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Abstract 

 In the first paert of the INJURED EARTH ( Mirosław Kozłowski, RG 2020 ) we 

presented experimental  dqata ( measurement) of  the CoV-19 pandemia.The 

simultaneosly in quite different part of the Earth atospere  the blast of virus 

pandemia was noted, There is no possibility of the  propagation of the pandemia 

through  individual contacts. My fundamental thesis is that  droplet of  viruses 

pandemia   are in the clouds( not weather clouds) but different aerosols clouda. On 

the figure beneath we see the different types of the aerosols clauds, especially over 

USA terrains The movement of clouds over terrains of differen parts of Eart`s 

atmosfere  is the source of Pangemia./ The picture of pabemia propagation 

resembles the propagatiob of radiactive clouds  fro Chernobyl  radioactive last For 

the moment we do not know the dimensions of  Covid-19 clouds and its stability 

and  lifetime. In my papers I presented the mathematical model for  aerosols of 

CoVID INTERACTIONS WITH OUR LUNGS. We are breathing the atmospkere 

air with CoVid aerosols 

 



 

Aerosol Earth 
Model Visualization Credit: NASA Earth Observatory, GEOS FP, Joshua Stevens 

Explanation: For August 23, 2018, the identification and distribution of aerosols in 

the Earth's atmosphere is shown in this dramatic, planet-wide visualization. 

Produced in real time, the Goddard Earth Observing System Forward Processing 

(GEOS FP) model relies on a combination of Earth-observing satellite and ground-

based data to calculate the presence of types of aerosols, tiny solid particles and 

liquid droplets, as they circulate above the entire planet. This August 23rd model 

shows black carbon particles in red from combustion processes, like smoke from 

the fires in the United States and Canada, spreading across large stretches of North 

America and Africa. Sea salt aerosols are in blue, swirling above threatening 

typhoons near South Korea and Japan, and the hurricane looming near Hawaii. 

Dust shown in purple hues is blowing over African and Asian deserts. The location 

https://earthobservatory.nasa.gov/
https://gmao.gsfc.nasa.gov/GMAO_products/
https://earthobservatory.nasa.gov/images/92654/just-another-day-on-aerosol-earth
https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD
https://gmao.gsfc.nasa.gov/GMAO_products/
https://www.nasa.gov/topics/earth/overview/index.html
https://apod.nasa.gov/apod/image/1809/atmosphere_geo5_2018235_eq2400.jpg


of cities and towns can be found from the concentrations of lights based on satellite 

image data of the Earth at night. 

1Mathematical model of CoV propagation 

In this paper the mathematical model for CoV propagation, based on Boltzmann type 

equation is formulated. The CoV growth factor is defined . The host  cells density is 

calculated. It is shown that the CoVevolution strongly depends on the growth factor k. For 

k<0.5 CoV density oscillate and virus is in the “ hesitate” state. For k>0.5 CoV lost the 

oscillatory character and grows abruptly and emits to the host body. We argue that the  

oscillation of the density of CoV  crates the CoV waves which can be coined as the CoV s 

waves..  

 

Since 2020, CoV has become the leading cause of death for humansbetween the ages of 40 and 

74). But the overall effectiveness of CoV therapeutic treatments is only 50%. Understanding 

the CoVr biology and developing a prognostic tool could therefore have immediate impact on 

the lives of millions of people diagnosed with CoV . There is growing recognition that achieving 

an integrative understanding of molecules, cells, tissues and organs is the next major frontier of 

biomedical science. Because of the inherent complexity of real biological systems, the 

development and analysis of computational models based directly on experimental data is 

necessary to achieve this understanding.  

CoV development is very complex and dynamic. Primary malignant  CoV  patients arise from 

small nodes of cells that  have lost, or ceased to respond to, normal growth regulatory 

mechanisms, through mutations and/or altered gene expression , This genetic instability causes 

continued malignant alterations,  resulting in a biologically complex  

Physicists have long been at the forefront of cancer diagnosis and treatment, having pioneered 

the use of X rays and radiation therapy. In the contemporary initiative, the US National Cancer 

Institute the conviction that physicists bring unique conceptual insights that could augment the 

more traditional approaches to cancer research is very appealing. 

 In this paper we present the first attempt to consider the CoV propagation as the physical 

medium with some sort of memory.  

 

https://apod.nasa.gov/apod/ap170709.html


             

 Let us consider the one-dimensional transport “particles”, .CoV. These  viruses 

however may move only to the right or to the left on the rod. Moving CoVs may interact 

with the fixed host body cells   the probabilities of such collisions and their expected results 

being specified. All particles will be of the same kind, with the same energy and other 

physical specifications distinguishable only by their direction.  

Let us define: 

u(z,t) = expected density of CoV at z and at time t moving to the right, 

v(z,t) = expected density of CoVat z and at time t moving to the left. 

Furthermore, let 

)(z = probability of collision occurring between a fixed scattering centrum and a 

cell moving between z and .z  

Suppose that a collision might result in the disappearance of the moving CoV without 

new items appearing. Such a phenomenon is called absorption. Or the moving particle may 

be reversed in direction or back-scattered. We shall agreeing that in each collision at z an 

expected total of F(z) cells arises moving in the direction of the original cell, B(z) arise 

going in the opposite direction. 

The expected total number of right-moving CoV 21 zzz   at time t is  
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while the total number of CoVpassing z to the right in the time interval 21 ttt   is 
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where w is the CoV speed. 

Consider the cell moving to the right and passing z  in the time interval 
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These can arise from cells which passed z in the time interval 21 ttt   and came through (

zz, ) without collision  
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plus contributions from collisions in the interval ( zz, ). The right-moving cells 

interacting in ( zz, ) produce in the time t1 to t2,  
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cells to the right, while the left moving ones give: 
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Now, we can write:  
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to get 
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On letting 0  and differentiating with respect to t2 we find 
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In a like manner 
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The system of partial differential equations of hyperbolic type (2.15, 2.16) is the Boltzmann 

equation for one dimensional transport phenomena (Kozlowski, Marciak-Kozlowska,2009) 

Let us define the total density forCoV, ),( tzρ  

),(),(),( tzvtzutzρ                   (2.17) 

and density of cells current 
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Considering equations (2.15 – 2.18) one obtains 
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Equation (2.19) can be written as 
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Denoting, D, diffusion coefficient 
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equation (2.21) takes the form 
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Equation (2.23) is the Cattaneo’s type equation and is the generalization of the Fourier 

equation (Kozlowski,Marciak-Kozlowska,2009). Now in a like manner we obtain from 

equation (2.15 – 2.18) 
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Equation (2.25) describes the conservation of cells in the transport processes. 

Considering equations (2.23) and (2.25) for the constant D and τ the hyperbolic 

Heaviside equation is obtained: 
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where τ is the relaxation time  



In the stationary state transport phenomena 0),(/),(  dttzdBdttzdF  and 

.0/),(  dttzd  In that case we denote )()(),()(),( zkzBtzBzFtzF   and 

equation (2.10) and (2.11) can be written as 
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with diffusion coefficient 
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and relaxation time 
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The system of equations (2.27) can be written as 
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Equation (2.30) after differentiation has the form 
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For the constant absorption rate we put 
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With functions f(z) and g(z) the general solution of the equation (2.30) has the form 
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In the subsequent we will consider the solution of the equation (2.32) with f(z) and g(z) 

described by (2.34) for Cauchy condition: 

0)(,)0(  avqu .                  (2.36) 

Boundary condition (2.36) describes the generation of the heat carriers (by 

illuminating the left end of the strand with laser pulses) with velocity q heat carrier per 

second. 

The solution has the form: 
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Considering formulae (2.17), (2.18) and (2.37) we obtain for the density, )(zρ  and current 

density j(z). 
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and 
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Equations (2.39) and (2.40) fulfill the generalized Fourier relation 
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where D denotes the diffusion coefficient. 

Analogously we define the generalized diffusion velocity υD(z) 
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Assuming constant cross section for  CoV scattering oδzδ )(  we obtain from 

formula (2.38) 
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and for density )(zρ  and current density j(z) 
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Formulae (2.44) and (2.45) describe the kinetic of the growth of the CoVl 

aggregation. The development of the CoV strongly depends on the coefficient k. In the 

following we will call k-the growth coefficient. For  k<0.5 the density of the cell oscillate, 

Fig.1 a, 2 a. On the other hand for k>0.5 the cell density grows exponentially, Fig. 2 a, 2 b. 

For k<0.5 the CoV aggregation emits the wave with length λ= size of the tumor. For 

k=0.5 the cancer development has a cusp. Fig1 a. For k=1.91  density of the tumor cells has 

a singularity. For  k<0.5 the density of the cell oscillate, Fig.2 a, a. On the other hand for 

k>0.5 the cell density grows exponentially, Fig. 2 b. 

 

The first stage k<0.5 we will call the “hesitation’ period in which tumor send the “ 

information” waves to the host body. The response of the host depends on the willing to 

cooperate with CoV . For k<0.5 the response of the host is negative and CoV density is 

stable. For k>0.5 the angiogenesis starts – the host cooperates with CoV and density grows 

abruptly 

It seems that the first “hesitation’ stage is the exchange the information tumor→ 

host→ tumor  and vice versa. Next , through the singularity point k=1.9 , for x=3 um the 

cancer obtain the information, go and metastasis process starts. 

 

 

 

  

 

 

3. Conclusions 

 

In this paper we argue that the CoV aggregates in host evolution can be described as the process 

which strongly depends on the growth factor k, defined in the paper. For k<0.5  agregatesr is 

stable with oscillatory behavior of the CoV density. For k> 0.5 the density grows exponentially. 

For the moment the CoVr wave emission was not observed. It seems that the observation of the 

emitted waves can be important  therapeutic tool for the description of the CoVstatus. The stop  

of the emission  of the waves is the signature of the  invasive evolution of the CoV. In that case 

we can anticipate the correlation of the tumor  growth and psychic of the host. It is interesting 



to note that  in paper by Erica K. Sloan and others ( Sloan, 2010)] the  role of the 

neuroendoctrine activation  in cancer propagation is described and investigated 
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Figure captions 

    Fig. 1 a Cells (CoV) density, formula (2.45) as the function of the  growth factor k, for x=3 

um, a=1 um. Fig.1 b , the same as in Fig 1 a but for k>0.5 

  Fig .2 a Cells (CoV) density , formula (2.45 ) as the function of x and growth factor k, for 

k<0.5, a=10 um. Fig. 2 b the same as in Fig 2a but for k>0.5 ,  
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