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Abstract
In recent years, representation learning has be-
come the research focus of the machine learn-
ing community. Large-scale pre-training neural
networks have become the first step to realize
general intelligence. The key to the success of
neural networks lies in their abstract representa-
tion capabilities for data. Several learning fields
are actually discussing how to learn representa-
tions and there lacks a unified perspective. We
convert the representation learning problem un-
der multiple tasks into a ranking problem, tak-
ing the ranking problem as a unified perspective,
the representation learning under different tasks
is solved by optimizing the approximate NDCG
loss. Experiments under different learning tasks
like classification, retrieval, multi-label learning,
regression, self-supervised learning prove the su-
periority of approximate NDCG loss. Further, un-
der the self-supervised learning task, the training
data is transformed by data augmentation method
to improve the performance of the approximate
NDCG loss, which proves that the approximate
NDCG loss can make full use of the information
of the unsupervised training data.

1. Introduction
Recently, there are several fields that model the learning
representation problem as a ranking problem (Varamesh
et al., 2020; Cakir et al., 2019), Representation learning
problem can naturally be converted into ranking problem.
Given the model to be learned, f : Rn → Rm, it can
map input samples to m dimension feature space, sample
set{xi, i = 1, 2, 3 · · ·n} and label set{yi, i = 1, 2, 3 · · ·n}.
For any sample in the sample setxi, we can regard it as a
query sample, at the same time, all other samples are re-
garded as corresponding samples being queried. We can get
xi’sm dimension feature f(xi) transformed by model f ,and
feature set obtained by the same transformation of other sam-
ples {f(xj), j = 1, 2, 3 · · ·n, j 6= i}, then we use the prede-
fined similarity function to get the similarity set of f(xi) and
{f(xj), j = 1, 2, 3 · · ·n, j 6= i}: {sim(f(xi), f(xj)), j =
1, 2, 3 · · ·n, j 6= i}, we hope to find a true order to rank the

similarity set {sim(f(xi), f(xj)), j = 1, 2, 3 · · ·n, j 6= i}
to guide the learning of model.

We solved it by optimizing the approximate NDCG loss. Ex-
periments under different learning tasks like classification,
retrieval, multi-label learning, regression, self-supervised
learning prove the superiority of approximate NDCG loss.
Further, under the self-supervised learning task, the train-
ing data is transformed by data augmentation method to
improve the performance of the approximate NDCG loss,
which proves that the approximate NDCG loss can make
full use of the information of the unsupervised training data.

2. Related works
representation learning According to (Bengio et al.,
2013), the representation learning is to learning represen-
tations of the data that make it easier to extract useful in-
formation when building classifiers or other predictors. A
good representation is also one that is useful as input to
a supervised predictor. There are many fields to study
it, there lacks a unified perspective. We think represen-
tation learning can be divided into supervised representation
learning, self-supervised representation learning and unsu-
pervised representation learning, e.g., supervised imagenet
pre-training model can reduce complexity of downstream
tasks when the representation learned on imagenet as input.
Self-supervised visual representation learning methods like
SimCLR (Chen et al., 2020), byol (Grill et al., 2020) can
reduce complexity of visual tasks. Unsupervised genera-
tive model like vaes (Kingma & Welling, 2013; Oord et al.,
2017), bigans (Donahue et al., 2016; Donahue & Simonyan,
2019) can interpret the generation of data or disentangle the
factors of variation (Chen et al., 2016; Dupont, 2018; Kim &
Mnih, 2018).Unsupervised language models (Devlin et al.,
2018) can learn context language representation to reduce
complexity of downstream language tasks.

deep metric learning deep metric learning want to learn
a good metric to measure the similarity of samples, they
always get the metric by compute the distance of repre-
sentations. Under metric learning task such as retrieval, a
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good representation also means a good metric, the other way
around. Contrative loss (Hadsell et al., 2006), center loss
(Wen et al., 2016), Npairloss (Sohn, 2016), Circle loss (Sun
et al., 2020) are popular deep metric learning methods.
self-supervised representation learning There are many
works to discuss learn representation by self-supervised
learning in recent years. Initially, Deep InforMax (Hjelm
et al., 2018) was proposed. DIM simultaneously estimates
and maximizes the mutual information between the input
data and the learned high-level representations, and uses
adversarial learning to make the learned representations
meet the prior requirements. CPC (Oord et al., 2018) uses
a strong autoregressive model to predict the representation
in the hidden space in the future, and further CPC proposes
inforNCE. This objective function is widely used in sub-
sequent work. CMC uses a classic assumption: a good
representation is that the perspective is constant. CMC
achieves this goal by maximizing the mutual information of
the same sample from different perspectives. The more per-
spectives, the better the learning effect. (Tschannen et al.,
2019) combined the work of the previous to deeply analyze
the learning principle of mutual information maximization.
They believe that the representation learned by the princi-
ple of mutual information maximization can improve the
effect of downstream learning tasks, but sometimes It will
reduce the effect of downstream learning tasks. They be-
lieve that in order to better explain why mutual information
maximization can learn good representations, the success
of mutual information maximization can be regarded as the
success of metric learning. The latter has been proven to
be effective Learning representation. DeepCluster (Caron
et al., 2018) combines the idea of clustering with represen-
tation learning, iteratively assigns cluster categories, and
then uses cluster categories as pseudo-labels to learn rep-
resentations. SwAV (Caron et al., 2020) proposed uses a
lot of The prototype performs clustering and maintains the
consistency of the clustering results of data from different
perspectives. (Shen et al., 2020) discussed the influence of
hybrid methods in data augmentation on learning represen-
tations. (Grill et al., 2020) proposed a novel training method
for learning representations: Bootstrap, which abandons
negative samples and only uses positive samples, (Chen &
He, 2020) conducted further discussions and experiments
on this. (Tian et al., 2020) discussed what kind of perspec-
tive can learn the best representation, and gave a theoretical
proof.

3. Background
In this section, we discuss ranking problem and learning to
rank.

3.1. Ranking

Ranking and learning to rank are classic problems, there
have been many research results (Xu et al., 2008; Xia et al.,
2008). Given an input query, the retrieval system hopes to
sort and return the stored content according to the relevance
of the input and the stored content. The research purpose
of learning to rank is to make the returned results more
accurate. One of solutions is to optimize evaluation indi-
cators. Evaluation indicators for ranking problems include:
Precision, AP (average recall) (Baeza-Yates et al., 1999),
NDCG (Järvelin & Kekäläinen, 2002), for details, please
refer to (Qin et al., 2010).

Given a query sample q, and return a sorted sample set S,
the k recall of the query result is defined as:

Pre@k =
1

k

k∑
j=1

rj (1)

Among them, rj ∈ {0, 1}, which represents the secondary
correlation between the jth returned sample and the query
sample, when Sj is related to the query: rj = 1, otherwise:
rj = 0.

The average recall is defined on the basis of k recall as:

AP =
1

N

∑
j

rj × Pre@j (2)

N represents the number of samples related to the query
sample in the returned sample set S. There are many recent
works (Cakir et al., 2019; Brown et al., 2020) take AP as
the optimization target, but only when the returned sample
and the query sample are only correlated and uncorrelated,
AP can be applied, if we want to deal with multiple learning
task, AP is not applicable.

NDCG is an extension of AP indicators, which can handle
the multi-level correlation between returned samples and
query samples.

NDCG = N−1n

n∑
j=1

g(rj)d(j) (3)

where n represents the size of the sample set S, rj ≥ 0
represents the correlation between the j returned sample
and the query sample, and Nn represents when the returned
sample is in accordance with the query sample When the
true relevance of is sorted from high to low, the value
of

∑k
j=1 g(rj)d(j), which has a normalization effect, is

used to constrain the value of NDCG is not greater than
1. g(rj) represents the gain function, and d(j) represents
the discount function. In (Qin et al., 2010), the default is:
g(rj) = 2rj − 1, d(j) = 1/log2(1 + j). Put the values of
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g(rj) and d(j) into the formula 3:

NDCG = N−1n

n∑
j=1

(2rj − 1)/log2(1 + j) (4)

4. A-NDCG
Let any sample xi correspond to the similarity set
{sim(f(xi), f(xj))), j = 1, 2, 3 cdotsn, j neqi} and
label yi corresponding similarity set {sim(yi, yj), j =
1, 2, 3 · · ·n, j 6= i}. If the order relationship of is kept
consistent, the final model f can be learned by the label.
Figure1 provides an example. How to keep the order rela-
tionship consistent? There are a variety of solutions in the
field of learning to rank. Here, we uses the approximate
NDCG indicator to achieve it. Select any sample xi from
the sample set as the query sample, approximate NDCG
indicator or A-NDCG loss can be formalized:

L(x) =
∑
i

N−1i

n∑
j,j 6=i

(sim(yi, yj)/log2(1 + π(xi, xj))

(5)

π(xi, xj) = 1 +
∑
k,k 6=j

exp(−αsimijk))

1 + exp(−αsimijk)
(6)

simijk = (sim(f(xi), f(xj))− sim(f(xi), f(xk)))

Where α is the hyperparameter, and N−1i is the
normalization item, representing maximum value of
n∑

j,j 6=i

(sim(yi, yj)/log2(1 + π(xi, xj)): when the order

of {sim(f(xi), f(xj)), j = 1, 2, 3 · · ·n, j 6= i} and
{sim(yi, yj), j = 1, 2, 3 · · ·n, j 6= i} is same.

NDCG is not differentiable because of position item j.
π(xi, xj) in A-NDCG is the approximation of position item
j in NDCG indicate.

The advantages of approximate NDCG loss are: 1. The
sample pair that needs to be selected for each calculation is
o(n2). Compared with some popular loss functions (Chen
et al., 2020), the calculation complexity is lower. 2. It can
naturally process any number of perspectives of the train-
ing data, which greatly relaxes the two perspectives of the
popular contrastive learning algorithms (Chen et al., 2020;
Grill et al., 2020). 3. Few constraints, only need to con-
strain the ordering relationship, no other conditions need
to be constrained, which is conducive to learning robust
representation. 4. Compared with the contrastive learn-
ing methods (Chen et al., 2020; Grill et al., 2020) and the
learning to rank methods based on optimized average recall
(Varamesh et al., 2020), the approximate NDCG loss is ap-
plicable to any situation where the label similarity set can be

obtained. For training data with single label, multiple labels,
discrete labels, and continuous labels, we can obtain the
label similarity set, which also means that the approximate
NDCG loss can handle a wide range of learning tasks and
has a wide range of applications. 5. Thanks to the good
ability to handle diversified labels, we can use label-level
data augmentation methods on training data to enhance the
performance of approximate NDCG loss continuously, so
that the training data information can be fully utilized.

5. Experiment
In order to evaluate A-NDCG and verify its advantages, we
conducts experiments under a variety of learning tasks. The
experiments in this paper include learning representations
under a variety of learning tasks: classification tasks, re-
trieval tasks, self-supervised tasks, multi-label classification,
and regression tasks.

5.1. Classification Task

In the classification task, the learned representation should
be able to make good use of linear classifiers such as softmax
to solve classification tasks.

This paper will first use Cross-Entropy loss and its variant
(Liu et al., 2016) and the supervised contrast learning algo-
rithm SupCon (Caron et al., 2020) as the comparison algo-
rithm, and then use the classification accuracy rate of linear
softmax classifier on the popular CIFAR-10 and CIFAR-100
dataset to estimate the approximate NDCG loss.

5.1.1. IMPLEMENTATION DETAILS

For the approximate NDCG loss, this paper uses the stan-
dard residual network: resnet-50 as the encoder, and then
imitates the standard practice (Chen et al., 2020) to add a
small projection network composed of two-layer MLP and
Relu activation function behind the residual network. We
use standard Adam optimizer (Kingma & Ba, 2014)

5.1.2. EXPERIMENTAL RESULTS ANALYSIS

The table 1 shows that the effect of A-NDCG on the CIFAR-
10 and CIFAR-100 datasets exceeds the Cross-Entropy
loss and some of its variants, such as Max-Margin (Liu
et al., 2016). It is equivalent to the performance of Sup-
Con (Khosla et al., 2020). Compared with Cross-Entropy
loss and Max-Margin (Liu et al., 2016), they can use the
relationship between sample pairs instead of just the rela-
tionship between a single sample and its label. They all
relax the limitations of SimCLR (Chen et al., 2020) on the
number of perspectives, and can make use of more compar-
ative information between samples. But the training speed
of Cross-Entropy loss is higher than A-NDCG and SupCon.
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x1 x2 x3 x4 y1 y2 y3 y4

f(x1) f(x2)f(x3)f(x4) y1 y2y3y4

sim(f(xi),f(xj))

f(xi)

model

sim(yi,yj)

f(x1)f(x2) f(x3) f(x4) y1y2 y3 y4

learn to rank

. . . . . . 

Figure 1. Assume that there are 4 samples {x1, x2, x3, x4} and the corresponding label {y1, y2, Y3, y4}, for any query sample xi here I
hope the corresponding feature similarity set {sim(f(xi), f(xj)), j = 1, 2, 3, 4, j 6= i} and label similarity set {sim(f(xi), f(xj)), j =
1, 2, 3 · · ·n, j 6= ß} keep the same sorting order.

5.2. Retrieval Task

The image retrieval task is a standard evaluation task in
the field of depth measurement. The representation learned
under the retrieval task should be able to use linear learners
such as knn to retrieve samples.

We will compare a variety of deep metric learning algo-
rithms (Wang et al., 2019). We uses the standard data set:
CUB-200-2011(Wah et al., 2011) to evaluate the retrieval
performance of approximate NDCG loss.

The implementation details are consistent with the previous
part.

5.2.1. EXPERIMENTAL RESULTS ANALYSIS

The table 2 shows that on the CUB-200-2011 dataset, the
performance of A-NDCG exceeds many popular deep met-
ric learning methods. In the specific implementation of this
paper, the number of positive samples and negative samples
involved in the calculation is the same as other methods.
Compared with other methods, A-NDCG only needs to be
constrain order relationship and no specific sample interval
is specified, and its performance on the test data is more
robust.

5.3. Multi-label Learning

Multi-label learning is a traditional research direction, and
there have been quite a lot of research results (Zhang &
Zhou, 2007), where the representations obtained should be

able to reduce the learning difficulty of other linear multi-
label learning algorithms.

We uses Hamming loss and Jaccard score to evaluate the per-
formance. The former uses Hamming distance to measure
the difference between different multi-label labels, the lower
the better, the latter measures the ratio of the intersection
and union of two multi-label labels, the higher the better .

5.3.1. DATASET

We uses a variety of popular multi-label datasets 1. Core5k
is an image dataset with 5000 images, Scene has more than
2000 images, Medical and Enron are two text data, Medical
has 978 samples, and Enron has 1702 samples.

5.3.2. EVALUATION ALGORITHM

MLKNN and BRKNN are two distance-based multi-label
learning algorithms, we use them to evaluate A-NDCG.

5.3.3. EXPERIMENTAL RESULTS ANALYSIS

From the table 4, table 3, it can be clearly seen that as the
number of iterations increases, the Hamming loss continues
to decrease and the Jaccard score increase continually , A-
NDCG loss is very effective in learning good representations
on multi-labeled data. A-NDCG loss makes full use of
the label information of the multi-labeled dataset, even for
samples with very close multi-labeled labels. It can give

1http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. Classification accuracy on CIFAR-10 and CIFAR-100 datasets

dataset SimCLR Cross-Entropy Max-Margin(Liu et al., 2016) SupCon(Caron et al., 2020) A-NDCG

CIFAR10 93.6 95.0 92.4 96.0 95.3
CIFAR100 70.7 75.3 70.5 76.5 76.7

Table 2. Retrieval performance on CUB-200-2011 dataset, we use
recall to estimate

Rank@K 1 2 4 8 16 32

Clustering64 48.2 61.4 71.8 81.9 - -
ProxyNCA64 49.2 61.9 67.9 72.4 - -

Smart Mining64 49.8 62.3 74.1 83.3 - -
HTL512 57.1 68.8 78.7 86.5 92.5 95.5

ABIER512 57.5 68.7 78.3 86.2 91.9 95.5
MS-Loss512 57.5 70.3 80.0 88.0 93.2 96.2
A-NDCG512 58.3 70.7 80.5 88.5 93.8 96.9

specific optimization goals on how to distinguish them, so
that the samples can distinguish samples with similar labels
in the feature space, and ultimately reduce the learning
difficulty of the linear multi-label learner.

5.4. Regression Task

The regression task is a widely used task. Time series fore-
casting, energy forecasting, financial market forecasting, etc.
all have a great intersection with the regression task. The
representation learned under the regression task should be
able to reduce the learning difficulty of the linear regressor.

We use ridge regression and linear regression methods as
evaluation algorithms. We use absolute loss MAE and mean
square loss MSE as evaluation indicators to evaluate A-
NDCG, both of which measure the error of the regression
results, the lower the indicator, the better. We finds several
regression data from the UCI data set, including housing
price data, wine data and disease data parkinsons.

5.4.1. EXPERIMENTAL ANALYSIS

In fact, the regression task is a challenge. It is not the
same as the discriminative task. It has continuous labels,
but A-NDCG can still learn a good representation in the
regression datasets stably, reducing the learning difficulty
of the regression method. There has been some work cite-
hooshmand2019energy(Ye & Dai, 2018) combines the pre-
training model with the prediction task. We thinks that
A-NDCG can also be naturally applied to such tasks.

5.5. Self-supervised Learning Task

Although there have been works that introduce the idea
of learning to rank into the field of self-supervised learn-
ing (Varamesh et al., 2020), the optimization goal of this
paper is different, (Varamesh et al., 2020) uses average recall
as the optimization goal. Under self-supervised tasks, the
representations learned using unsupervised data should be
able to reduce the difficulty of supervised learning, such as
improving the classification performance of linear learners.

We conduct experiments on the popular STL-10 dataset
(Coates et al., 2011). In this paper, logistic regression and
k-nearest neighbor classifier are used as methods for evalu-
ating representations.

We will also use the data augmentation methods
mixup(Zhang et al., 2017) and cutmix(Yun et al., 2019)
to augment the training data at the label level to verify
whether A-NDCG can make full use of the information in
the unsupervised data.

5.5.1. IMPLEMENTATION DETAILS

For the experiments on the STL-10 dataset, we keep consis-
tent with the approach of (Varamesh et al., 2020). We use
resnet-18 as the encoder, and then connects the projection
network composed of two layers of mlp, the batch size is
set to 32, the optimizer and the learning rate keep same wit
SimCLR. The epoch is set to 36, and longer training time
will bring better results.

5.5.2. EXPERIMENTAL RESULTS ANALYSIS

Table 7 and table 8 indicate that under the two evaluation
algorithms, the performance of A-NDCG is better than Sim-
CLR(Chen et al., 2020).Because there is no limit to the
number of perspectives of a single data. According to the
perspective of contrastive learning, A-NDCG is comparing
the difference between the sample feature similarity set that
is not sorted according to the real ranking relationship and
the sample feature similarity set that is sorted according to
the real ranking relationship, not comparing the difference
between positive sample pair similarity and negative sam-
ple pair similarity, it surpasses the conceptual constraints
of positive sample and negative sample, and has broader
meaning and applicability. The table 9 and the table 10
show that: A-NDCG can make full use of the label-level
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Table 3. classification accuracy on muti-label datasets, we use MLKNN(Zhang & Zhou, 2007) to evaluate.

dataset indicator MLKNN A-NDCG, epoch:10 20 30 40 50

Scene Hamming Loss 0.102 0.095 0.088 0.090 0.088 0.093
Jaccard Score 0.610 0.698 0.707 0.710 0.722 0.715

Corel5k Hamming Loss 0.012 0.011 0.011 0.011 0.012 0.012
Jaccard Score 0.094 0.1116 0.134 0.133 0.133 0.125

Medical Hamming Loss 0.020 0.013 0.013 0.013 0.013 0.011
Jaccard Score 0.512 0.726 0.74 0.74 0.74 0.739

Enron Hamming Loss 0.062 0.05 0.05 0.05 0.05 0.056
Jaccard Score 0.329 0.441 0.449 0.451 0.455 0.456

Table 4. classification accuracy, we use BRKNN (Eleftherios Spyromitros, 2008) to evaluate.

dataset indicator BRKNN A-NDCG, epoch:10 20 30 40 50

Scene Hamming Loss 0.109 0.095 0.095 0.090 0.089 0.091
Jaccard Score 0.640 0.698 0.720 0.725 0.726 0.726

Corel5k Hamming Loss 0.011 0.011 0.011 0.011 0.011 0.012
Jaccard Score 0.069 0.123 0.140 0.145 0.149 0.142

Medical Hamming Loss 0.020 0.014 0.013 0.013 0.014 0.013
Jaccard Score 0.472 0.696 0.703 0.709 0.72 0.723

Enron Hamming Loss 0.059 0.05 0.05 0.05 0.05 0.052
Jaccard Score 0.324 0.44 0.46 0.46 0.46 0.472

Table 5. result on regression datasets, we use ridge regression
method to evaluate.

dataset indicator ridge A-NDCG

parkinsons MSE 91.4 77.61
MAE 7.90 7.40

housing MSE 18.61 -
MAE 3.40 -

wine MSE 0.62 0.59
MAE 0.60 0.59

Table 6. result on regression datasets, we use linear regression
methods to evaluate.

dataset indicator LR A-NDCG

parkinsons MSE 91.42 72.72
MAE 7.433 7.044

housing MSE 18.64 13.77
MAE 3.398 2.95

wine MSE 0.62 0.55
MAE 0.60 0.58

data augmentation methods to transform the training data
in order to make full use of the information in the unsuper-
vised data, despite the manual designed data augmentation
method will bring a lot of noise and errors, but because the
constraints of A-NDCG are very loose and the influence of
noise is reduced, it can be seen that the improvement effect
of A-NDCG is still very obvious. Making full use of the
various information of unsupervised training data, which is
obviously necessary for unsupervised learning.

6. Conclution
In this paper, the representation learning problem under mul-
tiple tasks is modeled as a ranking problem, and taking the
ranking problem as a unified perspective, the representation
learning problem under different tasks is solved by optimiz-
ing the approximate NDCG loss. And divided into learning
tasks, we organized a large number of experiments, through
the classification, retrieval, multi-label learning, regression,
self-supervised learning experiments proved the superiority
of the approximate NDCG loss. Further, under the self-
supervised learning task, the training data is transformed by
data augmentation method to improve the performance of
the approximate NDCG loss, which proves that the approxi-
mate NDCG loss can make full use of the unsupervised data
information.
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Table 7. Classification accuracy on STL-10 dataset, we use logistic regression to evaluate.

method epoch:0 4 8 12 16 20 24 28 32

SimCLR(train) 70.4 78.2 80.7 82.0 83.5 84.2 82.2 82.9 85.8
A-NDCG(train) 77.8 85.0 86.1 86.7 86.6 86.6 87.4 87.0 86.3
SimCLR(test) 44.0 49.8 51.8 52.3 51.6 52.7 52.7 52.6 51.7
A-NDCG(test) 44.0 49.5 51.9 52.3 51,8 52.1 52.8 50.9 52.4

Table 8. Classification accuracy on STL-10 dataset, we use knn to evaluate.

method epoch:0 4 8 12 16 20 24 28 32

SimCLR(train) 59.2 62.4 62.9 64.5 64.5 65.0 65.0 65.9 66.1
A-NDCG(train) 62.2 66.1 66.6 67.5 68.3 67.4 67.8 67.9 68.9
SimCLR(test) 31.5 37.0 39.1 40.0 39.6 39.6 39.6 41.1 41.0
A-NDCG(test) 36.3 40.5 42.4 43.0 43.0 43.2 44.0 44.8 44.7

Table 9. Classifycation accuracy on mixed STL-10 dataset, we use logistic regression to evaluate

method epoch:0 4 8 12 16 20 24 28 32

A-NDCG(train) 77.8 85.0 86.1 86.7 86.6 86.6 87.4 87.0 86.3
A-NDCG+mixup(train) 80.9 86.5 87.2 87.9 89.8 89.3 89.6 89.1 89.4
A-NDCG+cutmax(train) 88.4 86.4 87.1 87.5 87.6 87.3 87.8 87.7 88.3

A-NDCG(test) 44.0 49.5 51.9 52.3 51,8 52.1 52.8 50.9 52.4
A-NDCG+mixup(test) 44.9 52.0 52.7 53.1 53.8 54.3 53.8 54.8 55.7
A-NDCG+cutmax(test) 51.0 52.2 52.3 51.9 52.5 52.5 53.0 53.0 53.0

Table 10. Classifycation accuracy on mixed STL-10 dataset, we use knn to evaluate

method epoch:0 4 8 12 16 20 24 28 32

A-NDCG(train) 62.2 66.1 66.6 67.5 68.3 67.4 67.8 67.9 68.9
A-NDCG+mixup(train) 64.8 68.1 68.9 69.7 68.8 70.5 70.3 71.3 70.8
A-NDCG+cutmax(train) 63.6 63.5 66.8 68.0 69.5 69.0 69.4 69.9 70.0

A-NDCG(test) 36.3 40.5 42.4 43.0 43.0 43.2 44.0 44.8 44.7
A-NDCG+mixup(test) 39.2 43.6 44.3 46.2 47.0 46.9 47.5 46.5 47.5
A-NDCG+cutmax(test) 37.7 42.1 42.6 44.4 44.6 45.4 46.3 45.9 45.8
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