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Abstract
Most existing metric learning methods focus on
learning a similarity or distance measure relying
on similar and dissimilar relations between sam-
ple pairs. However, pairs of samples cannot be
simply identified as similar or dissimilar in many
real-world applications, e.g., multi-label learning,
label distribution learning. To this end, relation
alignment metric learning (RAML) framework is
proposed to handle the metric learning problem in
those scenarios. But RAML learn a linear metric,
which can’t model complex datasets. Combin-
ing with deep learning and RAML framework,
we propose a hierarchical relationship alignment
metric leaning model HRAML, which uses the
concept of relationship alignment to model metric
learning problems under multiple learning tasks,
and makes full use of the consistency between
the sample pair relationship in the feature space
and the sample pair relationship in the label space.
Further we organize several experiment divided
by learning tasks, and verified the better perfor-
mance of HRAML against many popular methods
and RAML framework.

1. Introduction
In many computer vision and pattern recognition tasks, e.g.,
face recognition (Guillaumin et al., 2009), image classifi-
cation (Mensink et al., 2012), and person re-identification
(Liao et al., 2015), it is crucial to learn a discriminative
distance metric to measure the similarity between pairs of
samples. However, for some learning tasks, e.g., multi-label
learning (Zhang & Wu, 2015) and label distribution learn-
ing (Geng, 2016), relations between sample pairs cannot
be simply identified as similar or dissimilar. Thus, the ex-
isting metric learning methods cannot work on the above
tasks. The problem arises that it is difficult to classify two
images into similar or dissimilar sample pair. Above discus-
sions encourage us to propose a generalized metric learning
method, which can be flexibly adopted to various kinds of
tasks. RAML (Zhu & Yang, 2018) framework was pro-
posed to handle the problem. Combing with deep neural
networks and RAML, we propose a hierarchical relationship

alignment metric leaning model HRAML, which uses the
concept of relationship alignment to model metric learning
problems under multiple learning tasks, and makes full use
of the consistency between the sample pair relationship in
the feature space and the sample pair relationship in the
label space.

2. Related works
deep metric learning deep metric learning want to learn
a good metric to measure the similarity of samples. Con-
trative loss (Hadsell et al., 2006) was used to combine with
Siamese network and achieved good results. The loss of
two-tuples can be used to model several problems. It is also
a simple and feasible method. The sampling complexity is
o(n2), easier than many subsequent variants. Wen et al.
(2016) combines softmax and center loss for face recogni-
tion. Center loss is used to minimize the distance from the
sample representation to the center of the category. Ge
(2018) combined the triple loss and hierarchical tree to pro-
pose a new loss function. He used the hierarchical tree to
encode the context of the sample, and then used the hier-
archical tree to calculate the intra-class distance and the
inter-class distance. Sample the more suitable triples, and
finally use the dynamic interval mechanism to form the loss
function. Wang et al. (2017) proposed a novel angle loss
to improve the discriminative ability of sample represen-
tation. Different from the two-tuple and triple-tuple loss,
the angle loss uses the angle of the sample to the center of
the category to impose constraints. The angle constraint
has rotation and scaling invariance. It naturally encodes the
geometric relationship between the three samples. You can
set the angle The size to change the constraint strength has
the advantage of being very robust. The slow convergence
speed of binary or ternary loss is mainly due to the fact that
only one negative sample is compared in each update and
other negative samples are ignored. Npair loss (Sohn, 2016)
improves this point, and compares batches in each update
All other negative samples in each update. Circle loss (Sun
et al., 2020) was proposed, Circle loss re-weights the simi-
larity between samples to highlight the incomplete sample
similarity. Circle loss unifies two basic learning methods
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in the field of feature learning: learning based on category
labels and learning based on pair label. Cakir et al. (2019)
proposed FastAP, which learns features by optimizing the
average accuracy of the ranked list. FastAP connects feature
learning and ranking problems together, opening up new
ideas.

3. Background
Zhu & Yang (2018) proposed the concept of relational align-
ment in the field of metric learning. We briefly describes
it as follows: For metric learning, pairwise constraints are
often used to describe the sample pair relationship in the de-
cision space. Here, we introduce relation alignment learning
to metric learning. f(xi,xj ,M, b) is used to measure the
sample relationship in the feature space, g(yi,yj) are used
to measure the sample relationship in the decision space.
g(yi,yj) is specifically designed to handle different tasks.
In addition, A ∈ Rn×n and E ∈ Rn×n are used as The
sample relationship matrix between the feature space and
the decision space, the relationship alignment means The
sample relationship of the feature space should be consistent
with the sample relationship of the decision space. This is a
wide-ranging idea,

a11 ... ai1 ... an1

... ... ... ... ...
a1i ... aii ... ani

... ... ... ... ...
a1n ... ain ... ann

 =


e11 ... ei1 ... en1

... ... ... ... ...
e1i ... eii ... eni

... ... ... ... ...
e1n ... ein ... enn


aij and eij represent the relationship between the sample xi

and xj in the feature space and the decision space. In order
to maintain consistency, here is a requirement

f(xi,xj ,M, b) = g(yi,yj). (1)

g(yi,yj) represents the different degrees of the two samples
in the decision space. g(yi,yj) reflects the relationship
between sample pairs in the decision space and is used to
guide the learning in the feature space (M, b) .

f(xi,xj ,M, b) = (xi − xj)
T
M (xi − xj) + b

= 〈M,Tij〉+ b
(2)

〈·, ·〉 is defined as the inner product of two Frobenius ma-
trices, b is the offset, and Tij = (xi − xj) (xi − xj)

T . (1)
can be rewritten as

g(yi,yj) = 〈M,Tij〉+ b (3)

Once the relational function g(yi,yj) is selected, the for-
mula (3) can be regarded as a linear regression problem.
Here, the metric learning problem is transformed into solv-
ing a sample pair regression problem, and the input is a
sample pair (xi,xj).

4. HRAML
Given sample pairs xi and xj , after being modeled by a
neural network of M + 1 layer, they can finally be formal-
ized as f(xi) = h

(M)
i = s(W(m)Tx

(m−1)
i + b(m)) and

f(xj) = h
(M)
j = s(W(m)T x

(m−1)
j + b(m)), where the

mapping s : R→ R is a nonlinear activation function, and
m is the number of layers. xi

(m) = W(m)T x
(m−1)
i +b(m).

Given a sample pair xi and xj , using the idea of relationship
alignment, the alignment relationship between the sample
pair in the feature space and the decision space can be
formalized as:

R(f(xi), f(xj)) = g(yi, yj) (4)

Where R represents the sample pair relation function in the
feature space, and g represents the relation function in the
feature space. By specifying the relationship functions R
and g, different relationships specifically used for alignment
in the idea of relationship alignment can be expressed. We
defines the sample pair relationship of the feature space
as the distance between them: R(f(xi), f(xj)) = Dij =
‖f(xi)− f(xj)‖2, and then use the mean square error loss
optimize formula (4) to derive the objective function of
HRAML:

min J =
1

4

∑n

(i,j)
(D2

ij − g(yi, yj))2 + r(θ) (5)

r(θ) = λ
∑M

m=1

(∥∥W(m)
∥∥2
F
+
∥∥b(m)

∥∥2
2

)
is a regulariza-

tion item, g(yi, yj) is relation function. In order to optimize
(5), we use stochastical gradient descent and we have flow-
ing equations:
for layer m =M in neural network:

∂J(i, j)

∂W(m)
=
(
D2

ij − g(yi, yj)
) (∂s(x(m)

i )

∂x
(m)
i

(f(xi)− f(xj))

h
(m−1)T

i −
∂s(x

(m)
j )

∂x
(m)
j

(f(xi)− f(xj))h
(m−1)T

j

)
= δ

(m)
i h

(m−1)T

i − δ(m)
j h

(m−1)T

j

(6)

∂J(i, j)

∂b(m)
=
(
D2

ij − g(yi, yj)
) (∂s(x(m)

i )

∂x
(m)
i

−
∂s(x

(m)
j )

∂x
(m)
j

)
(f(xi)− f(xj)) = δ

(m)
i − δ(m)

j

(7)
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Algorithm 1 The algorithms of our proposed HRAML

Require:
Training data X ∈ Rd×m, where d and m are the
numbers of feature dimension and samples, respectively.
number of network layers M , learning rate µ, iterative
number T

1: Generate sample pairs (xi1,xi2), i = 1, 2, ..., n.
2: Compute sample relation g(xi1,xi2), i = 1, 2, ..., n.
3: repeat
4: Randomly select a pair(xi,xj) from sample pairs.
5: Set h0

i = xi, h0
j = xj .

6: for m = 1,2,. . . ,M do
7: Do forward propagation to get hm

i and hm
j .

8: end for
9: for m = M,M-1,. . . ,1 do

10: Do back propagation to get ∂J(i,j)
∂W(m) and ∂J(i,j)

∂b(m) by
(6),(7),(8),(9)

11: end for
12: update {Wm,bm},m = 1, 2, . . . ,M by gradient

descent.
13: until converge
Ensure:

Weights and biases: {Wm, bm}, m=1,2,. . . ,M

for layer m = 1, 2 . . .M − 1 in neural network:

∂J(i, j)

∂W(m)
=
∂s(x

(m)
i )

∂x
(m)
i

W(m+1)T ∂J(i, j)

∂xi
(m+1)

h
(m−1)
i

T

−
∂s(x

(m)
j )

∂x
(m)
j

W(m+1)T ∂J(i, j)

∂xj
(m+1)

h
(m−1)
j

T

= δ
(m)
i h

(m−1)
i

T
− δ(m)

j h
(m−1)
j

T

(8)

∂J(i, j)

∂b(m)
=
∂s(x

(m)
i )

∂x
(m)
i

W(m+1)T ∂J(i, j)

∂xi
(m+1)

−
∂s(x

(m)
j )

∂x
(m)
j

W(m+1)T ∂J(i, j)

∂(xj
(m+1))

= δ
(m)
i − δ(m)

j

(9)

The corresponding metric learning HRAML algorithm is
summarized in Algorithm 1.

5. Implementation Details
5.1. Training Details

Due to the diversification of the training data that needs to
be processed,we uses general mlp as the encoder and tanh
as the activation function. In addition, we normalizes the
output of the network so that a better performance can be

obtained (Wu et al., 2017), the normalized form is

f(x) =
f(x)

‖f(x)‖
(10)

f(x) is the output of the network.
We initializes bm,m = 1, 2, . . . ,M is 0, and Wm,m =
1, 2, dots,M is initialized to the distribution U [−0.2, 0.2].

5.2. Relation function

In the feature space, we need to use differentiable functions
as the relation function to ensure the stability and ease of
learning. We uses ordinary Euclidean distance as the re-
lation function. In the decision space, we can imitate the
feature space and use the function with parameters, which
will make HRAML method has a broader form and can
be linked to more methods, but for the convenience of the
sample selection stage, we are consistent with (Zhu & Yang,
2018), using a fixed function without parameters as the de-
cision space Function, we consider the l1 norm: Let yi and
yj represent label of xi and xj . Relation function will be :

g(yi,yj)=‖yi − yj‖1 (11)

where ‖a‖1 is l1-norm of item a.

5.3. Sample selection problem

In the process of neural network learning, sample selection
is very important and has a great impact on the results. We
can uses difficult sample mining (Shrivastava et al., 2016).

6. Experiment
In this section, we conduct experiments to validate the per-
formance of the proposed HRAML. We consider three ap-
plications, including single-label classification, multi-label
classification, label distribution learning . The following
part will be organized as the corresponding parts.

6.1. Classification

Experiment setup. Following (Zhu & Yang, 2018), we
use "S/F/C" represents the number of samples, features
and classes. We compare our method with popular meth-
ods, e.g., ITML (Davis et al., 2007), LMNN (Weinberger
& Saul, 2009), DML (Ying & Li, 2012), DoubletSVM
(DSVM) (Wang et al., 2015),GMML (Zadeh et al., 2016)
and RAML(Zhu & Yang, 2018). For fair comparison, the
parameters of all compared methods are set as the default
setting of the original references.
Experimental analysis. Table 1 list the classification accu-
racy of different metric learning methods on many datasets,
respectively, where the best results are marked in bold face.
HRAML get the best performance, it beat others methods,
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not only linear methods but also kernel methods based no-
linear methods. HRAML has a clear and sample objective
function Under classification task, neural network can opti-
mise easily and learn discriminate metric.

Data emotion flags corel800

MLKNN

Hamming Loss↓ 0.2137 0.3099 0.0137
Ranking Loss↓ 0.1729 0.2228 0.1888

One Error↓ 0.3317 0.2154 0.6825
Coverage↓ 1.9158 3.8154 88.5100

Average Precision↑ 0.7808 0.8084 0.3276

RAML-SVR

Hamming Loss↓ 0.2054 0.2967 0.0135
Ranking Loss↓ 0.1577 0.2179 0.1882

One Error↓ 0.2376 0.2000 0.6425
Coverage↓ 1.8960 3.8115 88.2350

Average Precision↑ 0.8101 0.8128 0.3386

RAML-KRR

Hamming Loss↓ 0.2046 0.2967 0.0134
Ranking Loss↓ 0.1382 0.2113 0.1888

One Error↓ 0.2574 0.2000 0.6550
Coverage↓ 1.7327 3.7692 88.5100

Average Precision↑ 0.8225 0.8112 0.3388

HRAML

Hamming Loss↓ 0.2060 0.2791 0.0135
Ranking Loss↓ 0.1690 0.2021 0.1861

One Error↓ 0.2871 0.2154 0.6075
Coverage↓ 1.8861 3.6769 87.6025

Average Precision↑ 0.8052 0.8244 0.3582

Table 2. results on muti-label datasets

.

Criterion Chebyshev↓Clark↓Canberra↓Cosine↑ Intersection↑
AAKNN 0.3261 1.8448 4.3412 0.6905 0.5506

RAML-SVR 0.3102 1.6986 3.8576 0.7051 0.5739
RAML-KRR 0.3139 1.6865 3.8419 0.7057 0.5743

HRAML 0.2907 1.7664 4.0922 0.7321 0.5929

Table 3. results on Nature Scene dataset.

6.2. Multi-label Learning

Dataset. Like (Zhu & Yang, 2018), we use three multi-label
datasets to evaluate performance1, emotion (Trohidis et al.,
2008), flags, and corel800 dataset (Hoi et al., 2006).

Evaluation Method. We use the performance of the
MLKNN algorithm to evaluate the discriminative ability
of the learned metric, We use multiple popular multi-label
learning indicators used in (Zhu & Yang, 2018) to evaluate
the permormance of MLKNN. The up arrow represents the
higher the indicator, the better, and the down arrow repre-
sents the lower the indicator, the better.

Experimental Analysis. Table 2 shows the results on multi-
label datasets, Compared with the original performance of
MLkNN, RAML and HRAML learn more discriminative
metric in multi-learning task. Compared with RAML algo-
rithm, HRAML has better experimental results. Thanks to
the improvement of the encoder, it has better performance

1http://mulan.sourceforge.net/datasets-mlc.html

than RAML. Beyond linear transform or kernel methods,
HRAML has more power to extract features. And it can
distinguish samples under different labels well through its
optimization goals, .

6.3. Label Distribution Learning

dataset. We use the Nature Scene dataset used in (Zhu &
Yang, 2018).
Evaluation Method. We use the performance of AAKNN
to evaluate the learned metric, and use AAKNN and RAML
as comparison algorithms. We use multiple evaluation in-
dicators used in (Zhu & Yang, 2018) as the evaluation indi-
cators. In order to maintain consistency with other exper-
imental parts, We use (11) as the relationship function of
the decision space. Of course, some better distribution func-
tions such as kl divergence can be used as the relationship
function, which should achieve better effect. Experimen-
tal analysis. Table 3 shows the comparison of AAKNN,
RAML and HRAML. Thanks to the HRAML’s encoder and
optimization goal, it’s performance is better than RAML.

7. Conclution
This paper proposes a hierarchical relationship alignment
model HRAML, which uses the concept of relationship
alignment to model metric learning problems under mul-
tiple learning tasks, and makes full use of the consistency
between the sample pair relationship in the feature space
and the sample pair relationship in the label space. Finally,
the performance of HRAML is verified under a variety of
tasks.
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