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FERMAT’S LAST THEOREM -

A SIMPLE PROOF.

Peter G.Bass.

Abstract.

This paper provides a simple proof of Fermat’s Last Theorem via elementary algebraic analysis of a level that
would have been extant in Fermat’s day, the mid seventeenth century.

1 Introduction.

Fermat’s Last Theorem, (or Conjecture), was finally proven in 1995, some 360 years after its proposal in the
margin of a book, ”Arithmetica” by the Greek mathematician Diophantus, that Pierre de Fermat was reading
at the time.
This proof, published by Andrew Wiles, a professor of mathematics at Princeton University, was a proof by
association in that, by proving another conjecture, the Taniyama - Shimura Conjecture, Wiles also proved
Fermat’s Last Theorem via a link between the two, previously established by two other mathematicians, Gerhard
Frey and Ken Ribet. The proof was extremely long and complex utilising the most modern 20th Century
analytical techniques, the majority of which would not have been available in Fermat’s day.
Consequently, although the Fermat Conjecture was at last proven, there remained the tantalising question as to
whether it could ever be proven in a direct manner, using only elementary analytical methods. It is the purpose
of this paper to provide such a proof.

2 Proof of Fermat’s Last Theorem.

2.1 Preamble.

Fermat’s equation is
xn + yn = zn (2.1)

and his Last Theorem states ”There are no integer solutions for x, y and z for n > 2.”

It is well known, [1], that x and y cannot both be even numbers, and that they must be of different parity
and relatively prime. Also, it is well known, [1], [2], that if the Last Theorem can be proved for n = 4, then it is
also proven for all multiples of n = 4. Consequently, because all of the remaining numbers can be reduced to a
multiple of the prime numbers, it is therefore only necessary to prove Fermat’s Last theorem for all the primes.
Indeed this is the approach adopted by many eminent mathematicians in the past, and more recently using
computer analysis which, prior to Wiles’ proof, established the proof of the Conjecture for all values of n up
to 4 million, including the primes therein. However, it is obvious that this eventually becomes a fruitless task
because, even if only prime numbers are considered, because there are an infinite number of prime numbers, the
Conjecture can never be proven by such number crunching alone.
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The method adopted here will however, consider such specific cases of n, because the results so obtained will be
shown to exhibit a simple pattern, that can justifiably be extrapolated to the nth order, so proving the general
case. This method is initiated as follows.

Because x, y and z are simply numbers, with no physical meaning, (2.1) can be re-written as follows

xn + (x + b)n = (x + a)n (2.2)

where b is an odd integer and a > b. It is important to note that variation of y in (2.1), is effected by variation
of b in (2.2) so that with x constant, changes in b directly cause a variation of a in (2.2). Similarly, variation
of x in (2.1), keeping y constant means in (2.2), that b varies inversely to x thus also causing a variation in a.
Thus, in (2.2) n, x and b are the independent variables and, a the dependent.
Expanding (2.2) binomially and gathering all terms to the left gives

xn − n (a− b) x(n−1) − n (n− 1)
2!

(
a2 − b2

)
x(n−2) − · · · − n (n− 1) (n− 2) · · · (1)

n!
(an − bn) = 0 (2.3)

Thus Fermat’s equation, (2.1) has been transformed into a variable co-efficient nth order polynomial in x.
Application of Descartes’ Rule of Signs shows that (2.3) contains just one positive root, with all the rest being
negative. Also, from the co-efficient of x(n−1) it is clear that all the roots must contain the unique term (a− b).
Furthermore, the nature of the other co-efficients also shows that the remaining roots cannot all be real. When
n is even, in addition to the one positive root, there can only be one real negative root with all the rest being
conjugate complex with negative real parts. And when n is odd, in addition to the one real positive root, all
the rest are also conjugate complex with negative real parts.
Fermat’s Last Theorem can therefore be proved by determining whether the one generalised positive real root
of (2.3) can contain an integer value of the parameter a. The approach here is to accomplish this task for n =
3, 4, 5 and 7, from which extrapolation to the general case will be effected.

2.2 Case n = 3.

When n = 3, (2.3) reduces to

x3 − 3 (a− b) x2 − 3
(
a2 − b2

)
x−

(
a3 − b3

)
= 0 (2.4)

From the above discussion, the roots of (2.4) are of the form

{x− (p + k1)}
{

x−
(

p− k1

2
± jk2

)}
= 0 (2.5)

where p = (a− b), and the k parameters are secondary variables of the a’s and b’s that contribute to generating
the correct co-efficients of (2.4).
Expanding (2.5) gives

x3 − 3px2 +

[{(
p− k1

2

)2

+ k2
2

}
+ (2p− k1) (p + k1)

]
x−

{(
p− k1

2

)2

+ k2
2

}
(p + k1) = 0 (2.6)

In (2.6) consider the co-efficient of x. Multiplying out this reduces to

A1 = 3p2 − 3
4
k2
1 + k2

2 (2.7)

Comparing (2.7) with the co-efficient of x in (2.4)

−3a2 + 3b2 = 3 (a− b)2 − 3
4
k2
1 + k2

2 (2.8)
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which reduces to
k2
2 −

3
4
k2
1 = −6a (a− b) = −6ap (2.9)

Now consider the final term in (2.6). Multiplying out this reduces to

A0 = −p3 −
(

k2
2 −

3
4
k2
1

)
p + k1

(
k2
2 +

k1

4

)
(2.10)

Substituting (2.9) for the co-efficient of p in (2.10) and for k2
2 in the final term of (2.10) gives

A0 = −p3 + 6ap2 − k1

(
−6ap + k2

1

)
(2.11)

Now compare (2.11) with the final term in (2.4) thus

−a3 + b3 = − (a− b)3 + 6a (a− b)2 − k1

(
−6a (a− b) + k2

1

)
(2.12)

and this reduces to
6a3 − 9a2b + 3ab2 + 6k1a (a− b)− k3

1 = 0 (2.13)

Dividing through by the co-efficient of k1 now gives

a− b

2
+ k1

(
1− k2

1

6a (a− b)

)
= 0 (2.14)

Now, k1 is of unity order in a and b so that k2
1 in the numerator of the quotient in (2.14) is of the same order

in a and b as the denominator. Also because of the independent presence of unity, the term
{

1− k2
1

6a (a− b)

}
must be a pure number. Consequently, the quotient in this term must also be a pure number, i.e. q3, where the
subscript denotes the order of the equation being analysed, i.e. (2.4). The parameter q3 is not a constant, but
a ”non-dimensional” function of the a’s and b’s. Thus (2.14) becomes

a− b

2
+ k1 (1− q3) = 0 (2.15)

So that

k1 =
−

(
a− b

2

)
(1− q3)

(2.16)

Now, substitution of (2.16) into the positive root of (2.5) gives

x = a− b−

(
a− b

2

)
(1− q3)

(2.17)

This must be a positive root so that q3 must be greater than unity, and thus (2.17) is re-written as

x = a− b +

(
a− b

2

)
(q3 − 1)

(2.18)

Re-arranging for a gives

a =
(

x +
b

2

) (
1− 1

q3

)
+

b

2
(2.19)

Now, because x is an integer, (x + b/2) must be half integer. Therefore, for a to be an integer, the term (1
- 1/q3) would have to be an odd integer. This is clearly impossible because with q3 > 1, the term (1 - 1/q3)
must be fractional. Thus a in (2.2) and therefore z in (2.1) cannot be integers. Thus, subject to q3 exhibiting
satisfactory characteristics, this proves Fermat’s Last Theorem for n = 3.
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2.3 Case n = 4.

When n = 4, (2.3) becomes

x4 − 4 (a− b) x3 − 6
(
a2 − b2

)
x2 − 4

(
a3 − b3

)
x−

(
a4 − b4

)
= 0 (2.20)

The roots of this equation will be of the form

{x− (p + k1 + k2)} {x− (p− k1 + k2)} {x− (p− k2 ± jk3)} = 0 (2.21)

When expanded (2.21) becomes
x4 −A3x

3 + A2x
2 −A1x + A0 = 0 (2.22)

Where
A3 = 4p

A2 =
[{

(p + k2)
2 − k2

1

}
+ 4 (p + k2) (p− k2) +

{
(p− k2)

2 + k2
3

}]
A1 = 2

[{
(p + k2)

2 − k2
1

}
(p− k2) +

{
(p− k2)

2 + k2
3

}
(p + k2)

]
A0 =

{
(p + k2)

2 − k2
1

}{
(p− k2)

2 + k2
3

}
(2.23)

Consider the co-efficient of x2 in (2.22). From (2.23) after multiplying out, this becomes

A2 = 6p2 − 2k2
2 − k2

1 + k2
3 (2.24)

Comparing (2.24) with the co-efficient of x2 in (2.20) gives

−6a2 + 6b2 = 6 (a− b)2 − 2k2
2 − k2

1 + k2
3 (2.25)

Which reduces to
2k2

2 + k2
1 − k2

3 = 12a2 − 12ab = 12ap (2.26)

Now consider the co-efficient of x in (2.22). From (2.23), after multiplying out this becomes

A1 = −4p3 + 2
(
2k2

2 + k2
1 − k2

3

)
p− 2k2

(
k2
1 + k2

3

)
(2.27)

Substituting (2.26) for the co-efficient of p and for k2
3 in the final term in (2.27) gives

A1 = 20a3 − 36a2b + 12ab2 + 4b3 + k2

{
24a (a− b)− 4k2

1 − 4k2
2

}
(2.28)

Comparing (2.28) with the co-efficient of x in (2.20) gives

−4a3 + 4b3 = 20a3 − 36a2b + 12ab2 + 4b3 + k2

{
24a (a− b)− 4k2

1 − 4k2
2

}
(2.29)

and this reduces to
24a3 − 36a2b + 12ab2 + k2

{
24a (a− b)− 4k2

1 − 4k2
2

}
= 0 (2.30)

Dividing (2.30) throughout by 24a(a− b) then gives

a− b

2
+ k2

{
1− k2

1 + k2
2

6a (a− b)

}
= 0 (2.31)

In the quotient in (2.31), the term
(
k2
1 + k2

2

)
is of the same order in a and b as the denominator and therefore

this quotient must be a pure number, q4. Eq.(2.31) therefore becomes

a− b

2
+ k2 (1− q4) = 0 (2.32)
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So that

k2 = −
a− b/2
1− q4

(2.33)

Substitution of (2.33) into the positive root of (2.21) then gives

x1 = a− b−
a− b/2
1− q4

+ k1 (2.34)

Substitution of (2.33) into the negative real root of (2.21) gives

x2 = a− b−
a− b/2
1− q4

− k1 (2.35)

Adding (2.34) and (2.35) then yields

x1 + x2

2
= x′ = −

(
a− b

2

) (
q4

1− q4

)
− b

2
(2.36)

and re-arranging for a yields

a = −
(

x′ +
b

2

) (
1− q4

q4

)
+

b

2
(2.37)

The parameter a must be positive so that q4 must be greater than unity and therefore (2.37) is rewritten as

a =
(

x′ +
b

2

) (
1− 1

q4

)
+

b

2
(2.38)

x/ is the average of the real roots and must therefore be either integer or half integer. If x/ is integer, then
(x/ + b/2) must be half integer and a cannot then be integer because (1 - 1/q4) cannot be an odd integer.
If x/ is half integer then (x/ + b/2) is a full integer and for a to be integer, not only would (x/ + b/2) have to
be an odd integer, but (1 - 1/q4) would also have to be half integer. This would require q4 to be exactly equal
to 2. In this case from (2.31)

k2
1 + k2

2

6a (a− b)
= 2 (2.39)

so that
k2
1 = 12a (a− b)− k2

2 (2.40)

Then from (2.33) with q4 = 2, (2.40) becomes

k2
1 = 12a (a− b)−

(
a− b

2

)2

(2.41)

Which reduces to

k2
1 = 11a2 − 11ab− b2

4
(2.42)

But under this condition k1 would have to be an integer for x1 and x2 to be integers and this is not possible
from (2.42). Therefore q4 cannot be equal to 2, so that a in (2.20) and therefore z in (2.1) cannot be integers.
Thus, subject to q4 exhibiting satisfactory characteristics, this proves Fermat’s Last Theorem for n = 4.

2.4 Case n = 5.

When n = 5, (2.3) reduces to

x5 − 5 (a− b)x4 − 10
(
a2 − b2

)
x3 − 10

(
a3 − b3

)
x2 − 5

(
a4 − b4

)
x−

(
a5 − b5

)
= 0 (2.43)
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The roots of (2.43) are of the form

{x− (p + k1 + k2)}
{

x−
(

p− k1

2
± jk3

)} {
x−

(
p− k2

2
± jk4

)}
= 0 (2.44)

Expanding (2.44) gives
x5 −A4x

4 + A3x
3 −A2x

2 + A1x−A0 = 0 (2.45)

Where

A4 = 5p

A3 =
[{(

p− k2
2

)2

+ k2
4

}
+ (2p− k2) (2p− k1) +

{(
p− k1

2

)2

+ k2
3

}
+ (4p− k1 − k2) (p + k1 + k2)

]

A2 =


{(

p− k2
2

)2

+ k2
4

}
(2p− k1) +

{(
p− k1

2

)2

+ k2
3

}
(2p− k2)

+
{(

p− k2
2

)2

+ k2
4 + (2p− k2) (2p− k1) +

(
p− k1

2

)2

+ k2
3

}
(p + k1 + k2)



A1 =


{(

p− k2
2

)2

+ k2
4

} {(
p− k1

2

)2

+ k2
3

}
+

{{(
p− k2

2

)2

+ k2
4

}
(2p− k1) +

{(
p− k1

2

)2

+ k2
3

}
(2p− k2)

}
(p + k1 + k2)


A0 =

[{(
p− k2

2

)2

+ k2
4

} {(
p− k1

2

)2

+ k2
3

}
(p + k1 + k2)

]
(2.46)

Consider the co-efficient of x3 in (2.45). In (2.46) after multiplying out this reduces to

A3 = 10p2 − 3
4

(
k2
1 + k2

2

)
− k1k2 + k2

3 + k2
4 (2.47)

Comparing (2.47) with the coefficient of x3 in (2.43) gives

−10a2 + 10b2 = 10 (a− b)2 − 3
4

(
k2
1 + k2

2

)
− k1k2 + k2

3 + k2
4 (2.48)

Which reduces to
20a (a− b)− 3

4
(
k2
1 + k2

2

)
− k1k2 + k2

3 + k2
4 = 0 (2.49)

Consider the co-efficient of x2 in (2.45). In (2.46) after multiplying out this reduces to

A2 = −10p3 + 3
{

3
4

(
k2
1 + k2

2

)
+ k1k2 − k2

3 − k2
4

}
p−

(
k3
1 + k3

2

)
4

− k1k2 (k1 + k2)− k1k
2
3 − k2k

2
4 (2.50)

Comparing this to the co-efficient of x2 in (2.43) yields

−10a3 + 10b3 = −10 (a− b)3 + 3
{

3
4

(
k2
1 + k2

2

)
+ k1k2 − k2

3 − k2
4

}
p

−
(
k3
1 + k3

2

)
4 − k1k2 (k1 + k2)− k1k

2
3 − k2k

2
4

(2.51)

and this reduces to

30a2b− 30ab2 + 3
{

3
4

(
k2
1 + k2

2

)
+ k1k2 − k2

3 − k2
4

}
p−

(
k3
1 + k3

2

)
4

− k1k2 (k1 + k2)− k1k
2
3 − k2k

2
4 = 0 (2.52)
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Substituting (2.49) for the coefficient of p in (2.52) gives

30a2b− 30ab2 + 3 {20a (a− b)} (a− b) −
(
k3
1 + k3

2

)
4

− k1k2 (k1 + k2)− k1k
2
3 − k2k

2
4 = 0 (2.53)

and this reduces to

60a3 − 90a2b + 30ab2 −
(
k3
1 + k3

2

)
4

− k1k2 (k1 + k2)− k1k
2
3 − k2k

2
4 = 0 (2.54)

Eq.(2.54) may be rewritten as

60a3 − 90a2b + 30ab2 − (k1 + k2)


{

3
4

(
k2
1 + k2

2

)
+ k1k2 − k2

3 − k2
4

}
−

{(
k2
1 + k2

2

)
2 + k1k2

4 − k2
3 − k2

4 −
(
k1k

2
3 + k2k

2
4

)
(k1 + k2)

}
 = 0 (2.55)

Now substitution from (2.49) gives

60a3 − 90a2b + 30ab2 − (k1 + k2)

 20a (a− b)

−
{(

k2
1 + k2

2

)
2 + k1k2

4 − k2
3 − k2

4 −
(
k1k

2
3 + k2k

2
4

)
(k1 + k2)

}  = 0 (2.56)

and dividing through by 20a(a− b) gives

3
(

a− b

2

)
− (k1 + k2)

1−

{(
k2
1 + k2

2

)
2 + k1k2

4 − k2
3 − k2

4 −
(
k1k

2
3 + k2k

2
4

)
(k1 + k2)

}
{20a (a− b)}

 = 0 (2.57)

The numerator in the quotient of (2.57) is of the same order in a and b as the denominator and is therefore a
pure number, q5. Thus

3
(

a− b

2

)
− (k1 + k2) (1− q5) = 0 (2.58)

From which

(k1 + k2) =
3

(
a− b

2

)
(1− q5)

(2.59)

Now, substituting (2.59) into the positive root of (2.44) yields

x = a− b +
3

(
a− b

2

)
(1− q5)

(2.60)

and clearly, in this case for x to be positive, q5 must be less than unity. Re-arranging (2.60) for a

a =
(

x +
b

2

) (
1− q5

4− q5

)
+

b

2
(2.61)

It is clear from (2.61) that a cannot be an integer following the same argument as in Section 2.2. Therefore, z

cannot be an integer in (2.1). Thus, subject to q5 exhibiting satisfactory characteristics, this proves Fermat’s
Last Theorem for n = 5.
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2.5 Case n =7.

When n =7, (2.3) reduces to

x7 − 7 (a− b) x6 − 21
(
a2 − b2

)
x5 − 35

(
a3 − b3

)
x4 − 35

(
a4 − b4

)
x3 − 21

(
a5 − b5

)
x2

−7
(
a6 − b6

)
x−

(
a7 − b7

)
= 0

(2.62)

The Roots of (2.62) are of the form

{x− (p + k1 + k2 + k3)}
{

x−
(

p− k1

2
± jk4

)} {
x−

(
p− k2

2
± jk5

)} {
x−

(
p− k3

2
± jk6

)}
= 0 (2.63)

Expanding (2.63) gives

x7 −A6x
6 + A5x

5 −A4x
4 + A3x

3 −A2x
2 + A1x−A0 = 0 (2.64)

Where
A6 = 7p

A5 = A′
4 + A′

5 (p + k1 + k2 + k3)
A4 = A′

3 + A′
4 (p + k1 + k2 + k3)

A3 = A′
2 + A′

3 (p + k1 + k2 + k3)
A2 = A′

1 + A′
2 (p + k1 + k2 + k3)

A1 = A′
0 + A′

1 (p + k1 + k2 + k3)
A0 = A′

0 (p + k1 + k2 + k3)

(2.65)

and where in turn

A′
5 = (6p− k1 − k2 − k3)

A′
4 =


(
p− k3

2

)2

+ k2
6 +

(
p− k2

2

)2

+ k2
5 + (2p− k2) (2p− k3)

+ (4p− k2 − k3) (2p− k1) +
(
p− k1

2

)2

+ k2
4



A′
3 =



{(
p− k2

2

)2

+ k2
5

}
(2p− k3) +

{(
p− k3

2

)2

+ k2
6

}
(2p− k2)

+
{(

p− k3
2

)2

+ k2
6 +

(
p− k2

2

)2

+ k2
5 + (2p− k2) (2p− k3)

}
(2p− k1)

+ (4p− k2 − k3)
{(

p− k1
2

)2

+ k2
4

}



A′
2 =



{(
p− k2

2

)2

+ k2
5

} {(
p− k3

2

)2

+ k2
6

}
+

{{(
p− k2

2

)2

+ k2
5

}
(2p− k3) +

{(
p− k3

2

)2

+ k2
6

}
(2p− k2)

}
(2p− k1)

+
{(

p− k3
2

)2

+ k2
6 +

(
p− k2

2

)2

+ k2
5 + (2p− k2) (2p− k3)

} {(
p− k1

2

)2

+ k2
4

}



A′
1 =


{{(

p− k2
2

)2

+ k2
5

}
(2p− k3) +

{(
p− k3

2

)2

+ k2
6

}
(2p− k2)

} {(
p− k1

2

)2

+ k2
4

}
−

{(
p− k2

2

)2

+ k2
5

} {(
p− k3

2

)2

+ k2
6

}
(2p− k1)


A′

0 =
[{(

p− k2
2

)2

+ k2
5

} {(
p− k3

2

)2

+ k2
6

} {(
p− k1

2

)2

+ k2
4

}]

(2.66)
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In (2.64) consider the co-efficient of x5. From (2.65) and (2.66), after multiplying out this reduces to

42ap− 3
4

(
k2
1 + k2

2 + k2
3

)
+ k2

4 + k2
5 + k2

6 − k1k2 − k1k3 − k2k3 = 0 (2.67)

Now consider the co-efficient of x4 in (2.4). From (2.65) and (2.66), after multiplying out this reduces to

A4 = −



35p3 − 5
{

3
4

(
k2
1 + k2

2 + k2
3

)
+ k2

4 + k2
5 + k2

6 − k1k2 − k1k3 − k2k3

}
p

+


(
k3
1 + k3

2+
3
3

)
4 + k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 2k1k2k3




(2.68)

Comparing (2.68) with the co-efficient of x4 in (2.62) gives

−35a3 + 35b3 = −



35 (a− b)3 − 5
{

3
4

(
k2
1 + k2

2 + k2
3

)
+ k2

4 + k2
5 + k2

6 − k1k2 − k1k3 − k2k3

}
(a− b)

+


(
k3
1 + k3

2+
3
3

)
4 + k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 2k1k2k3




(2.69)

This reduces to

105a2b− 105ab2 + 5
{

3
4

(
k2
1 + k2

2 + k2
3

)
+ k2

4 + k2
5 + k2

6 − k1k2 − k1k3 − k2k3

}
(a− b)

−
{(

k3
1 + k3

2+
3
3

)
4 + k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3) + k1k

2
4 + k2k

2
5 + k3k

2
6 + 2k1k2k3

}
= 0

(2.70)
In (2.70) substitute for the co-efficient of (a− b) from (2.67) and reduce to

210a3 − 315a2b + 105ab2 −


(
k3
1 + k3

2+
3
3

)
4 + k1k2 (k1 + k2) +

k1k3 (k1 + k3) + k2k3 (k2 + k3) + k1k
2
4 + k2k

2
5 + k3k

2
6 + 2k1k2k3

 = 0 (2.71)

Dividing the term in the k’s by (k1 + k2 + k3) yields

210a3−315a2b+105ab2−(k1 + k2 + k3)



1
4

(
k2
1 + k2

2 + k2
3 − k1k2 − k1k3 − k2k3

)

+ 1
(k1 + k2 + k3)


k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 11

4 k1k2k3




= 0

(2.72)
and this can be rewritten

210a3−315a2b+105ab2−(k1 + k2 + k3)



{
3
4

(
k2
1 + k2

2 + k2
3

)
+ k1k2 + k1k3 + k2k3 − k2

4 − k2
5 − k2

6

}
−

{
1
2

(
k2
1 + k2

2 + k2
3

)
− 5

4 (k1k2 + k1k3 + k2k3)− k2
4 − k2

5 − k2
6

}

+ 1
(k1 + k2 + k3)


k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 11

4 k1k2k3




= 0

(2.73)
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Now substitution from (2.67) yields

210a3−315a2b+105ab2−(k1 + k2 + k3)



42a (a− b)

−
{

1
2

(
k2
1 + k2

2 + k2
3

)
− 5

4 (k1k2 + k1k3 + k2k3)− k2
4 − k2

5 − k2
6

}

+ 1
(k1 + k2 + k3)


k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 11

4 k1k2k3




= 0

(2.74)
and dividing through by 42a(a− b) then gives

5
(

a− b

2

)
−(k1 + k2 + k3)



1−



{
1
2

(
k2
1 + k2

2 + k2
3

)
− 5

4 (k1k2 + k1k3 + k2k3)− k2
4 − k2

5 − k2
6

}

− 1
(k1 + k2 + k3)


k1k2 (k1 + k2) + k1k3 (k1 + k3) + k2k3 (k2 + k3)

+k1k
2
4 + k2k

2
5 + k3k

2
6 + 11

4 k1k2k3


42a (a− b)





= 0

(2.75)
In (2.75), the numerator in the quotient is of the same order in a and b as the denominator and therefore the
quotient will be a pure number, q7. Therefore, (2.75) becomes

5
(

a− b

2

)
− (k1 + k2 + k3) (1− q7) = 0 (2.76)

So that

(k1 + k2 + k3) =
5

(
a− b

2

)
(1− q7)

(2.77)

Substitution of (2.77) into the positive root of (2.63) then gives

x = a− b +
5

(
a− b

2

)
(1− q7)

(2.78)

and as in the previous case, q7 must be less than unity for x to be positive. Re-arranging for a

a =
(

x +
b

2

) (
1− q7

6− q7

)
+

b

2
(2.79)

and thus a cannot be an integer following the same argument as in Section 2.2. Therefore z cannot be an integer
in (2.1). Thus, subject to q7 exhibiting satisfactory characteristics, this proves Fermat’s Last Theorem for n =
7.

2.6 Extrapolation to n = Any Odd Number.

From the results for n = 5 and n = 7, although only two cases are involved, the analytical process being
completely rigorous, permits extrapolation from these two cases to the general one of n = any odd number.
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Thus for the general case

a =
(

x +
b

2

) (
1− qn

n− 1− qn

)
+

b

2
(2.80)

and clearly a in (2.80) and z in (2.1) cannot be integer because the term
( 1− qn

n− 1− qn

)
cannot be integer.

Thus, subject to qn exhibiting satisfactory characteristics, this, in conjunction with the result for n = 4, proves
Fermat’s Last Theorem for all n.

2.7 The q Numbers.

To consolidate the proof, it is necessary to show that the q numbers exhibit satisfactory characteristics as x, b

and n independently explore their theoretical maxima and minima, and therefore do not cause anomalies in the
relationships developed for the a’s.

2.7.1 The q Numbers in Cases n = 3 and 4.

These cases are unique in that as indicated in Sections 2.2 and 2.3, these q numbers must always be greater
than unity.
From (2.19) or (2.39), re-arranging for q

q =
x + b/2

x− a + b
(2.81)

(a) Minimum Values of x and b.
The minimum values of x and b are each unity. Substitution into (2.81) then gives

q =
11/2

2− a
(2.82)

As b < a < 2, q must be greater than unity. Note that, because all three independent variables have been
specified here, it is possible to calculate a from (2.2) for the two cases involved. Thus for n = 3, a = 1.08008
and for n = 4, a = 1.03054.

(b) Maximum x, (b must be unity).
The maximum value of x is x →∞. Dividing (2.81) throughout by x gives

q =
1 + 1/2x

1− (a− 1)
x

(2.83)

and as x →∞, q → 1 from a value > 1.

(c) Maximum b, (x = any value < ∞).
The maximum value of b is b →∞ which incurs a →∞ and therefore as b →∞ (2.81) becomes

q =
x + b/2

x
(2.84)

so that as b → ∞, q → ∞. Thus in the case of n = 3 and n = 4, the range of variation of q numbers do not
cause an anomaly in the relationships developed for the parameter a.

2.7.2 The q Numbers for n > 4.

In this case the q numbers must always be less than unity as shown in Sections 2.4 and 2.5. From (2.80),
re-arranging for qn

qn =
x− (n− 1) a + nb/2

x− a + b
(2.85)
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(a) Minimum Values.
The minimum values of x and b are each unity. Substitution into (2.85) then gives

qn =
1 + n/2− (n− 1) a

2− a
(2.86)

The minimum value of n in this case is 5, which when substituted into (2.86) gives

qn =
31/2− 4a

2− a
(2.87)

Because all three independent variables have been specified here, it is possible to determine the value of a from
(2.2). The value is 1.0123. Clearly, when substituted into (2.87), qn < +1.
Also it is obvious from (2.2) that as n is increased, a reduces and as n →∞, a → 1 so that in (2.86), qn → −∞.
Thus in this case, qn does not therefore incur anomalies in the relationship developed for a for all n > 4.

(b) Maximum x, (b must be unity).
The maximum value of x is x →∞. Dividing (2.85) throughout by x gives

qn =
1− (n− 1) a/x + n/2x

1− (a− 1)
x

(2.88)

so that as x →∞, qn → 1 from a value < 1.
In this case as n →∞, n/x → 1 so that (2.88) becomes

qn =
3/2− a

1
(2.89)

and because a → 1, qn < 1. Thus in this case qn does not incur anomalies in the relationship developed for a

for all n > 4.

(c) Maximum b, (x = any value < ∞).
The maximum value of b is b →∞. Dividing (2.85) throughout by b gives

qn =
x/b−

(n− 1) a
b

+ n/2
1 + x/b− a/b

(2.90)

As b →∞, so a →∞ and (2.90) then becomes

qn →
−n/2 + 1

0
→ −∞ (2.91)

Clearly this result is unaffected by changes in n and so qn does not cause anomalies in this case in the relation-
ships developed for a for all n > 4.

(d) Maximum n, (x and b = any value < ∞).
The maximum value of n is n →∞. Dividing (2.85) throughout by n gives

qn =
x/n−

(
1− 1/n

)
a + b/2

(x− a + b)/n
(2.92)

As n →∞, this becomes

qn →
−a + b/2

0
→ −∞ (2.93)
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Thus in this case also qn does not cause anomalies in the relationships developed for a for all n > 4.

The overall result from this review of the q numbers, is that they incur no anomalies in the relationships
developed for the a’s as the three independent variables, x, b and n, independently explore their maxima and
minima. Therefore, the proof of Fermat’s Last Theorem, presented herein, is sound for all values of x, y and n.

3 Conclusions.

Although the analytical process used here includes some very long and involved algebraic derivations, the
description of a ”simple” proof is justified, because the technical level of the analysis is very elementary, being
far below graduate level, and utilising only the very minimum amount of interpretative logic. It is easily of a
level available to Fermat and his peers in their day.
In the same book margin that Fermat penned his famous conjecture, he also stated, [2],

”I have discovered a remarkable proof of this theorem which the margins of this book are too small to con-
tain.”

It is now thought, [2], that Fermat’s stated proof of the general case was flawed, and that he subsequently
realised this, which may explain why he apparently did not again mention the conjecture, after challenging two
of his peers to prove the cases n = 3 and n = 4, proofs for which he obviously must have known in order to
issue the challenges.
Just before his death in 1665, Fermat penned a communication stating that all of his proofs used a technique
that he himself devised known as ”infinite descent”. If this was the stated ”remarkable proof” of his conjecture,
then he would almost certainly have realised that it was flawed, because the method of infinite descent can only
be successful when starting from a finite position. When starting from an infinite position, as proof of the Last
Theorem would require, it must fail because even after an infinite number of descents, there would still be an
infinite number to go, and it would therefore never reach a final result.
Also, in view of his communication above, it is also considered unlikely that Fermat’s remarkable proof was
similar to that presented here.

Finally, as is shown in the Appendix, Fermat’s equation is but one version of a more general equation, some vari-
ations of which do exhibit integer solutions. It is not yet known whether there are others which, like Fermat’s,
only partially do so, i.e. as for n = 2.

Appendix A

Derivation of All Solutions for n = 2.

When n = 2, (2.1) exhibits an infinite number of solutions. All of these can, theoretically, be derived as follows.
When n = 2, (2.3) reduces to

x2 − 2 (a− b) x−
(
a2 − b2

)
= 0 (A.1)

Solving for x using the standard formula,

x = (a− b)± {2a (a− b)}1/2 (A.2)

For simplicity, as before, put p = (a− b), so that (A.2) becomes

x = p± (2ap)1/2 (A.3)

Thus with a and b, and therefore p, as integers, for x to be an integer, only even squares can appear under
the root sign in (A.3). Accordingly, there is a solution to Fermat’s equation for n = 2 whenever 2pa is an
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even square. When 2pa > 4, there are multiple solutions for each even square. The following table lists all the
solutions for the first six even squares.

# 2pa p a b x y z x 2 y2 z 2

1 4 1 2 1 3 4 5 9 16 25
2

16
1 8 7 5 12 13 25 144 169

3 2 4 2 6 8 10 36 64 100
4

36
1 18 17 7 24 25 49 576 625

5 2 9 7 8 15 17 64 225 289
6 3 6 3 9 12 15 81 144 225
7

64
1 32 31 9 40 41 81 1600 1681

8 2 16 14 10 24 26 100 576 676
9 4 8 4 12 16 20 144 256 400
10

100
1 50 49 11 60 61 121 3600 3721

11 2 25 23 12 35 37 144 1225 1369
12 5 10 5 15 20 25 225 400 625
13

144

1 72 71 13 84 85 169 7056 7225
14 2 36 34 14 48 50 196 2304 2500
15 3 24 21 15 36 39 225 1296 1521
16 4 18 14 16 30 34 256 900 1156
17 6 12 6 18 24 30 324 576 900
18 8 9 1 20 21 29 400 441 841

Table A.1 - Pythagorean Triples for the First Six Even Squares of 2pa.

As shown by the caption to Table A.1, these solutions are, for obvious reasons, known as Pythagorean Triples.
It is also obvious that not all such triples are unique. In the above Table for instance, entries 3, 6, 8, 9, 12,
14, 15, 16 and 17 are multiples of lower triples. Those that are unique are known as Principle Triples, and are
distinguished by having prime numbers for x and/or z.
The second point to note in the Table is that, both entries 4 and 12 can also be represented in the form

x2 + y2 = z4 (A.4)

which raises the question as to how many other Pythagorean triples can be so represented. It also raises the
question as to whether Fermat’s equation can be further generalised to

xl + ym = zn (A.5)

and whether integer solutions exist for this equation, or any of its possible other variants.
Of interest is a version of (A.5) thus

x2 + y2 = z3 (A.6)

which, with z = x + a, converts to the variable co-efficient elliptic curve

y2 = x3 + (3a− 1) x2 + 3a2x + a3 (A.7)

for which integer solutions would, in the light of Wiles’ proof of the Taniyama - Shimura Conjecture incur
associated Modular Forms.
In the method used here, (A.6) also converts to the variable co-efficient 3rd order polynomial in x

x3 + (3a− 2) x2 +
(
3a2 − 2b

)
x +

(
a3 − b2

)
= 0 (A.8)
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The search for integer solutions would not be as simple because identification of the form of the roots is not
straightforward.
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