APS Virtual March Meeting, Poster U71.216, March 18, 2021

Can Frozen Hydrogen Snowballs Account for Galactic Dark Matter?

or

A Cryogenic Physicist Thinks about Astronomy

Alan M. Kadin Retired Princeton Junction, NJ USA Email <u>amkadin@alumni.princeton.edu</u>

Abstract

- DARK MATTER: Most mass in galaxies is invisible what is it?
 - >80% of matter lies in halo around galaxies, but not in stars or other visible objects.
 - Cannot be dilute gas of H₂ and He absorption lines would appear in spectra.
 - Popular theories suggest novel particles or novel dark objects such as black holes.
- Simpler alternative: frozen H₂ snowballs at 2.7 K.
 - Could also trap most He atoms internally.
 - This model could be tested using a cryogenic laboratory experiment.

Dark Matter Halos

- Dark Matter consists of inferred mass well outside visible stars and clusters in Milky Way and other galaxies
 - Orbital rotation rates of galaxies require distribution of mass in spherical region around galaxy.
 - This accounts for 80-90% of the mass in most galaxies.
 - This matter is not associated with stars or anything else visible.
 - This is a "dark matter halo", although nothing is glowing.
 - The composition and origin of Dark Matter is one of the major mysteries of modern astrophysics.
- Dark Energy is another completely different mystery.
 - Related to gravitational repulsion in expansion of distant galaxies.
 - This analysis does not relate to Dark Energy in any way.

Current Explanations for Dark Matter

- Many varying alternative explanations, but none widely accepted.
 - Cold hydrogen seems to have been ruled out early for various reasons.
 - Revised theory of gravity to fit the rotation (Modified Newtonian Dynamics or MOND).
 - Massive Compact Halo Objects (MACHOs) such as primordial black holes or cold dark matter.
 - Novel particles such as WIMPs (weakly interacting massive particles) or sterile neutrinos.

Hydrogen and Helium Form the Universe

- Hydrogen is most common element in universe
 90% of nuclei are protons
- Helium is about 9% of atoms

– Almost all He-4

• All other atoms total < 1%

– We can neglect them here

 Could Dark Matter be mixture of hydrogen and helium?

Could Dark Matter be Warm Hydrogen?

- Uniform dilute gas of H₂ and He, with sufficient density to account for dark matter, would produce absorption lines in spectra of interstellar medium – not observed.
- Model of cosmic microwave background (at 2.7 K) suggests that most matter should not interact with light as nucleons do, encouraging alternative basis for dark matter.
- Dark matter based on hydrogen seems to have been abandoned.

Could Dark Matter be Cold Hydrogen?

- The temperature far from stars is limited by cosmic microwave background to T ~ 2.7 K.
 - Assume locations of dark matter exhibit T near 2.7 K.
- The freezing temperature of H_2 is 14 K.
 - The vapor pressure of solid H_2 at 2.7 is tiny ~ 10⁻¹⁴ atm.
- So frozen hydrogen could eliminate most H₂ gas, which could be compatible with dark matter in galaxies.
 - Noted years ago in the literature (White 1996), but mostly ignored.
- But He has a much higher vapor pressure.
 - Vapor pressure of liquid He at 2.7 K is large ~0.16 atm..
- Is there some way that frozen H₂ can trap He atoms?

Trapping of He Inside Solid H₂

- Frozen H₂ may be in the form of comet-like giant snowballs, held together by cohesion rather than by gravity.
 - The size may increase by condensation from gas as well as collision of smaller snowballs.
- A monolayer of He will adhere to surfaces of frozen H_2 , and may also be trapped in internal surfaces of such a snowball.
 - For a large-enough snowball with multiple adsorption and collision events, a substantial portion of He atoms may be trapped internally.
 - If most He atoms are trapped, this could provide a strong candidate for dark matter.
- Similar cryogenic gas trapping with other condensed gases has been seen in the laboratory.

Ways to Enhance He Trapping

- Rather than dense solid H₂, consider a nano-porous composite down to an atomic scale.
 - This might form by condensation of H_2 from gaseous state.
 - This would increase possible surfaces for He adsorption.
- Vacuum evaporation of He from external surfaces could lead to cooling below the superfluid transition of 2.17 K for at least part of the life cycle of the snowball.
 - In the superfluid state, He would likely penetrate all internal nanoscale surfaces
 - This may trap more He atoms internally, even after the snowball warms back up to 2.7 K

Ways to Test H₂/He Snowball Model

- A H₂/He snowball could be simulated in a cryogenic laboratory experiment (next slide).
- If this model is correct, then it is likely that a small fraction of He gas would be present.
 - This He gas should provide a spectroscopic signature.
 - The combination of He spectra without H spectra would be a key indicator in support of this model.

Proposed Laboratory Experiment

- Vacuum chamber cooled to 2.7 K.
- Experiment #1:
 - Admit sufficient H₂ gas to coat surfaces.
 - Admit H_2 /He gas mixture to chamber.
 - Repeat multiple times as desired.
 - Pump out excess gas, maintaining T = 2.7 K.
 - Warm up chamber and measure content of gases.
 - Determine fraction of He trapped in frozen H_2 .
- Experiment #2:
 - Same initial steps, but permit pumping to cool down frozen H₂ below
 2.17 K, so that superfluid He may penetrate all internal surfaces.
 - Compare trapped He fraction with and without cooldown.
- Develop quantitative model for larger H_2/He snowballs.

Have H₂ "Comets" Been Observed?

- Recently, interstellar object observed moving rapidly through solar system, named "Oumuamua"
 - Irregular shape, but less than ~ 1 km in size.
 - Origin and composition of this body remain subject of debate.
- One analysis (Seligman 2020; Oberhaus 2020) suggests that this may be solid hydrogen, coming from a very cold region of the galaxy.
 - This analysis suggests that non-gravitational acceleration caused by sublimation of hydrogen from the object in the warmer environment of the solar system.
- While this does not address the question of dark matter, it suggests that objects of this type and size may be possible.

Could H₂ Snowballs Provide Enough Mass for Dark Matter?

- Rough estimate based on size and mass of Milky Way
 - Radius R~ 10^5 light years ~ 10^{18} km
 - Total Mass of stars ~ 10^{12} solar mass ~ 2×10^{42} kg
- Dark matter halo with M $\sim 10^{43}$ kg in sphere R $\sim 10^{19}$ km
- Assume solid H₂ spheres with 1 km diameter
 - Density 86 kg/m³, m \sim 4 x 10¹⁰ kg
- Assuming uniform density for simplicity, this would require ~ 2 x 10³² snowballs ~ 10⁸ km apart.
- Such objects would have negligible gravitational attraction, collide very rarely, and would be difficult to detect.
- This all seems plausible.

Conclusions

- A new model for galactic dark matter is proposed, whereby frozen H₂ snowballs at 2.7 K also trap He atoms.
- A cryogenic laboratory experiment is proposed, to demonstrate trapping of He in frozen H₂.
- If this model is responsible for dark matter, some small fraction of He gas might be present, which could be observed spectroscopically.
- The bias in the astrophysics community against "regular matter" as the solution to the dark matter mystery should be reconsidered.

References

- R.S. White, "Can Baryonic Dark Matter be Solid Hydrogen?", Astrophysics and Space Science, 240, 75 (1996). <u>http://adsabs.harvard.edu/full/1996Ap%26SS.240...75W</u>
- D. Seligman and G. Laughlin, "Evidence that 1I/2017 U1 (Oumuamua) was composed of molecular hydrogen ice", Astrophys. J. Lett. 895, L8 (2020). <u>https://arxiv.org/abs/2005.12932</u>
- D. Oberhaus, "Oumuamua might be a giant interstellar hydrogen iceberg," Wired Magazine (May 2020). <u>https://www.wired.com/story/oumuamua-might-be-a-giant-interstellar-hydrogen-iceberg/</u>

General References

- Dark Matter, Wikipedia article <u>https://en.wikipedia.org/wiki/Dark_matter</u>
- Dark Matter Halo, Wikipedia article
 <u>https://en.wikipedia.org/wiki/Dark_matter_halo</u>
- Superfluid Helium-4, Wikipedia article <u>https://en.wikipedia.org/wiki/Superfluid_helium-4</u>
- Milky Way, Wikipedia article <u>https://en.wikipedia.org/wiki/Milky_Way</u>