1)f(k). We will show that this can’t happen.

pk =
k

∑

j=1

tj.

Examples

The following examples are plus-one series.

Example 1. The telescoping series

sk(tele) =
k

∑

j=2

1

j
− 1

j + 1
=

k
∑

j=2

1

j(j + 1)
=

k − 1

2(k + 1)

converges:

s(tele) =
1

2
.

The formula for partials shows that it is a k-less series. The formula for partial
sums also shows that even ks cause a cancellation and a further reduction in
the denominator. It is easy to show that it is complete.
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Example 2. A geometric series is given by the repeating decimal .1 base
10. Its partials can be represented by powers of 10 given by their last term;
this series converges to 1/9, a number that can’t be represented as a single
decimal in base 10; it is, then, series-k-null.

Using this series one can form a sequence of nesting intervals:

.1 < .1 < .2

.1 < .11 < .1 < .12 < .2
...

.1 < .11 < · · · < .1k < · · · < .1 < · · · < .1k−12 < · · · < .12 < .2,

where the subscripts indicate how many times the 1 digit is repeated. Given
a finite decimal a = .a1a2 . . . ak in base 10, we claim a ≤ .1k or a ≥ .1k−12.
This follows as all finite decimals are either less than 1/9 or greater; no finite
decimal in base 10 can represent 1/9.

This partitioning of finite decimals into two sets, all those less than 1/9
and all those greater, forms a cut, like a Dedekind cut, in the set of finite
decimals base 10.

Example 3. We further develop our examples in this section. The second
.29 has partials that can be represented by powers of ten given by their last
term; this series converges to .3, a number represented using its first and any
other terms2 and so it is a series-k-plus series.

Both of these geometric plus-one series are incomplete: using the series
terms one can’t represent Q(0, 1) as single decimals. One can only represent
finite decimals in base 10, 2 and 5 [6]. It should be noted that finite decimals
like .25 can be converted into a single decimal by increasing the base to 102:
.25 = .(25)100, where (25) is a single digit in base 100.

Example 4. The number e − 2, its infinite series, is a plus-one, k-equal,
complete series. We will prove these properties in the next section and use
them to give a proof of the irrationality of this series.

2We will use the phrase using the term as shorthand for using the denominator of the

term as a number basis.
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Properties and irrationality of e − 2

Consider the series

e − 2 =
∞

∑

j=2

1

j!
=

1

2
+

1

2 · 3 +
1

2 · 3 · 4 + . . . . (2)

As 2 < e < 3, this series is a one-plus series. We will show that it is a
complete, k-equal series.

Lemma 1. The series (2) is complete.

Proof. We simply note

p(q − 1)!

q!
=

p

q
= .(p(q − 1)!)q!.

The decimal is a single decimal in base q! as p < q implies p(q − 1)! < q!.

Lemma 2. The series (2) is k-equal.

Proof. We need to show that if

sk =
k

∑

j=2

1

j!
,

then sk = .(x)k!. That is partials can be expressed as single decimals using
the denominator of the last term in the partial as a number basis.

As k! is a common denominator of all terms in this partial sum, sk =
.(x)k!, for some x, 1 ≤ x < k!. The following induction argument shows that
k! is the least such factorial possible.

Clearly 2! is the least such factorial for the first partial. Suppose k! is the
least factorial for the kth partial. Let

sk+1 =
x

k!
+

1

(k + 1)!
=

y

a!
(3)

for some positive integers a and y. If a ≤ k, then multiplying (3) by k!
gives an integer plus 1/(k + 1) is an integer, a contradiction. So a > k, but
a = k + 1 works, so it is the least possible factorial.
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Lemma 3. For each integer k > 1, there exists decimal digits x and x + 1
base k! such that

.(x)k
k! < e − 2 < .(x + 1)k

k!. (4)

Proof. By Lemma 2, sk = .(x)k
k!. We have, using a geometric series,

0 < (e − 2) − sk =
∞

∑

j=k+1

1

j!
=

1

k!

(

1

(k + 1)
+

1

(k + 1)(k + 2)
+ . . .

)

<
1

k!

(

1

(k + 1)
+

1

(k + 1)2
+ . . .

)

=
1

k

1

k!
<

1

k!
.

That is 0 < e − 2 − .(x)k
k! < 1/k!. Adding .(x)k! and noting .(x)k! + 1/k! =

.(x + 1)k!, we have (4).

Lemma 3 implies the boundary decimals don’t change with increasing
partial upper index: the middle expression in (4) is independent of k. We
next show that nesting intervals are formed.

Lemma 4. For every k,

.(x− 1)k! < .(x− 1)(k+1)! < e − 2 < .(x)(k+1)! < .(x)k!, (5)

where the factorial in the subscript indexes the digit.

Proof. We can rewrite (5) as

k
∑

j=2

1

j!
<

k+1
∑

j=2

1

j!
< e− 2 <

k+1
∑

j=2

1

j!
+

1

(k + 1)!
<

k
∑

j=2

1

j!
+

1

k!

The first inequality is immediate. The right inequality can be rewritten as

k
∑

j=2

1

j!
+

1

(k + 1)!
+

1

(k + 1)!
<

k
∑

j=2

1

j!
+

1

k!
.

Subtracting the right hand side from the left, the summations cancel giving
equivalent inequalities:

1

k!
− 2

(k + 1)!
> 0 ⇐⇒ 1 >

2

k + 1
⇐⇒ k + 1 > 2 ⇐⇒ k > 1.
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Recalling our superscript conventions, here are some examples:

.(1)1+
2 < e − 2 < (1)1+

2 ;

that is 1/2 < e − 2 < 1;

.(1)1+
2 < .(4)2+

6 < e − 2 < .(5)2+
6 < (1)1+

2 ;

that is 1/2 < 4/6 < e − 2 < 5/6 < 1; and

.(1)1+
2 < .(4)2+

6 < .(17)3+
24 < e − 2 < .(18)3+

24 < .(5)2+
6 < (1)1+

2 ; (6)

which is 1/2 < 4/6 < 17/24 < e− 2 < 18/24 < 5/6 < 1.
We can get the idea for a proof of the irrationality of e − 2 using (6).

Suppose e−2 is a rational number, a single digit in base 24. It would have to
be inside (.(17)24, .(18)24), that is the open interval with .(17)24 and .(18)24

endpoints – not possible.

Theorem 2. e − 2 is irrational.

Proof. Suppose e−2 is rational, then by Lemma 1 there exists a k such that
e − 2 = .(x)k!, but by Lemma 3 for some y

.(y)
(k−1)+
k! < e − 2 = .(x)k! < .(y + 1)

(k−1)+
k! , (7)

but no single digit in base k! can be between two other single digits in the
same base, a contradiction.

Neat, sweet, petite!
Theorem 2 uses a proof by contradiction. But we can also use the prop-

erties developed for a proof by elimination.

Theorem 3. e − 2 is irrational.

Proof. Letting Ξ(k−1)! be the set of all rational numbers in (0, 1) expressible
with denominators 2!, . . . , (k − 1)! and sk(e − 2) be the partial sum of the
series for e − 2 with upper index k,

sk(e − 2) ∈ R(0, 1) \ Ξ(k−1)!. (8)

This uses e − 2 is k-equal (not k-less) and, using its completeness, as k goes
to infinity, we have

e − 2 ∈ R(0, 1) \ Q(0, 1) = H(0, 1),

where H(0, 1) is the set of irrational numbers in (0, 1). That is e − 2 is
irrational.
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One might be a little skeptical of this second proof. It is unaccustomed,
but we can give yet another proof that might explain why this second proof
works. It involves Dedekind cuts.

First, a quick refresh of Dedekind cuts is in order. Dedekind cuts are typ-
ically, actually exclusively (to my knowledge) used to prove the existence of a
structure that gives the real numbers and their properties [10, 14]. Dedekind
cuts construct irrational numbers using rational numbers. Irrational numbers
are defined as (A|B) where A and B are sets of rational numbers; A∪B = Q,
A∩B = ∅; and if a ∈ A and b ∈ B, then a < b. It is easy to comprehend the
idea, imagine a real number line and put a tick mark on it (a cut) and define
A as all the rational numbers less than or equal to where the cut is and define
B as all the rational numbers greater than this cut. Rational numbers have
a least upper bound in A and irrational numbers have neither a least upper
bound in A nor a greatest lower bound in B.

For our purposes, an irrational Dedekind cut consists of sets A and B
with single decimal elements that give in the union of A and B all rational
numbers in (0, 1) with A having no least upper bound given by its elements.

Theorem 4. e − 2 is irrational.

Proof. Let
Ak = {.(y)k!|.(y)k! ≤ .(x− 1)k! = sk(e − 2)}

and
Bk = {.(y)k!|.(y)k! ≥ .(x)k! = sk(e − 2)}.

So, using are earlier observations, A2 = {.(1)2!},

A3 = {.(1)3!, .(2)3!, .(3)3!, .(4)3!},

and
A4 = {.(1)4!, .(2)4!, .(3)4!, . . . , .(15)4!, .(16)5!, .(17)4!}.

Similarly, B2 = {(1)2!}3

B3 = {.(5)3!},
and

B4 = {.(18)4!, .(19)4!, .(20)4!, .(21)4!, .(22)4!, .(23)4!}.
3Technically, this is excluded from (0, 1): 1 /∈ (0, 1). Another inconsistency occurs with

using rational numbers in (0, 1) versus all rational numbers per Landau, for example. One
can add all rational numbers less than 1/2 to each of these Ak sets and all rationals greater
than 1 to Bk to get strict, but unnecessary conformity.
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A Dedekind cut is defined as (A|B), where

A =
∞
⋃

k=2

Ak

and

B =
∞
⋃

k=2

Bk.

By (4) (e − 2 partials trapped), A has no least upper bound in A and B
has no greatest upper bound in B; this Dedekind cut defines an irrational
number, e − 2.

Does Theorem 4 justify the limit reasoning in Theorem 3? The expression
(8) implies that sk(e − 2) cuts (0, 1) into two sets of rational numbers. The
rational numbers are from Ξk!. In the limit Q(0, 1) is cut into A and B sets
as given in Theorem 4. Theorem 3 is, I suggest, a faster Theorem 4.

Table 2 summarizes the properties in the above example series.

Partial Sums k-less k-equal k-greater
Incomplete .1, .29 base 10
Complete Telescoping e − 2 zn (to be shown)

Table 2: Example series with decimal properties.

series-k-plus series-k-null
Incomplete .29 .1
Complete Telescoping e − 2, zn?

Table 3: Correlation between series properties and rational and irrational
convergence points.

If a k-equal, complete series converges to an irrational number, what can
be said of a k-greater, complete series?
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The series z2 appears k-greater

We use the following symbols:

zn = ζ(n) − 1 =
∞

∑

j=2

1

jn
and sn

k =
k

∑

j=2

1

jn
.

In this section we will use z2 in hopes a finding a general pattern.
As with the series for e − 2, we can form systems of inequalities for z2

using its partial sums and the denominators of their terms as number bases.
With upper index 3 we derive inequalities for bases 4 and 9:

(.1)3
4 < (.3)3

9 < s2
3 = .(13)3

36 < .(4)3
9 < .(2)3

4. (9)

For upper index 4, we derive another set of inequalities:

.(1)4
4 < .(3)4

9 < .(6)4
16 < s2

4 = .(61)144 < .(7)4
16 < .(4)4

9 < .(2)4
4. (10)

Unlike the e−2 case, single fixed digits are not immediately created with
each increment of the upper index. The inequalities don’t immediately nest.
Continuing with just the bases 4, 9, and 16, we observe

.(1)5
4 < .(7)5

16 < .(4)5
9 < s2

5 = .(1669)3600 < .(8)5
16 = .(2)5

4 < .(5)5
9. (11)

Base 16 and base 9 have been transposed and, on the right, base 16 and base
4 endpoints collide (i.e. are equal). The next two iterations are

.(1)6
4 < .(7)6

16 < .(4)6
9 < s2

6 = .(1769)3600 < .(8)6
16 = .(2)6

4 < .(5)6
9 (12)

and

.(4)7
9 < .(8)7

16 = .(2)7+
4 < s2

7 = .(90281)176400 < .(5)7
9 < .(9)7

16 < .(3)7+
4 . (13)

The left and right digits for base 4 have migrated to .(2)4 and .(3)4. As
.(2)4 < z2 < .(3)4, these left and right values for base 4 are fixed for k ≥ 7.
The decimal digits for this base are fixed, as indicated by the plus sign in the
superscripts. The inequalities don’t nest immediately and the nesting can
change, even collapse.

But we do see a pattern of interest in these inequalities: this z2 series
seems to be, as indicated in Table 2, a k-greater series: the basis needed for
the partials we’ve calculated exceed the denominator of the last term of the
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partial. We will show zn (and z2) has this property in Corollary 1, nota bene
general n. We will also show zn is complete in Lemma 5. These properties
will enable us to give a proof that zn (both odd and even n) have irrational
convergence points.

The proof will not be as neat, sweat, or petite as that for e−2. It may be
a helpful, although a bit ghoulish picture that gives the central image thus
far: the inequalities (9), (10), (11), (12), and (13) can be likened to various
fingers being used to squeeze a tube of toothpaste; no matter who squeezes
it and no matter how hard or soft, the resulting toothpaste is not like the
deformed tube, the base needed for a single digit is bigger. The partial sums
divide (read cut) rational points in two: those below and those above.

Properties of zn

First a definition.

Definition 5. Let

djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is djn consists of all single decimals greater than 0 and less than 1 in
base jn. The decimal set for jn is

Djn = djn \
j−1
⋃

k=2

dkn .

The set subtraction removes duplicate values.

Example 5. For z2, d4 = {.1, .2, .3}4, where each single decimal is in base
4. The denominator for the 2nd term is 9; d9 = {.1, .2, . . . , .8}9; the third
term’s denominator is 16; d16 = {.1, .2, .3, .4 = .(1)4 out, . . . , .(15)}16. The
elements in d16 shared with the earlier set d4 are removed: so

D16 = {.1, .2, .3, .5, .6, .7, .9, .(10), .(11), .(13), .(14), .(15)}16,

where the subscript is used to designate the number basis for the single
decimals contained in the set.
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Definition 6.
k

⋃

j=2

Djn = Ξn
k

Example 6. The union using the first three terms of z2 is

Ξ2
4 = D4 ∪ D9 ∪ D16,

where each single decimal is represented by the least base possible.

We next show this union of decimal sets gives all rational numbers in
(0, 1), the series zn are complete.

Lemma 5. The series zn are complete.

Proof. Every rational a/b ∈ (0, 1) is included in a dbn and hence in some Drn

with r ≤ b. This follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1),
abn−1 < bn and so a/b ∈ dbn .

Next we will show zn is k-greater. We use, once again, the z2 case (with
partials s2

k) to look for helpful patterns. Table 4 gives some evidence that the
reduced fractions giving partial sum totals have much larger denominators
than the denominators of their last term: 36 > 32; 144 > 42; 3600 > 52;
3600 > 62; 176400 > 72. We saw this earlier: (9), (10), (11), (12), and (13).

Table 4 also suggests a strategy for proving this. Notice that the prime
factorization of s2

k’s denominators (the third column) have powers of 2 and
a prime greater than half the k-value also to a power. This may translate to
the reduced fraction’s denominator is at least twice something greater than
half; that’s more than k; with sufficient powers of 2 and the prime mentioned
that’s more than the last term’s denominator – it’s, then, k-greater. Details
follow. Apostol’s Introduction to Analytic Number Theory [2](Chapter 2,
problem 21), solution in [9], gives the general technique used in this section.

The remainder of this section is the hardest part of the paper and the
most easily skipped on first reading. Corollary 1 below, specially in light of
our second proof of the irrationality of e − 2, gives all that is needed for the
rest of the paper. I think it is plausible enough.

Lemma 6. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.
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k s2
k Prime factorization

3 .(13)36 36 = 2232

4 .(61)144 144 = 2432

5 .(1669)3600 3600 = 243252

6 .(1769)3600 3600 = 243252

7 .(90281)176400 176400 = 24325272

Table 4: The reduced fractions (given as decimals) have denominators (basis)
divisible by powers of 2 and a prime greater than k/2.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (14)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (14) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 7. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.
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Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.

The reasoning is much the same as in Lemma 6. Consider

(k!)n

(k!)n

k
∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (15)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 8. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate.

Theorem 5. If sn
k = r

s
, with r/s reduced, then s > kn, that is zn is k-greater.

Proof. Using Lemma 8, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 8, we have assurance of the
existence of a p that satisfies Lemma 7. Using Lemmas 6, 7, and 8 we
have 2npn divides the denominator of r/s and as 2npn > kn, the proof is
completed.

Corollary 1 restates Theorem 5.

Corollary 1.

sn
k /∈ Ξn

k or sn
k ∈ R(0, 1) \ Ξn

k

where R(0, 1) is the set of real numbers in (0, 1).

The Irrationality of zn

We can give a proof similar to the second e − 2 proof.

Theorem 6. zn is irrational.
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Proof. Using Lemma 5 (complete),

lim
k→∞

Ξn
k = Q(0, 1),

with Corollary 1 (k-greater) we have

lim
k→∞

R(0, 1) \ Ξn
k = R(0, 1) \ Q(0, 1) = H(0, 1), (16)

where H(0, 1) is the set of irrational numbers in (0, 1).
We have then

lim
k→∞

sn
k ∈ R(0, 1) \ Ξn

k =⇒ zn ∈ H(0, 1), (17)

using sn
k → zn with (16). That is zn is irrational.

It really is spooky and creepy: it’s not in the accustomed proof by contra-
diction form. What we would like is a proof by contradiction – like Theorem
2 for e − 2. That not being possible, perhaps we could get a justification
for this unsettling theorem using Dedekind cuts, like we did with the second
proof of the irrationality of e−2. The best would have a clearer picture that
unites all three parallel with e − 2 proofs with a visual rendering of what’s
going on as the partials sn

k approach zn.
The next lemma moves us closer to this last goal.

Lemma 9. After a finite number of updates, the digit of a decimal set used
to approximate sn

k is not updated again.

Proof. Let yj = jn, j = 2, . . . , k. That is yj gives the denominators, the
number bases, for the terms of the partial sn

k .
Consider the following inequality:

x − 1

any yj

<
x − 1

∏k

j=2 yj

= sn
k <

x

any yj

, (18)

where the denominators of each expression indexes the numerator.
These inequalities follow as a partial can be given as a fraction using

the product of all the denominators in its terms; that gives the validity of
the middle equation. This denominator can also express the best upper and
lower bounds for each decimal basis using the partial’s terms; cancellations
yield the simpler forms. Per Corollary 1, the inequalities are pure.
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As k increases the numerator for a number basis yj might change to
better approximate the particular sn

k . As there are only a finite number of
numerators (digits in a basis), this updating can take place only a finite
number of times.

Using a sufficiently large k for the decimal sets in Ξn
k we are assured that

the digit used in each decimal set for a lower and upper bound for all sn
ks

after k are fixed. The next definition captures this idea.

Definition 7. Let

Ak+ = {.(x− 1)k
jn |j = 2, . . . , k and k > max({Kj : j = 2, . . . , k})},

where the subscript on the decimal indexes the digit and k value and Kj gives
the k value specified by Lemma 9 for the decimal set Djn .

We continue to form a Dedekind cut.

Definition 8. Let
A =

⋃

∞

k=3Ak+

The B set of the Dedekind cut (A|B) is similarly defined.

Example 7. For z2, using a spreadsheet,

A = {.(2)4, .(5)9, .(10)16, .(16)25, .(23)36, .(31)49, .(41)64, . . .}

and

B = {.(3)4, .(6)9, .(11)16, .(17)25, .(24)36, .(32)49, .(42)64, . . .}.

Technically, as mentioned in an early footnote, for strict conformity with
Landau (and others) all decimals less (greater) than each of the elements in
A (B) are also included.

Theorem 7. zn is irrational.

Proof. Given a p/q ∈ Q(0, 1), p/q ∈ Ξn
k , for some k (Lemma 5, complete).

Using Lemma 9, there are three cases possible:

p/q = .(x− 1)k+
q

18



As sn
ks are inside (.(x − 1), .x), p/q can’t be a greatest lower bound (GLB)

for A.
p/q < .(x− 1)k+

q

In this case p/q ∈ Ak+.
p/q > .(x− 1)k+

q

For this case p/q ∈ B as the only possible value of p/q is .(x)k+
q or a greater

such decimal. So in all cases p/q can’t be a GLB for A in A. Convergence
implies the GLB for A equals the LUB for B. So neither exists and the
Dedekind cut (A|B) defines an irrational number.

Third proof

Fix the bases of Ξn
k . As these bases are used to represent sn

k , their first digit
will become fixed. As sn

k is never equal to a single digit in bases from Ξn
k

we know this must be the case. Suppose at k + rk all first digits of all bases
in Ξn

k are fixed. This set of first digits forms a nested set of intervals with
all sn

k , k > Kr inside. Next increase the k of Ξn
k so as to include as a single

decimal value sn
k+rk

. Now add a fixed number, say 100, to sn
k+kr

. Repeat by
expanding Ξn

k so as to get fixed decimals for this new sn
k .

Finally, we are able to give a more satisfying proof that all zn are irra-
tional.

Lemma 10. Every reduced rational p/q in Q(0, 1) can be written uniquely
in the form .(p − 1)(q − 1), base q.

Proof. This follows immediately as .0q − 1 converges to 1/q and adding .(p−
1) to 1/q gives .(p), base q.

Lemma 11. Partial sums of plus-one series, sk, converging to a rational
number, p/q reduced, can be expressed as .(p − 1)q − 1Rx, where q − 1R are
fixed decimals and x are other decimals.

Proof. Using Lemma 10 we know the convergence point of such a series can
be given as .(p − 1)q − 1. Partial sums must get arbitrarily close to this
number. Partials approximate this number by having an increasing number
of matching fixed digits.

Lemma 12. A plus one series, sk → s, converges to a rational number if and
only if the base used to represent its partial sums in the form .(x−1)b− 1Rm
uses the same base for all partial sums.
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Theorem 8. zn is irrational.

Proof. Assume zn is rational. Let .(x−1)(b − 1)3 be the best approximation
to sn

3 in the bases of Ξn
3 ; in general, let .(x− 1)(b − 1)k be the best approxi-

mation to sn
k in the bases of Ξn

k . As zn is a complete one-plus series, a single
basis will emerge. This basis will occur at a specific k value and persist for
all Ξn

k afterwards; that is the basis used will become fixed.

But each sn
k is such that sn

k = .(x−1)(b− 1)k(b− 1), an exact approxima-
tion of sn

k using the denominator of the reduced fraction for sn
k as a basis. The

notation indicates that k initial decimals are all (b − 1) and the remaining
decimals are all (b − 1) as well. Now eventually all sn

k bases are incorpo-
rated into Ξn

k+, where the + indicates some greater than k value. But, per
Corollary 1 the primes in the bases of sn

k increase without bound and the ap-
proximation being perfect (less than any ε > 0), this bases should be chosen
as the best approximation to sn

k . But as a prime factor will exceed any given
prime factor of a given fixed basis, the basis must differ from the one implied
by our rationality assumption. We have a contradiction.

Note the error given by the tail is one over the base minus the finite dec-
imal head. As this goes to zero with the increasing bases needed a difference
with a fixed base form grows. One can say that the basis selected from Ξn

k is
incorrect; it doesn’t have the smallest error.

With another definition, we can, at long last, get a picture of how partials
for zn are excluding rational values and converging to an irrational number.

Definition 9. A k-zeta-nest is defined as two sequences of powers of consec-
utive prime numbers. The first is

xk = pk
1p

k
2p

k
3 . . . pk

k

and the second sequence is

yk = xkp
k
k+1p

k
k+2 . . . pk

k+k .

Example 8. A 3-zeta-nest is given by x3 = 233353 and y3 = 23335373113133.
A 4-zeta-nest:

x4 = 24345474

and
y4 = 24345474114134174194.
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Finally, we have the long sought after picture for the irrationality of zn.
Its a shuffling action.

Theorem 9. zn is irrational.

Proof. The following systems of inequalities shows all zn are irrational:

.(x− 1)xk
< sn

k1
< zn ≤ .(x)yk

< .(x)xk
,

where the decimal digits conform with Lemma 9. For a given n and k1, for
sufficiently large k, all sn

k1
will have an upper bound of .(x)yk

. We define
the decimal digit to be the least such upper bound. But as k increases this
upper bound is transferred to .(x)xk

and the mixed inequality changes to a
pure inequality. Any p/q ∈ Q(0, 1) is thus eliminated as a convergence point
for any zn.

Conclusion

How does this proof compare to the work of Beukers and Apery? Why do
we get a general result here and not with their techniques? We will focus on
Beukers’s ζ(2) proof.

Beukers uses double integrals that evaluate to numbers involving partials
for ζ(2). He uses

∫ 1

0

∫ 1

0

xrys

1 − xy
dxdy = various expressions related to ζ(2)

and uses this to calculate
∫ 1

0

∫ 1

0

(1 − y)nPn(x)

1 − xy
dxdy,

where Pn(x) is the nth derivative of an integral polynomial.
These calculations yield integers An and Bn in

0 < |An + Bnζ(2)|d2
n <

{

√
5 − 1

2

}5n

ζ(2) <
{5

6

}n

, (19)

where dn designates the least common multiple of the set of integers {1, . . . , n}.
This last, assuming ζ(2) is rational, forces an integer between 0 and 1, giving
a contradiction. An upper limit for dn requires the prime number theorem.
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These themes repeat for ζ(3) with the complexity of the expressions and
manipulations (tricks needed) at least doubling. In both cases proofs by
contradiction are used and require a unique trap for each case.

We don’t use integrals to generate in effect an interval, a trap, like (19).
We use relationships between terms and partials to generate partitions of
(0, 1) narrowing and leaving only irrational numbers for all n in the same way.
We use inherent and simple properties of zn’s partials and terms, Corollary
1, to avoid intractable complexity inherent in such an artifice as multiple
integrals.

The same problems are present in the recursive relationships of mi amigo,
the Frenchman Apery. They are specific to each n and not general to all n
by design.
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